## icm

#### References

- [1] E. S. Barnes, The complete enumeration of extreme senary forms, Philos. Trans. Roy. Soc., London, Ser. A, 249 (1957), pp. 461-506.
- [2] H. F. Blichfeldt, The minimum values of positive quadratic forms in six, seven and eight variables, Math. Zeitschr. 39 (1935), pp. 1-15.
- [3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, first edition, Oxford 1938.
- [4] A. Korkine and G. Zolotareff, Sur les formes quadratiques positives, Math. Ann. 11 (1877), pp. 242-292.
- [5] R. A. Rankin, On the minimal points of perfect quadratic forms, Math. Zeitschr. 84 (1964), 228-232.
- [6] G. Voronoi, Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math. 133 (1908), pp. 97-178.

UNIVERSITY COLLEGE London, England

Received on 15. 9. 1969

ACTA ARITHMETICA XVIII (1971)

## Some elliptic function identities

by

J. W. S. CASSELS (Cambridge)

Harold Davenport in memoriam

**0.** Introduction. In the course of some calculations about elliptic curves defined over finite fields I was led to identities about the coefficients of classical elliptic functions. These appear to be new, although they are entirely in the spirit of 19th century analysis. In this introduction I shall first enunciate the complex function identities and then describe the application to finite fields. The proofs will be given in the remainder of the paper.

I am grateful to Mr. A. D. McGettrick for some useful discussions and in particular for his contribution to § 6.

As we shall want to specialize mod p later, we must be rather more pedantic in the discussion of the complex function identities than would otherwise be appropriate.

Let x, A, B be independent indeterminates over some field k of characteristic 0 and define y by

$$(0.1) y^2 = x^3 + Ax + B.$$

We regard y as a formal series in  $x^{-1/2}$ :

$$(0.2) y = x^{3/2} \{1 + Ax^{-2} + Bx^{-3}\}^{1/2} = x^{3/2} \left\{1 + \sum_{i>0} {1 \choose i} (Ax^{-2} + Bx^{-3})^i\right\}.$$

There is a sequence of polynomials

$$(0.3) L_i \in k[x, y, A, B]$$

uniquely defined by the properties

$$(0.4) L_0 = 1, L_1 = 0,$$

and

(0.5) 
$$\sum_{j=0}^{r} {r \choose j} L_j w^{(r-j)/2} = O(1) (r = 2, 3, ...)$$

where O(1) denotes an element of  $k[x^{1/2}, y, A, B]$  whose formal expansion contains no negative powers of  $x^{-1/2}$ . Indeed it is readily verified by induction that (0.4) together with (0.5) for  $r \leq s$  defines the  $L_r$  (r < s) uniquely and  $L_s$  up to an element of k[A, B].

Now let k be the field C of complexes and let A,  $B \in C$  satisfy

$$(0.6) 4A^3 + 27B^2 \neq 0.$$

Then (0.1) defines an elliptic curve which is parametrized by the Weierstrass doubly-periodic functions, say

(0.7) 
$$x = \wp(z), \quad y = -2\wp'(z)$$

where

$$(0.8) dz = -dx/2y$$

and

(0.9) 
$$\begin{cases} x = z^{-2} + o(1), \\ y = z^{-3} + o(1), \end{cases} (z \to 0).$$

We also require the Weierstrass zeta-function  $\zeta(z)$  determined by

(0.10) 
$$\begin{cases} \frac{d\zeta(z)}{dz} = -x(z), \\ \zeta(z) = z^{-1} + o(1). \end{cases}$$

For any period  $\omega$  of  $\omega$  there is the constant  $\eta(\omega)$  defined by

(0.11) 
$$\eta(\omega) = \zeta(z+\omega) - \zeta(z).$$

Clearly  $\eta(\omega)$  depends linearly on  $\omega$ .

We shall be concerned with the sequence of functions

$$(0.12) R_r(z) = \sum_{j=0}^r {r \choose j} L_j(x(z), y(z)) (\zeta(z))^{r-j} (r = 0, 1, 2, ...),$$

80

(0.13) 
$$R_0(z) = 1; \quad R_1(z) = \zeta(z).$$

Clearly  $R_r(z)$  is a regular function of z except possibly at the period points. We investigate its behaviour there. Consider first the neighbourhood of z=0 and write temporarily

(0.14) 
$$\zeta(z) = x^{1/2}(z) + \theta(z),$$

80

(0.15) 
$$\theta(z) = O(z^3) = O(x^{-3/2}).$$

On substituting (0.14) in (0.12) and rearranging we have

$$R_r(z) = \sum_{j=0}^r \binom{r}{j} \, \theta^{r-j} \sum_{l=0}^j \binom{j}{l} \, L_j(x, y) \, x^{(j-l)/2} = \sum_{j=0}^r \binom{r}{j} \, \theta^{r-j} A_j$$

(say), where

$$egin{aligned} arLambda_0 &= 1, & arLambda_1 &= x^{1/2}, \ arLambda_l &= O(1) & (l \geqslant 2) \end{aligned}$$

by (0.5). Hence

$$(0.1.6) R_r(z) = O(1) (r \geqslant 2; z \to 0)$$

by (0.15).

