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Some elliptic function identities
by
J. W. 8. CAssELS (Cambridge)

Harold Davenport in memoriam

0. Introduetion. In the course of some ecaleulations about elliptic
curves defined over finite fields I was led to identities about the coeffi-
cients of classical elliptic functions. These appear to be new, although
they are entirely in the spirit of 19th century analysis. In this introduetion
I shall firgt enunciate the complex function identities and then describe
the application to finite fields. The proofs will be given in the remainder
of the paper.

I am grateful to Mr. A. D. McGettrick for some useful discussions
and in particular for his contribution to § 6.

As we shall want to specialize modp later, we must be rather more
pedantic in the discussion of the complex function identities than would
otherwise be appropriate.

Let @, A, B be independent indeterminates over some field % of
characteristic 0 and define ¥ by

{0.1) y? = 3 Ap+ B.
We regard y as a formal series in a2

(02) y =Pt Ao+ Bo PR =Bl Y (j) (Ao *+-Bo~*Y].

FEX

There i8 & sequence of polyromials

(0.3) L, ¢k[w,y, A, B]

uniguely defined by the properties

(0.4) Ly=1, L,=0,

and :

(0.5) Sr”(’f) LM = 0@)  (r=2,3,..)

f=o a
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where O{1) denotes an clement of % [2', 4, A, B] whose formal expansion
containg no negative powers of »~'*. Indeed it is readily verified by in-
dnection that (0.4) together with {0.5) for < s defines the L, (r <)
uniquely and L, up to an element of k[4, B).

Now let % be the field € of complexes and let A4, Be€ satisfy

(0.6) 1A L2TH? £ 0.

Then (0.1) defines an elliptic eurve which. is parametrized by the Weier-
strass doubly-periodic funetions, say

{0.7) w=p), Y =—2p"(
where

(0.8) de = — duf2y

and

(0.9

e o2
[m—z +0(l1), (5 0).

Y = z_-s‘l‘ o(1),

We also require the Waeieratrass zeta-function {(z) determined by

df (e)
‘ el —2(2),

E(s) = o o(1).

(0.10)

For any period w of p there is the constant »(w) defined by
(0.11) nl{w) = {z+w)—{{z).

Clearly #(w) depends linearly on w.
We sghall be concerned with the sequence of functions

(0.12) 2( )L;(m L@@ =0,1,2,..,
BO
(0.13) By(2) == 1;  Ry(z) = {(2).

Clearly R,.(z) is a regular function of 2 except possibly at the period
points. We investigate its behaviour there. Congider first the neighbour-
hood of 2 = 0 and write temporarily

(0.14) £(a) = @ (e)+0(e),
850
(0.15) 0(2) = O(2*) = O{x™"*).
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On substituting (0.14} in (0.12) and rearranging we have

R.(2) :;‘ (;) Br—il;jﬂ' (Jl) Lz, )l -ie = j (;J 9"“"11]

j=0
(say), where
A‘D - l, Al - ;‘.UI'Jz

A, =01 (=2

bl

vy {0.5). Hence
{0.18) Bie) =0(1) (r=2;2—>0)
by (0.15).
If » iy any period and ¢ = 4{w), then

017 B+o) = 3 () e, n+ar = 3 (7 ¥ Reoylo;
and so - .
(0.18) Bz w) = rp" e 0(1)

by (0.10), (0.13) and (0.16). Hence K,.{z) has simple poles at the periods
o with residue

(0.19) r(n{w) "
and no other singularities. This property defines R.(2) up to an additive
constant: the appropriate additive constant for our purposes is determined
by the definition in terms of the Ij.

Let % be a new variable and define the formal Laurent series F(u, ) by

(0.20) wel(u, 2) = ) aByiz)v[jl,

where the right-hand side is a formal double power series in the variables
%, 2. Our identity is

ToeorREM 1. . _
(0.21) Flu,z) = (s, u).

‘We postpone the proof of Theorem 1 to §2 and now explain briefly
its relevance to elliptic curves defined over finite fields.

