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1. Iniroduction. An indefinite binary quadratic form f(=z, y) = ax?+
+bay+ cy* of positive diseriminant 4 for integers (z, y) not (0, 0) always
takes on a minimum less than or equal to Vd/V5, and equality is necessary
for forms equivalent to az?— exy— ay?, and for all other forms the min-
imum is at most Vd/V8. Markoff [6] showed for M(f) the lower bound
of |f(z,y)| over integers (z,y) # (0,0), with M(f) = ml/E, that only
a countable number of values greater than 1/3 are possible for m, and
that in these cases the minimum, is attained. He algo describes exactly
these forms and their minima, which are called the Markoff chain., There
are excellent accounts of this by Cassels [1], [2] and by Dickson [4].

The set of values of m = M(f) /Vd is called the Mayrkoff spectrum.
In this paper it is shown that if M (f) is not attained for a form f, there
is another form f* of the same discriminant with M (f*) = M (f) for which
M(f*) is attained. Hence in studying the spectrum we may consider
only those forms which attain their minimum. It is also ghown that the
gpectrom containg every positive number m < 1/5.1007. In addition
it ix shown that minima m = 1 /1/10 form a set of measure zero. Between
1/¥16 and 1//21 there are gaps in the spectrum. For instance it has
long been known that there is a gap between 1/V/12 and 1/V13, but there
are further gaps between 1/¥13 and 1/8.1007.

2, Let f(w, y) = ae®+ boy-+ cy® e a real indefinite binary quadratic

form of positive digcriminant d = b*—4ac. We are interested in the
minimum of f, M{f) defined as

(2.1) M(f) = inf if(w,4), @y integers.
() 7(0,0)

* This research was supported in part by CRN Contract N00014-67-A--0084
-0010. .
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I+ # 0 is a real number then M{#f) = [{| M (f) and the diseriminant of
f iz t*d. Hence the quantity M(f) Vd is the same for forms differing
by a constant factor of proportionality, and it is this ratio M(f)Vd
which we consider the minimum of f.
Apg is customary we say that f(z, y) == ew®boy-+cy* and f, (s, 4,)
= g, @2+ by oyt are equivalent if there is a transformation 7
L =re,+8
(2.2) T 1T s = 1,
¥ =t 4w,
where 7, 8, ¢, % are integers such that T' transforms f(z, u) into f, (s, v,).
COlearly, M(f;) = M(f).
Associated with the form f are its two roote 0,, 0, defined by
(2.3) fl@, y) = alo—0,y){z~— 0,9)

where 6, and 6, are real and distinet since d = 0. If either root is rational,
then from (2.3) we can find integers (z, ¥) # (0, 0) such that f(z,y) =0
and so M (f) = 0. From now on we shall agswme that neither root ix
rational. Following Dickson [3],{4] we say that flz,y) is redwosd if
numbering 8,, 8, appropriately

(2.4) 0,>1, —1l<8,<90.

Henee 6, and 0, can be represented Dby infinite continued fractions (being
irrational) and

0y = [ao: bl: baa vy
—8, =[0,b_y, b—e; oy

where the 3, are positive integers.
"I we apply the transformation T to f where

(2.5)

& = bﬂml_i_yl:

Y = @y,

then fy(2., ¥1) iy also reduced and for its o0t

' @1 = [by, by, by, ... ],

=@y = [0, b4, b 5,0 ,,...7.

: The general theory, due originally to Lagrange may be found in
Dickson [3], (4] and asserts that if f(z,y) and g(2,y) are equivalent
reduced forms, then if the roots of f(w,y) are 6, 6, as given by (2.5)
and if the roots of g(»,y) are v,, v, given by

(2.6) . T:

(2.7)

Y1 = [0, €1y gy ot ];_

—ya = [0, 0.1, €y, ... ]

(2.8)
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then necesgarily there is an integer s, such that
(2.9)

Application of transformations T as in (2.6) shows the converse to Dbe
true.
Furthermore from (2.3)

6 = biyng, for all 4.

(2.10) d = u*(0;— 0y)*
go that
(2.11) l&] = Vaj(6,—0,).

The general theory asserts that every number m properly represented by
f where |m] < Vaj2 iz the leading coefficient of a reduced form equiv-
alent to f, and so jm| = la| as represented in (2.11).

The following theorem summarizes what we shall need of the general
theory. .