If  $\omega$  is any period and  $\eta = \eta(\omega)$ , then

(0.17) 
$$R_r(z+\omega) = \sum_{j=0}^r \binom{r}{j} L_j(x,y) (\zeta+\eta)^{r-j} = \sum_{j=0}^r \binom{r}{j} \eta^j R_{r-j}(z);$$

and so

(0.18) 
$$R_r(z+\omega) = r\eta^{r-1}z^{-1} + O(1)$$

by (0.10), (0.13) and (0.16). Hence  $R_r(z)$  has simple poles at the periods  $\omega$  with residue

$$(0.19) r(\eta(\omega))^{r-1}$$

and no other singularities. This property defines  $R_r(z)$  up to an additive constant: the appropriate additive constant for our purposes is determined by the definition in terms of the  $L_i$ .

Let u be a new variable and define the formal Laurent series F(u, z) by

(0.20) 
$$uzF(u,z) = \sum_{j=0}^{\infty} zR_{j}(z)u^{j}/j!,$$

where the right-hand side is a formal double power series in the variables u, z. Our identity is

THEOREM 1.

(0.21) 
$$F(u,z) = F(z,u).$$

We postpone the proof of Theorem 1 to § 2 and now explain briefly its relevance to elliptic curves defined over finite fields.

### 1. Consider

$$(1.1) y^2 = x^3 + Ax + B$$

as the equation of an elliptic curve  $\mathscr C$  over the field  $F=F_p$  of p elements and suppose that the Hasse invariant H is non-zero. Then there are precisely p-1 points on  $\mathscr C$  of exact order p defined over the algebraic closure  $\overline F$  of F. Further, there is a uniquely defined isogeny  $\phi$  of  $\mathscr C$  into itself

$$(1.2) \mathscr{C} \xrightarrow{\phi} \mathscr{C}$$

of degree p with kernel the points of order p. Let  $\mathfrak{X}=(X,Y)$  and  $\mathfrak{x}=(x,y)=\phi\mathfrak{X}$  be generic points of  $\mathscr C$ . Then the function field  $\overline{F}(\mathfrak{X})$  is an Artin-Schreier extension of  $\overline{F}(\mathfrak{x})$  which can be given explicitly as follows (Deuring [1]). Let

$$(x^3 + Ax + B)^{(p-1)/2} = \sum_{j} \lambda_j x^{3(p-1)/2-j}.$$

Then

$$(1.4) \widetilde{F}(\mathfrak{X}) = \widetilde{F}(\mathfrak{X})(g)$$

where

$$(1.5) g^{p} - Hg = y \sum_{i=0}^{(p-3)/2} \lambda_{i} x^{(p-3)/2-i}$$

and the Hasse invariant H is

$$(1.6) H = \lambda_{(p-1)/2}.$$

The automorphisms of  $\overline{F}(\mathfrak{X})/\overline{F}(\mathfrak{X})$  are thus of the type

$$(1.7) g \to g + \mathfrak{H}$$

where

$$\mathfrak{H}^{p-1} = H.$$

On the other hand, the automorphisms of  $\overline{F}(\mathfrak{X})/\overline{F}(\mathfrak{X})$  are clearly

$$\mathfrak{X} \to \mathfrak{X} + \mathfrak{b},$$

where b is a p-division point. The problem that started the present investigation is to find an explicit expression for the b = b(5) such that

$$(1.10) g(\mathfrak{X}+\mathfrak{b}) = g(\mathfrak{X})+\mathfrak{H},$$

where  $\mathfrak{H}$  is a given solution of (1.8).

I was unable to find a satisfactory solution in general but obtained one which was good enough for computational purposes when the curve (1.1) and the isogeny (1.2) are the reductions of a curve and an isogeny defined over an imaginary quadratic number field K (say). The reduction will be modulo an ideal p of K of norm p. To avoid extra notation we shall denote an element of K and its residue modulo p by the same letter.