1. Consider
(1.1) 3t = *+Adnt+-B

ak the equation of an elliptic curve # over the field F = F, of p elements
and suppose that the Hasse invariant H is non-zero. Then there are
precisely p—1 points on % of exact order p defined over the algebraic
closure F of F. Further, there iz a nniquely defined isogeny ¢ of % into
itseld

(1.2) s



icm

40 J.W. 8. Cassels

of degree p with kernel the points of order p. Let X = (&, ¥) and
x = (@, y) = ¢X be generic points of #. Then the function field F(x%)
is an Artin—Schreier extension of F (x) which can be given explicitly as
follows (Deuring [1]). Let

(1.3 (@1 Ag-+ By =D = Z‘ AR
7

Then B »
(1.4) F(X) = F(x)(g)
wlhere

(--3)te _
(1.5) g —Hyg =y 2 Apale=Ed

Fe=
and the Hasxe invariant H is
(l-G) H = 11(?,_1)'[2.
The automorphisms of F(X)/F(x) are thug of the type
(1.7) g -+ §+9H
whele
(1.8) H7 = H.
On the other hand, the automorphisms of r (%)/ﬁ(a@) are cleaxly
(1.9) X->%+0,

where b i¢ a p-division point. The problem that started the present in-
vestigation is o find an explicit expression for the b = b(H) such that

(1.10) g(X+Dd) = g(X)+ 9,

where § is & given solution of (1.8).

T was unable to find a satisfactory solution in general but obtained
onoe which was good enough for computational purposes when the curve
(1.1) and the isogeny (1.%) are the reductions of a curve and an isogeny
defined over an imaginary quadratic number field K (say). The reduction
will be modulo an ideal p of K of norm p. To avoid extra notation we
shall denote an element of K and its rosidue modulo p by the samo letter.

We define €, Dyek (j =0,1,2,...) ag the coeflicients in the
expansions of the functions :

1 1 S
SRS = () — (o)) = % 0,

_._1_.1.3 {2) = ,,1"_ {53 (8)— 3E(2)w{2) - 29 (#)} == ‘\“W Do
37 Bale) = - AP (&) 3L ) la ?/(»«)}-«f-_d i

of the previons section. Then
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TiroREM 2(*). Suppose thal ¢ is the reduction of an isogeny defined
W characteristic 0. Then the coordinates X (H), Y(9) of the division point
b = () are

p—2 . -2
X(o) =H2 Y §16:977, Y(v) =H* D jiD;$~.
§—1 i=1
It ig, of course, implicit in the enunciation of Theorem 2 that C;
and I); are integers for p and so can be taken modulo p.
2. The complex case. In thiz section it is convenient o write

by = 1,b; == 0, and b; for the constant term in R;(2) (j > 1), so that

Rg - bo - l,
(2.1) By =27 +b,+0() =+ +0(2),
R, = b+0(2) (> 1).

For any period o it follows from (0.17) that

(22) R.(s+0) =m e 3 (7 b7+ 006,
§=0

where

(2.3) 1 = 13 ().

We shall now set up recwrrence relations invelving the R (¢) and their
derivatives.
For 7z 0,8 2 0 congider

— e B 2y —
pdeg—1 'r+s—1( )

i

N (e (Nl
L ls(j)*”"(o‘)fms—jR*'“"?(")'
The only possible poles of I(r, 8)(z) are af the period points and it follows
readily from (2.2) that I(r, s)(z) is regnlar there too. Hence

{2.17) I, 8)(2) = congtant

by Xiowville’s theorem. But now by (0.17) we have

(2.5) I(r, 8){w+z) = Z‘nﬂ*-’-*J(f, $,1),

[

(*} See Corvigandum, p. 51.
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where

(2.6)  J(r,s,1) =dJ(r, 8,9

= G BeRE T () B

J-Jo=t
= Dl ) mee

fo-Tessd

is independent of w. Since 5 takes infinitely many distinet values, it
follows fromy (2.4} that

(2.7) S, 8,1 =0
fdentically in # whenever
{2.8) P8 > 1.