We define  $C_j$ ,  $D_j \in k$  (j = 0, 1, 2, ...) as the coefficients in the expansions of the functions

$$\frac{1}{2!}R_2(z) = \frac{1}{2}\left\{\zeta^2(z) - x(z)\right\} = \sum_{j=0}^{\infty} C_j z^j,$$

$$\frac{1}{3!}R_3(z) = \frac{1}{6}\left\{\zeta^3(z) - 3\zeta(z)x(z) + 2y(z)\right\} = \sum_{j=0}^{\infty} D_j z^j$$

of the previous section. Then

THEOREM 2(1). Suppose that  $\phi$  is the reduction of an isogeny defined in characteristic 0. Then the coordinates  $X(\mathfrak{H})$ ,  $Y(\mathfrak{H})$  of the division point  $\mathfrak{h} = \mathfrak{h}(\mathfrak{H})$  are

$$X(\mathfrak{d}) = H^2 \sum_{j=1}^{p-2} j! C_j \mathfrak{H}^{-j}, \qquad Y(\mathfrak{d}) = H^3 \sum_{j=1}^{p-2} j! D_j \mathfrak{H}^{-j}.$$

It is, of course, implicit in the enunciation of Theorem 2 that  $C_i$  and  $D_i$  are integers for p and so can be taken modulo p.

2. The complex case. In this section it is convenient to write  $b_0 = 1$ ,  $b_1 = 0$ , and  $b_i$  for the constant term in  $R_i(z)$  (j > 1), so that

(2.1) 
$$\begin{cases} R_0 = b_0 = 1, \\ R_1 = z^{-1} + b_1 + O(z) = z^{-1} + O(z), \\ R_j = b_j + O(z) \ (j > 1). \end{cases}$$

For any period  $\omega$  it follows from (0.17) that

(2.2) 
$$R_r(z+\omega) = r\eta^{r-1}z^{-1} + \sum_{j=0}^r \binom{r}{j} b_j \eta^{r-j} + O(z),$$

where

$$(2.3) \eta = \eta(\omega).$$

We shall now set up recurrence relations involving the  $R_r(z)$  and their derivatives.

For  $r \ge 0$ ,  $s \ge 0$  consider

(2.4) 
$$I(r, s)(z) = R_r(z)R_s(z) + \frac{rs}{r+s-1}R'_{r+s-1}(z) -$$

$$-\sum_{j=0}^{r+s-1} \left\{ s {r \choose j} + r {s \choose j} \right\} \frac{b_j}{r+s-j} R_{r+s-j}(z).$$

The only possible poles of I(r, s)(z) are at the period points and it follows readily from (2.2) that I(r, s)(z) is regular there too. Hence

(2.4') 
$$I(r,s)(z) = constant$$

by Liouville's theorem. But now by (0.17) we have

(2.5) 
$$I(r,s)(\omega+z) = \sum_{t} \eta^{r+s-t} J(r,s,t),$$

<sup>(3)</sup> See Corrigendum, p. 51.

where

$$(2.6) J(r, s, t) = J(r, s, t)(z)$$

$$= \sum_{j+k=t} {r \choose j} {s \choose k} R_j(z) R_k(z) + \frac{rs}{r+s-1} {r+s-1 \choose t-1} R'_{t-1}(z) - \sum_{j+k=t} \left\{ s {r \choose j} + r {s \choose j} \right\} \frac{b_j}{r+s-j} {r+s-j \choose k} R_k(z)$$

is independent of  $\omega$ . Since  $\eta$  takes infinitely many distinct values, it follows from (2.4') that

$$(2.7) J(r,s,t) = 0$$

identically in z whenever

$$(2.8) r+s>t$$

This is one relation between the  $R_i(z)$  but we shall deduce a simpler one. Keep t fixed and let r, s vary subject only to the condition (2.8). Then on writing

$$\binom{r}{j} = \frac{r(r-1)\dots(r-j+1)}{j!}$$

etc. in (2.6) we see that

$$J(r, s, t) \prod_{j=1}^{t} (r+s-j)$$

is a polynomial in r, s whose coefficients are meromorphic functions of z (and depend also on t). Since this polynomial vanishes whenever r+s>t, it must vanish identically in r, s. In particular, on picking out the terms of highest degree in r and s we obtain

$$(2.9) 0 = \sum_{j+k=t} r^{j} s^{k} \frac{R_{j}(z)}{j!} \frac{R_{k}(z)}{k!} + rs(r+s)^{t-2} \frac{R'_{t-1}(z)}{(t-1)!} - \sum_{\substack{j+k=t\\ k}} (sr^{j} + rs^{j}) (r+s)^{k-1} \frac{b_{j}}{j!} \frac{R_{k}(z)}{k!}.$$

Here  $t \ge 0$  is an integer, z is a complex variable and now r, s may take all complex values. We recall the definition

(2.10) 
$$F(r,z) = \sum_{j=0}^{\infty} r^{j-1} R_j(z) / j!$$

in the enunciation of Theorem 1 and put

(2.11) 
$$G_1(r) = \sum_{j>0} r^{j-1} b_j / j!.$$

The identities (2.9) for  $t = 0, 1, 2, \dots$  together give

$$(2.12) 0 = F(r,z)F(s,z) + F_z(r+s,z) - \{G_1(r) + G_1(s)\}F(r+s,z),$$

where the suffix z denotes  $\partial/\partial z$ . Indeed one readily verifies that the righthand side of (2.9) is just the portion of the right hand side of (2.12) of weight t in r, s multiplied by rs. (Note that  $b_0 = 1, b_1 = 0$ .)

3. We now obtain relations between the formal series  $G_i(r)$  where

(3.1) 
$$F(r,z) = \sum_{j} z^{j-1} G_{j}(r)/j!$$

(which is compatible with the earlier definition of  $G_1$ ). On equating the coefficients of  $z^{t-2}$  in (2.12) for any given t, we obtain

$$(3.2) 0 = \sum_{j+k=t} \frac{G_j(r)}{j!} \frac{G_k(s)}{k!} + (t-1) \frac{G_t(r+s)}{t!} - \{G_1(r) + G_1(s)\} \frac{G_{t-1}(r+s)}{(t-1)!}$$

identically in r, s. Since  $G_0(r) = 1$ , this is a trivial identity for t = 0and t = 1. For t = 2 we obtain

$$(3.3) 0 = \frac{1}{2} \{ G_2(r) + G_2(s) + G_2(r+s) \} + G_1(r)G_1(s) - \{ G_1(r) + G_1(s) \} G_1(r+s).$$

Since  $G_1(r)$  is an odd function of r and  $G_2(r)$  is even, we get a more elegant identity on putting

$$r = r_1, \quad s = r_2, \quad -r - s = r_3.$$

'Then

(3.4) 
$$\left\{\sum_{j=1}^{3} G_{1}(r_{j})\right\}^{2} + \sum_{j=1}^{3} \left\{G_{2}(r_{j}) - G_{1}^{2}(r_{j})\right\} = 0$$

for all values of the variables  $r_1, r_2, r_3$  satisfying

$$(3.5) r_1 + r_2 + r_3 = 0.$$

This immediately recalls the following identity of Frobenius and Stickelberger [2]:

(3.6) 
$$\left\{ \sum_{j=1}^{3} \zeta(z_{j}) \right\}^{2} = \sum_{j=1}^{3} w(z_{j})$$

whenever

$$(3.7) z_1 + z_2 + z_3 = 0.$$

Following up this clue, a simple calculation shows that

- (i) the coefficients of  $G_1(r)$  and  $G_1^2(r) G_2(r)$  coincide with those of  $\zeta(r)$ ,  $\chi(r)$  in degree  $\leq 6$ .
- (ii) the identity (3.4) determines the coefficients of  $G_1(r)$  and  $G_1^2(r)-G_2(r)$  of degree >6 recursively in terms of the earlier ones. Hence,

(3.8) 
$$G_1(r) = \zeta(r) = R_1(r),$$

(3.9) 
$$G_2(r) = \zeta^2(r) - x(r) = R_2(r)$$

and, of course,

(3.10) 
$$G_0(r) = 1 = R_0(r).$$

In particular, on comparing (2.10), (3.1) and (3.6) we have

(3.11) 
$$G_j(r) = b_j + O(r) \quad (j \neq 1, r \to 0)$$

and

(3.12) 
$$G_1(r) = \zeta(r) = r^{-1} + O(r).$$

We now revert to the identity (3.2) which we write in the shape

$$0 = \sum_{\substack{j \neq 1 \\ j+k=t}} \frac{G_j(r)}{j!} \frac{G_k(s)}{k!} + G_1(r) \frac{G_{t-1}(s) - G_{t-1}(r+s)}{(t-1)!} + \\ + (t-1) \frac{G_t(r+s)}{t!} - \frac{G_1(s)G_{t-1}(r+s)}{(t-1)!}.$$

On letting  $r \to 0$  and using (3.11), (3.12) we deduce that

$$(3.13) 0 = \sum_{j+k=t} \frac{b_j}{j!} \frac{G_k(s)}{k!} - \frac{G'_{t-1}(s)}{(t-1)!} + (t-1) \frac{G_t(s)}{t!} - \frac{G_1(s)G_{t-1}(s)}{(t-1)!}$$

or, on multiplying by -(t-1)! and recollecting that  $b_0 = 1$ :

$$(3.14) 0 = G_1(s)G_{t-1}(s) + G'_{t-1}(s) - G_t(s) - \sum_{\substack{j>0\\j+k=t}} {t-1 \choose j} b_j \frac{G_k(s)}{k}.$$

This is a recurrence relation which determines  $G_t(s)$  recursively for  $t=3,4,\ldots$  We shall deduce that

$$G_t(s) = R_t(s)$$

for all t by showing that  $R_t(s)$  satisfies the same relation.