This is one relation between the R;(2) but we shall dedvce a simpler one.
Keep ¢ fixed and let r, s vary subject only to the condition (2.8). Then
on writing

=41
3!

(w) _rlr—1)..
il =
ebe. in (2.6) we see that

t

T(ry8,8) [ [(r+s—3)
fr=1
i a polynomial in 7, & whose coefficients are meromorphic functions of 2
{and depend algo on ?). Sinee this polynomial vanighes whenever 45 > f,
it must vanish identically in r, s. In particular, on picking out the terms
of highest degree in r and & we obtain

- 70 B (7) EB_L(J N PRV R,;Ll(z)vﬁ
2.9y 0 *;-m; T F s (v - 8) o
; ) 4 D, J!a ( )
- 6‘9"4"'8I PIRMTLES £ R A
1%‘5( Pt Uk

Fpet]

Here ¥ 22 0 ix an integer, ¢ is a complex variable and now », ¢ ny Lake
all complex values., We recall the definition

[=
(2.10} Fr, 2) T R (2) [

fen 0

in the enunciation of Theorew 1 and pub

(2.11) G () = Dl

Fy
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The identities (2.9) for ¢ = 0,1, 2, ... together give
(2.12) 0 =F(r,2)F(s, 2)+ P (r-ts, 2)— {G (") +C. ()} F(r+s,2),

where the suffix 2 denotes 9/92. Indeed one readily verifies that the right-
hand gide of {2.9) ig just the portion of the right hand side of (2.12) of
weight ¢ in #, s multiplied by rs. (Note that b, =1, b, =0.)

3. We now obtain relations between the formal series &;(r) whexre

(3.1) F(r, 2) = Y &76(r)/j!

7
{which is eompatible with the earlier definition of G4). On equating the
coefficients of 2% in (2.12) for any given ¢, we obtain

G;("“‘FS)

>“1 G, (1) Gk

{3.2) +(i—1)

:'+Jc—t
G (r+s)

identically in », s. Since G,(r) = 1, this is a trivial identity for ? == 0
and t =1. For £ = 2 we obtain
(3.3) 0 = 3O, (r)+Go(s)+Golr+ S)H-

+6G, (NG —{@, (1) G (8)}G (7 +9).

Since G, () is an odd function of r and Gy (#) is even, we get a more elegant
identity on putbting

Poe=y, 8 =1F,, —F——§="r
"Then
3 3
(3.4) | Dauln) + X {6l — i)y =0
fe=1 F=1

for all values of the variables #,rs, 7y satisfying
{3.5) Ty ¥ty =0

This immediately recalls the following identity of Frobenius and
Stickelberger [2]:

3 3
(3.6) PRI
=1 =1
whenever
{3.7) -+ 2yt2y = 0.
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TFollowing uyp this clue, & gimple caleulation ghows that

(i} the coefficients of G,(r) and @2(r)—@&,(r) coincide with those
of {{#),z(r) in degree < 8.

{ii) the identity (3.4) determines the coefficients of @,(») and
GH{r)— Gy (r) of degree > 6 recursively in terms of the earlier ones.

Hence,
(3.8) G (r) = {{r) = Ry(r),
(3.9) Gy(r) = EB(r}—a(r) = Iy(r)
and, of course,
(3.10) Folr) =1 = By(r).

In particular, on comparing (2.1.0), (3.1) and (3.6) we have

(3.11) G(r) =b;+0(r)  (f #1L,7—>0)
and
(3.12) G(r) = £(r) =714 0(r).

We now revert to the identity (3.2) which we write in the shape

o\ Gy(r) Gy(s) Gy, (8)— G4y (7 8)
R TR L ey
Fshl
§-lowai
Gi(r+-s8) @ (5)G (v 3)
Tl = (i—1)!