Indeed, by (2.4) we have

(3.15) 
$$R_{1}(z)R_{t-1}(z) + R'_{t-1}(z) - R_{t}(z) - \sum_{\substack{j>0\\j+k=t}} {t-1 \choose j} b_{j} \frac{R_{k}(z)}{k} = I(1, t-1)(z) = \text{constant}$$

by (2.4').

Suppose we know already the identities

$$G_v(s) = R_v(s)$$
 (all  $v < t$ ).

Then (3.14), (3.15) imply that

$$G_t(s) = R_t(s) + \text{constant},$$

But

$$G_t(0) = b_t = R_t(0)$$

by (3.11). Hence identically

$$G_t(s) = R_t(s)$$

This is just the enunciation of Theorem 1 by (0.20) and (3.1).

4. Some further complex identities. For later reference we note and transform slightly the identities that arise from differentiating (0.12) with respect to z. We have

$$(4.1) \qquad -\frac{d}{dz} R_r(z) = \sum_{i=0}^r {r \choose j} \left\{ -\frac{d}{dz} L_j(x,y) + jx L_{j-1}(x,y) \right\} \zeta^{r-j}.$$

 $\mathbf{Put}$ 

$$(4.2) -\frac{d}{dz}R_r(z) = rS_{r-1}(z)$$

 $\mathbf{and}$ 

(4.3) 
$$-\frac{d}{dz}L_{j}(x,y)+jxL_{j-1}(x,y)=jM_{j}(x,y),$$

80

$$(4.4) M_j(x, y) \in C[x, y].$$

Then (4.1) becomes

$$S_r(z) = \sum_{j=0}^r {r \choose j} M_j(x, y) \zeta^{r-j}$$

on writing r, j for r-1, j-1. By (4.2) and (0.18) we have

(4.6) 
$$S_r(\omega+z) = \{\eta(\omega)\}^r z^{-2} + O(1).$$

The sequence  $M_r$  is easily seen to be defined by the properties

$$(4.7) M_0 = x, M_1 = -y$$

and

(4.8) 
$$\sum_{j=0}^{r} {r \choose j} M_j(x, y) x^{(r-j)/2} = O(1) (r \ge 2)$$

where

$$(4.9) x = x(z), y = y(z), z \to 0.$$

Similarly, the functions

$$(4.10) T_r(z) = -\frac{1}{2} \frac{d}{dz} S_r(z)$$

satisfy

(4.11) 
$$T_r(\omega + z) = {\eta(\omega)}^r z^{-3} + O(1)$$

and are of the form

$$(4.12) T_r(z) = \sum_{j=0}^r {r \choose j} N_j(x, y) \zeta^{r-j},$$

where

$$(4.13) N_i(x, y) \in C[x, y]$$

are defined by

$$(4.14) N_0 = y, N_1 = -x^2$$

and

(4.15) 
$$\sum_{j=0}^{r} {r \choose j} N_j(x, y) x^{(r-j)/2} = O(1).$$

Theorem 1 allows us to make the estimates (4.6) and (4.11) more precise. Define  $B_i$ ,  $C_i$ ,  $D_i$   $(i \ge 0)$  by the expansions

$$\frac{1}{1!}R_{1}(z) = \zeta(z) = z^{-1} + \sum_{j=0}^{\infty} B_{j}z^{j},$$

$$\frac{1}{2!}R_{2}(z) = \frac{1}{2}(\zeta^{2} - x) = \sum_{j=0}^{\infty} C_{j}z^{j},$$

$$\frac{1}{3!}R_{3}(z) = \frac{1}{6}(\zeta^{3} - 3x\zeta + 2y) = \sum_{j=0}^{\infty} D_{j}z^{j}.$$

Then Theorem 1 gives us the first few coefficients in the expansion of  $R_i(z)$  as

(4.17) 
$$R_{j}(z) = j! \{B_{j-1} + C_{j-1}z + D_{j-1}z^{2} + \ldots\} \quad (j > 1),$$

$$R_{1}(z) = z^{-1} + B_{0} + C_{0}z + D_{0}z^{2} + \ldots$$

Hence in the neighbourhood of z = 0 we have:

(4.18) 
$$S_{r}(z) = -\frac{1}{(r+1)} \frac{d}{dz} R_{r+1}(z)$$

$$= \begin{cases} z^{-2} + O(z) & (r=0), \\ -r! C_{r} + O(z) & (r>0) \end{cases}$$

and similarly

(4.19) 
$$T_r(z) = \begin{cases} z^{-3} + O(z) & (r = 0), \\ -r! D_r + O(z) & (r > 0). \end{cases}$$