On letting # -> 0 and using (3.11), (3.12) we deduce that

3.1 o NG G L G G)6()
(3-13) 0 ?,ﬁ:tj! it (tw].)!_Hz b 1! (t—1)!

or, on multiplying hy —(—1)! and rvecollecting that b, == 1:

B) 0 = GG+ —Gim— 3 () L
jl.}igt

This is a recuwrrence relation which determines @,(s) recursively for
t=3,4,... Wo ghall deduce that

Gy{s) = By(s)

for all ¢ by showing that R, (s) satisfien the same relation.

icm
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Indeed, by (2.4) we have

E()

(315)  Ry(o)E @ +E L E—RE— D (7%

J
i
Frie=t
= I(1, +—1}(2) = constant
by (2.4°).

Suppose we know already the idenfities
Gy(8) = B,(s)
Then (3.14), (3.15) imply that

(all » < ?).

Gy(s) = EB,{s)- congtant.
But
Gy(0) = b, = RBy(0)
by (3.11). Hence identically
Gi(s) = Eyfs).

This is just the enuneciation of Theorem 1 by (0.20) and (3.1).

4. Some further complex identities. For later reference we note and
iransform slightly the identities that arise from differentiating (0.12)
with respect to 2. We have

s

d ¥ i . ]
Gy —gpme = () s Tilo )T, )
Put
4.2 T By(e) =18
( . ) _&"g ,.(Z) =¥ r-n-l(z)
and

d
(4.3) =Ly, i+ el (@, y) =My, ),
B0
(4.4) My(z, y)eCla, y].
Then {4.1} becomes
(4.5) 8.0 = 3 () ytw, 0y
L]

on writing r, § for r—1,i—1. By (4.2) and (0.18) we have
(4.6) 8,(w+2) = {1(0)f+*+0(1).
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The sequence B, is easily seen to be defined by the properties

(4.7) My =2, M;=—y
and
(4.8) Z(;) Mz, g)alDt = 01)  (r=2)
=0
where
{4.9) #o=w{®), y=uy, -0,
Similaply, the funetions
L d
110 Tlz) w2 e o 8 (2
(.10} »(2) 50 o (2)
satisly
(4.11) Tlw-+2) = {5(«)} e *+0(1)

and are of the form

r

(1.12) T, (2) = g(j;f)ivj(m,y)cr”f,
wllere

(1.13) Nylw, y)eClx, y]

are defined by

(1.14) Ny =y, Ny =—?
and

(4.15) Z’(;‘) (@, 1)a™M = 0(1).

j=0

Theoremn 1 allows us to make the estimates (4.6) and (4.11) more
precise. Define By, 0, D; (j20) by the expansions

x

1 . .
B () = L) =o'+ Y B,
Foml
» 1 1 D
(4.16) SR =5 (@=0) = 304,
f v

1 1 , a
Syl =S (=30l +2) ““““__5_: 4.
Gem
Then Theorem 1 gives us the first few coefficients in tho expansion
of E,(z) as
Bi(e) = jH{B;_ 1+ Cpyp+ Dy 220} (4> 1),

(4.17)
By(2) = 2714 By+Cpz-- Dy,
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Hence in the neighbourhood of 2 = 0 we have:

1 a

4.1 = — _
| 00 (r =0),
| =10, +0()  (r>0)
and similarly
3 _
(4.19) T () zl 2+ 0(2) (r = 0),
—rD,4+0(z) (r>0)
5. The finite field case. As in §1, let
(5.1) %: y2 = *+ Ae-B

be defined over the field F of p elements and let
(b.2) ¢: € %

be a separable isogeny of degree p. We uge X = (X, ¥) and x = (2, ¥)
for a pair of generic points related by

(h.3) ¥ =¢X

and suppose that the funection g(X) in (1.5) is so normalised that
(5.1) g(X)—yl

vanishes when X is the point at infinity on . Then

(5.5) g(—%) = —g(%).

We no longer have the Welerstrass variable z and choose 27 Y ag
a local uniformizer in the neighbourhood of the point at infinity o. Then

(5.6) §(%) = ot -+ 0@

(note the majuscule on the left-hand side and the minuscule on the
right-hand side). Further

(5.7) g(X-+jb) = g(X)-+59,

where b is the point in the kernel of ¢ belonging to $ as explained in § 1.