5. The finite field case. As in § 1, let

$$\mathscr{C}\colon y^2 = x^3 + Ax + B$$

be defined over the field F of p elements and let

$$\phi \colon \mathscr{C} \to \mathscr{C}$$

be a separable isogeny of degree p. We use  $\mathfrak{X} = (X, Y)$  and  $\mathfrak{x} = (x, y)$  for a pair of generic points related by

$$\mathfrak{x} = \phi \mathfrak{X}$$

and suppose that the function  $g(\mathfrak{X})$  in (1.5) is so normalised that

$$(5.4) g(\mathfrak{X}) - y/x$$

vanishes when  $\mathfrak{X}$  is the point at infinity on  $\mathscr{C}$ . Then

$$(5.5) g(-\mathfrak{X}) = -g(\mathfrak{X}).$$

We no longer have the Weierstrass variable z and choose  $x^{-1/2}$  as a local uniformizer in the neighbourhood of the point at infinity v. Then

(5.6) 
$$g(\mathfrak{X}) = x^{+1/2} + O(x^{-1/2})$$

(note the majuscule on the left-hand side and the minuscule on the right-hand side). Further

$$(5.7) g(\mathfrak{X}+j\mathfrak{h}) = g(\mathfrak{X})+j\mathfrak{H},$$

where b is the point in the kernel of  $\phi$  belonging to 5 as explained in § 1. We can now mimic the argument of § 4. The conditions (4.7), (4.8) determine the  $M_j$  (j < p-1) uniquely and  $M_{p-1}$  up to an additive constant which for the moment we suppose chosen arbitrarily. Consider

(5.8) 
$$\mathfrak{S}_{p-1}(\mathfrak{X}) = \sum_{i=0}^{p-1} {p-1 \choose i} M_j(x, y) \{g(\mathfrak{X})\}^{p-1-j};$$

and the second second

so the arbitrary additive constant in  $M_{p-1}$  implies the same arbitrary constant in  $\mathfrak{S}_{p-1}$ . Then

(5.9) 
$$g(\mathfrak{X}+j\mathfrak{d}) = w^{1/2}+j\mathfrak{H}+O(w^{-1/2})$$

and so

(5.10) 
$$\mathfrak{S}_{p-1}(\mathfrak{X}+j\mathfrak{h}) = (j\mathfrak{H})^{p-1}x + O(1)$$

by the analogue of (4.6). But, in characteristic p,

$$(5.11) (i5)^{p-1} = 0 (i = 0); (i5)^{p-1} = H (1 \le i \le p-1).$$

Further X, considered as a function of  $\mathfrak{X} = (X, Y)$  is regular except at  $\mathfrak{X} = \mathfrak{p}$  and there

$$(5.12) X = J^2 x + O(x^{-1})$$

where the constant J is defined by

$$\frac{dx}{y} = J \frac{dX}{Y}.$$

Hence

(5.14) 
$$\mathfrak{S}_{p-1}(\mathfrak{X}) - \mathfrak{S}_{p-1}(\mathfrak{o}) + HJ^{-2}X - Hw = 0$$

since it has no singularities and vanishes at  $\mathfrak{X} = \mathfrak{p}$ . This gives us a fairly explicit expression for X as an element of C[x, y, y] and so a fairly explicit expression for  $X(\mathfrak{b})$  as a polynomial in  $\mathfrak{H}$ .

One may similarly use  $T_{p-1}$  defined in (4.10) to find an expression for Y as an element of C[x, y, g] and to determine Y(b).

6. From the foregoing it appears that g is to some extent a substitute in characteristic p for the function  $\zeta$  which is defined only in characteristic 0. Let us investigate the analogy further. On applying the operator

(6.1) 
$$(') = -2yd/dx \quad (=d/dz \text{ in characteristic } 0)$$

to (1.5) and noting that

$$\frac{d}{dx}g^p=0,$$

$$\frac{d}{dx}\left\{y\sum_{j=0}^{\infty}\lambda_{j}x^{(p-3)/2-j}\right\}=\frac{d}{dx}\left(\frac{y}{x}\right)^{p}=0,$$

one readily obtains

(6.2) 
$$-Hg' = \lambda_{(p-1)/2} x - \lambda_{(p+1)/2}.$$

Hence

(6.3) 
$$g' = -x + H^{-1} \lambda_{(p+1)/2},$$

since

$$(6.4) H = \lambda_{(v-1)/2}.$$

On comparison with (0.10) we see that the analogy between g (in characteristic p) and  $\zeta$  (in characteristic 0) will be particularly close when

$$(6.5) g' = -x$$

or, what is the same thing (2),

$$\lambda_{(p+1)/2} = 0.$$

As Mr. A. D. McGettrick pointed out to me, this is certainly the case when the isogeny  $\phi$  is the reduction of an isogeny  $\tilde{\phi}$  on an elliptic curve  $\tilde{\mathscr{C}}$  defined over a complex quadratic field K. Then p is the norm of an integer  $\pi$  of K which can be chosen in such a way that

(i) the reduction is induced by the specialization

$$(6.6) K \to K(\operatorname{mod} \pi);$$

(ii)  $\tilde{\phi}$  is complex multiplication by the conjugate  $\pi'$  of  $\pi$ .

We now want to show that the function  $g(\mathfrak{X})$  of § 5 is the reduction of some function  $\tilde{g}(\mathfrak{X}) \in K(\mathfrak{X})$  on  $\tilde{\mathscr{C}}$ .

We define  $\tilde{g}(\mathfrak{X})$  by the following properties:

- (i) the only singularities of  $\tilde{g}(\mathfrak{X})$  are simple poles at  $\mathfrak{o}$  and at the  $\pi'$ -division points  $\tilde{\mathfrak{d}} \neq \mathfrak{o}$  with residues  $(1-p)/\pi'$  and  $1/\pi'$  respectively.
- (ii)  $\tilde{g}(\mathfrak{X})$  is an odd function of  $\mathfrak{X}$ . Clearly  $\tilde{g}(\mathfrak{X})$  exists and is unique. The reduction of  $\tilde{g}(\mathfrak{X})$  has the same residue  $1/(\pi' \mod \pi)$  both at  $\mathfrak{o}$  and at the  $\pi'$ -division points  $\mathfrak{d} \neq \mathfrak{o}$  and is odd. These properties suffice to identify it with  $g(\mathfrak{X})$ .

Let Z be the Weierstrass parameter of  $\mathfrak{X}$ , so  $\pi'Z = z$  (say) is that of  $\mathfrak{X} = \phi \mathfrak{X}$ . Comparison of poles shows that

(6.7) 
$$\tilde{g}'(\mathfrak{X}) = \zeta(z) - \pi \zeta(Z),$$

the arbitrary additive constant vanishing because  $\tilde{g}$  and  $\zeta$  are odd functions. The application of (6.1) gives

(6.8) 
$$\tilde{g}(\mathfrak{X}) = -x + \pi \pi'^{-1} X \equiv -x \pmod{\pi};$$

and so (6.5) holds on reduction.

The estimates

(6.9) 
$$\zeta = x^{1/2} + O(x^{-1/2}); \quad g = x^{1/2} + O(x^{-1/2})$$

together with (0.10) and (6.5) imply that the expansion of g in terms of a local uniformizer (say  $x^{-1/2}$ ) is the reduction of the corresponding

<sup>(2)</sup> See Corrigendum, p. 51.

expansion for  $\zeta$ , at least to  $O(x^{-\eta/2})$ . It follows readily from this that the terms of the expansion of

(6.10) 
$$\mathfrak{S}_{r}(\mathfrak{X}) = \sum_{j=0}^{r} \binom{r}{j} M_{j}(x, y) \{g(\mathfrak{X})\}^{r-j}$$

are the reduction of those of the expansion of  $S_r$  (defined in (4.5)) at least to  $O(x^{-(p-r-1)/2})$ . In particular, by (4.18), in the neighbourhood of  $\mathfrak{X} = \mathfrak{o}$  we have

(6.11) 
$$\mathfrak{S}_0(\mathfrak{X}) = x + O(x^{-1/2}),$$

(6.12) 
$$\mathfrak{S}_r(\mathfrak{X}) = -r!C_r + O(x^{-1/2})$$

and

$$\mathfrak{S}_{n-1}(\mathfrak{X}) = O(1),$$

where we have not distinguished between  $C_r$  and its residue class modulo  $\pi$ . By (5.7) and (6.10) we have

$$\mathfrak{S}_{p-1}(\mathfrak{X}+\mathfrak{d}) = \sum_{j=0}^{p-1} {p-1 \choose j} \mathfrak{S}_{j}(\mathfrak{X}) \mathfrak{S}^{p-1-j}.$$

On substituting (6.14) in (5.14) and letting  $\mathfrak{X} \to \mathfrak{o}$  we have

$$HJ^{-2}X(\mathfrak{d}) = \sum_{i=0}^{p-2} {p-1 \choose i} (j! C_i) \mathfrak{H}^{p-1-j}.$$

This expression simplifies. In the first place, by (5.13) and, since we are reducing complex multiplication by  $\pi'$ , we have

$$J=\pi'(\mathrm{mod}\pi)=-H$$

by a result of Manin ([3]. The simple example on pp. 154-155, which is only a special case of his general theorem, does all we need).