We ecan now mimic the argument of § 4. The conditions (4.7), (4.8)
determine the M, (j <p—1) uniguely and M, , up to an addifive
congtant which for the moment we suppose chogen arbitrarvily. Congider

-1

(5.8) &a® = Y (77 Mo, ) g 0P

=t
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50 the arbitrary additive constant in M, , imiplies the same arbitrary
constant in &, ;. Then

(5.9) g{X+jb) = S - 0w
and so
(5.10) &1 (E-+10) = (§9) e+ O(1)

by the analogue of (4.6). But, in eharacteristic p,
GO =0 (j =0); (9P =H (Lj-ip-1).

Further X, considered as a function of X = (X, ¥) is regular excopt
at ¥ = p and there

{5.11)

(5.12) X = Je+0(w™)
where the constant J iz defined by
dip ax
5.13 e J
(5.13) " 7
Hence _
(511) G;p 41(&:)—62,‘_1(0) |_IIZJ~2X—- Hy == ¢

ginee it has no singularities and vanishes a6 X = p. This gives ws o faivly
explicit expression for X as an element of Clz, y, y] and so a fairly ox-
plicit expression for X(b) as a polynomial in $.

One may similarly use 7',_, defined in {4.10} to find an expression
for Y as an element of Clw,y, ¢] and to determine ¥(b).

6. From the foregoing it appears that gis to some extent a gubytituto
in characteristic p for the function ¢ which is defined only in charac-
texistic 0. T.et us investigate the analogy further. On applying the operator
{6.1) ("} = —2ydldr (= d/dz in characteristic 0)

to (1.0) and noting that

i % a fy\?
& w-np-9) o &YV
dm{y%‘%m } dw(m) 0

one readily obtaing

{6.2) —Hg' = A1y ®— A -
Hence
(6.3) g = —w+H gy,

icm
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since

(6.4} H = Z{g:——l),lz-

On comparison with (0.10) we see that the analogy between g (in charac-
teristic p) and £ (in eharacteristic 0) will be particularly close when

(6'5) g’ == ~—
or, what s the same thing (?),
(657 Apsayn = 0.

As Mr. A. D. McGettrick pointed out to me, this is certainly the case
when the isogeny ¢ is the reduction of an isogeny ¢ on an elliptic curve
% defined over a complex quadratic field K. Then p is the norm of an
integer = of K which can be chosen in such a way that

(i) the reduction is induced by the- gpecialization

{6.6) K — F{mod=);

(ii) ¢ is complex multiplication by the conjugate =’ of .

We now want to show that the function g(X) of § b is the reduction
of some function §(¥)eXK(X) on €.

We define ¢(X) by the following properties:

(i) the only singularities of g(X) are simple poles at o and ot the
a'-division points D = o with residues (1—p)/x’ and 1/a’ respectively.

(i) g(X) is an odd function of X. Clearly §(¥) exists and is unigue.
The reduction of ¢{¥) has the same residue 1/{#x'modx) both at o and
at the ='-division points b v and is odd. These properties suffice to
identify it with g{X).

Let Z be the Weierstrass parameter of X, 850 z'Z = 2 (say) it that
of ¥ = ¢X. Comparizon of poles shows that

(8.7) (%) = e —al(2),

the arbitrary additive constant vanishing because g and & are odd funetions.

The application of (6.1) gives

(6.8)

and so (6.5) holds on reduction,
The estimates

(6.9) ¢ = O

together with (0.10) and (6.5} imply that the expansion of g in terms
of 2 local uniformizer (say z~'7) is the reduction of the corresponding

J(¥) = —pt+ax' ' X = —a(mod=x);

g = 2"+ 0(7)

(8} Seo Corrigendum, p. 51,

4 — Acta Arithmetica XVIII
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expansion for £, at least to O(a~"#). It follows roudily from this that the
terms of the expansion of