Secondly

$$\binom{p-1}{j} = (-1)^j \pmod{p}$$

and  $C_i = 0$  for odd j by (4.16). We deduce that

$$X(\mathfrak{d}) = H^2 \sum_{j=1}^{p-2} j! C_j \mathfrak{H}^{-j}$$

as asserted in Theorem 2.

The formula for  $Y(\mathfrak{b})$  in Theorem 2 is proved similarly but using  $T_r$  (defined in (4.10)) and its reduction  $\operatorname{mod} \pi$ .

7. In conclusion we note that at least when AB=0 the expansion of g is a reduction of that of  $\zeta$  to a much greater degree of accuracy than the  $O(x^{-n/2})$  in the remarks after (6.9). It would be interesting to know whether this is always the case.

Suppose, for example, that A = 0, so that

$$(7.0) y^2 = x^3 + B.$$

In order for there to be complex multiplication we must have

$$(7.1) p \equiv 1 \pmod{6}.$$

The equation (1.5) becomes

(7.2) 
$$g^{p} - Hg = y \sum_{f=0}^{(p-1)/6} {\frac{p-1}{2} \choose f} (-B)^{f} x^{(p-3)/2-3f},$$

where

(7.3) 
$$H = \begin{pmatrix} \frac{p-1}{2} \\ \frac{p-1}{6} \end{pmatrix} (-B)^{(p-1)/6}.$$

 $\mathbf{Here}$ 

$$g = y/x + O(x^{-5/2})$$

and so

$$g^{\nu} = (y/x)^p + O(x^{-5p/2}).$$

On substituting g = (y/x)G, in (7.2), where G is a power series in x whose coefficients are to be determined, one readily deduces that

$$Hg = y \sum_{f=(p-1)/6}^{(p-1)/2} \left( \frac{p-1}{2} \right) (-B)^f x^{(p-3)/2-3f} + O(x^{-5p/2}).$$

On using (7.3) and operating modulo p this gives

$$g = (y/x) F(1, \frac{1}{3}, \frac{5}{6}; -Bx^3) + O(x^{-5p/2})$$

in the standard hypergeometric function notation. But in characteristic 0,

$$\zeta = (y/x) F(1, \frac{1}{3}, \frac{6}{5}; -Bx^3).$$

Corrigendum (added in proof, May, 1971). Serre has pointed out to me that (6.5') on page 49 cannot hold whenever  $\phi$  is the reduction of an isogeny. A counter-example is  $y^2 = x^3 + x + 1$  for p = 5 since this curve is the reduction of a curve defined over Q with complex multiplication by the integers of  $Q(\sqrt{-11})$ . However, (6.5') is easily seen to be true for  $y^2 = x^3 + Ax$  and  $y^2 = x^3 + B$ .

# icm

#### References

- [1] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Hamburger Abhandlungen 14 (1941), pp. 197-272.
- [2] F. G. Frobenius and L. Stickelberger, ther die Addition und Multiplication der elliptischen Functionen, Crolle 88 (1880), pp. 146-184 [especially (9) on p. 155].
- [3] Ю. И. Манин, О матрице Хиссе-Витта алгебраической кривой, ИАН, сер. мат., 25 (1961), pp. 153-172.

Received on 4, 10, 1969

ACTA ARITHMETICA XVIII (1971)

# One some general problems in the theory of partitions, I

by

P. Erdös and P. Turán (Budapest)

To the memory of H. Davenport

1. In our fourth paper on statistical group theory (see [2]) we needed and proved that "almost all" sums of different prime powers not exceeding x consist essentially of

$$(1.1) \qquad \qquad (1+o(1))\frac{2\sqrt{6}}{\pi}\log 2 \cdot \sqrt{\frac{x}{\log x}}$$

summands. Further needs of this theory make it necessary to find general theorems in this direction, i.e. when the summands are taken from a given sequence

$$(1.2) A: 0 < \lambda_1 < \lambda_2 < \dots$$

of integers. The only result we know in this direction refers to the case when A is the sequence of all positive integers. In this case Erdös and Lehner (see [1]) proved even the stronger result that almost all "unequal" partitions of n (i.e. with exception of at most o(q(n)) partitions of n into unequal parts) consist of

(1.3) 
$$(1+o(1)) \frac{2\sqrt{3}\log 2}{\pi} \sqrt{n}$$

summands; here q(n) stands for the number of unequal partitions of n for which according to Hardy and Ramanujan (see [3]) the relation

(1.4) 
$$q(n) = \frac{1 + o(1)}{4\sqrt[4]{3}} n^{-\frac{3}{4}} e^{\frac{\pi}{\sqrt{3}}\sqrt{n}}$$

holds. Now we have found that having only asymptotical requirement on the counting function

$$\Phi_{\Lambda}(x) = \sum_{\lambda_{0} \leqslant x} 1$$

we can prove general theorems. More exactly we assert