N
) . \Nr P

(6.10) S = 3{5) Mta v to(2)

are the reduction of those of the expansion of 8, (defined in (4.5)) at

least to Qe @™, In particular, by (1.18), in the neighbouwrhool

of X =0 we have

(6.0.1) @y X) = @O ),
(6.12) G (X) = —rlC 0 )
and

(6.13) G, (%) = 0(L),

where we hiave not distinguished between C, and. its residus elass nwodulo .
By (5.7) and (6.10) wo have

w1

o Y s LI
fewl)

On substituting (6.14) in (5.14) and letting X -» 0 wo have

) = 3 (77 G1psr

e

Thix expression gimplifies. In the first place, by (5.14) and, slnce we are
reducing complex mulfiplication by =a', we have

J =o' (modn) = —H

by a result of Manin ([3]. The simple exwnple on pp. LB4-L35, which
i only a special case of his general theorem, does all we need).
Hecondly

(p J L) v (= LY (nodp)

and (f; = O fov odd § by (4.16), We deduee thal

[T
- . \ . -
K(p) = HE > 165
Jual
s asgerted in Theorem. 2.
The formula for ¥(b) in Theorem 2 is proved similarly but using
T, (defined in (1.10)) and its reduction mods.
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7. In conclugion we note that at least when AB = 0 the expansion
of ¢ is a reduction of that of { to & much greater degree of accuracy than
the O(z™”?) in the remarks after (6.9). It would be interesting to know
whether this iy always the case.

Suppose, for example, that 4 = 0, o that

(7.0) ¥ = x>+ B.
Tn order for there to be complex mwitiplication we wmust have

(7.1} P == 1(mod6).
The eguation (1.5) becomes

{p=1)6 _pﬁl
(7.2) ¢*—Hg =1y 2 2 | (— By plo— -3,
=0 J
where
p—1
2 —1)j6
(7.3} H = (— B)e-Di6,
p—1
6
THeye
g = yje+ 0@~
and 8o

9" = (y}o)’+ 02",

On substituting ¢ = (y/2)@, in (7.2), where ¢ is a power series in # whose
coefficients are to be determined, one readily deduces that

=12 [p—1
Hy =y 2 2 | (= B g@= -3 L O (2P,
fe=fpm)is \

On using (7.3) and operating modulo p this gives
g = (yl=)F(1, %: %3 _Bma)"i'o(wmsp{z)
in the standard hypergeometric function notation. But in characteristic 0,

= (yla) P(1, 5, §; —Bw?).

Ctorrigendumn (added in prooi, May, 1971). Serre has pointed out to me that
(6.5 on page 4% cannot hold whenever ¢ is the roduetion of an isogeny. A counter-
exaauply iz y? = 2®-+x-+1 for p = 5 since this ourve is the reduction of a curve

defined over @ with complox multiplication by the integers of Q (¥ —11). However,
(6.5") is eagily seom to be true for y? = #*+ 4z and y* = #3 - B.
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One some general problems
in the theory of partitions, I
by

P. Erpis and P. TrriN (Budapest)

To ithe memory of H. Davenport

1. In our fourth paper on statistical group theory (gee [2]) we needed
and proved that “almost all” sums of different prime powers not exceeding

@ congist essentially of
6 @
.y
0g2 logaw

summands. Further needs of this theory make it necessary to find general
theoreros in this direction, i.e. when the summands are taken from a given
sequence

(1.2) A 0 <Ay <Ay < ..,

of integers. The only result we know in, this divection refers to the case
when .1 is the sequence of all positive integers. In thiz case Erdés and
Lehner (see [1]) proved even the stronger result that almost all “unequal”

partitions of » (Le. with exception of at most o(g(n)) partitions of » into
unequal parts) consist of

(1.3) {(140{1))

(1.1) (1-|—o(1)) 2v

2 l/wlogz Vo

summands; here ¢(n) stands for the number of unequal partitions of n
for which according to Hardy and Ramanujan (see [3]) the relation

5 ™o~
14o(1) ~~6],—§Vn

4V ) |
holds. Now we have found that having only asympiotical requirement
on the counting function
(1.5) ) = D)L
=<

wé can prove general theorems. More exactly we assert

(L) g{n) =