TeeorEM 2.1. Let flw, ) = aw?+ buy -+ cy® be & real binary quadratic
form with positive disoriminant d = b*—dae, and suppose also that
fle, y) =0 for dintegers (w,4) #(0,0), end lei M(f) = inf|f(x, y)|, for
imtegers (., y) % {0, 0). Then there is o doubly infindte sequence S of positive
inlegers

Bt (cvny Dogy veey Dogy By Bry eeny By o)

such that if we form the sum 8; of the two continued fractions
Si = [b;, b¢+1s -]+ [0, bq:mu by_zy ...l

for every 4, then M (f)/VE: int(1/8;). Conversely a sequence 8 defines
o olass of equivalent forms. °

We can now show that in studying the values of M(f) /I/E we may
restrict our attention to forms which atbain their minimum.

THEOREM 2.2. If m = M(f)[Vd is the minimum of a form f, there
is & form f* which attaing the minimum m.

Proof. If m == 0, the form f*(»,y) = x2—y* altaing this minimum.
If m > 0 then the b’y in the sequence § are bounded. Now if f(z, y) does
not attain its minimum for a particular choice of ¢ in the sum §;, then
there ix an infinite sequence B, : 4y, %5, ..-, iy, ..., such that

' 1
Hm 8, =-—.
o MM
As the b’s are bounded integers, there is an infinite subsequence ), of I,
in which the central integer b, has the same value ¢,. Then Ej has

a subsequence F; in which b, = ¢, and b, = ¢ for a fixed ¢;. Then
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in turn B2 has an infinite subsequence B, in w_hic.11_2'3,¢n_1 = 0., by, = ¢,
and b;,, = ¢,. Continuing there iz a doubly infinite sequence
ok
J g.S' : *(."‘: C_33fC1; Cg; Oy Cay -+2)
o ’ b ]
with the property that b, =e_/ ..., by, = €y, by, = Cgy -1y b,.Mr =G,

for every r, occurs in an infinite subsequence of F,. Hence
(2.12) S T I R R

and for the form f*(z, y) assppiated with 8 the valne m = *(w, 9)Vd
Is attained. Furthermore as eyery finite section of 8 ¢, ..., ¢,
€5y -+ 644 18 als0 & section'of § ‘we have’ 87 < L/m in every case so let )

iz in f&ct the minimum of f*{w, ¥) /1/ d.

Lo M
1jm ="[ey, €1,

3. The Markoff spectrum

DeriNtrioN, The Markoff spectrum 38 the set of real numbers
m = M(f) /I/E corresponding to all real indefinite binary quadratic
forms f{z, y). C

The Markoff chain is a sequence of forms for Whlch m takes on its
largest” values, namely all m > 1/3.

TeeorEM 3.1 (Markoff [6]). Let f(x,y) = aw*+bay--cy® be an
indefinite quadratic form with real coefficients and discriminagnt d = b*—4dqe,
and let M = M(f) be the lower bound of f{w,y)| over rall integer pairs

(my 4) =={0,0). Then M < l/ci/l/g, the sign of equality being wocessary for
o L fo= M@—ay—yh.
Irf \7(3 not equwaient to fo, then M < I/E/Vg,l ﬁhe sign of equality being

necesm ﬂf for

v

\ ho= M@ —2ay— ¥ )
5_\1 .
If j’ 18 not equivalent to f[, or fl, then M < Bl/d/l/zzl the sign of egquality
being - necessary for . A‘, et
' =.M [5{Bat— il.lwymfiy)

If f iz not equivalent to f,, f1, or fg, then M .13 l/d/l/lﬁl'l , the sign of equality
being necessary for

= M/lS L3w‘~‘ 29.’0@; 13y ),

and 80 on. _’Z'ha set fg,fl,fg,.
that M->> V&/S s eqmmlem to some'f;.

For the proof of thig result, the readel is referred to Dickson {3], [4];
or Cassels .[1), [2]. The forms are exhibited explicitly and every form.

attaing itg lower bound.

. f; contmue& mdef@mtely and every f w,ch;
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The Markoff chain describes that part of the Markoif speetrum for
which m > 1/3. Tt will be proved here that every posifive number below
1/56.1007 is in the Markoff spectrum.

V21—3 Vi8—6 _
5 Ty = 5-10068%0
then there is o real iniefinits form f(a; 1) for which M(HNVA =m
Proof. Freiman and Yudin [9] have shown that if D iy the set of
continwed fractions

THEOREM 3.2. If0<m< 1/8, 8 =4+

§
[07 a’l’ aﬂ? ""]
with a; = 1, 2, 3, 4 guch that there iz no sequence a,, a,., of the form
1,4 or 2, 4, then every number z with 5—V21 <2<V21—3 is of the form

(3.1} = a1-F Gy @y, GaeD.

From this they were able to show that the Markoff spectrum. contained
all numbers 0 < m << 1/s, with & = 5.118. This theorem iz a slight im-
provement on theirg.

* Choore a positive 1ntege1 a, and define the doubly infinite sequence
8 as

8 “(: Bgyvny tboyy gy Gy ons)
where each of [0, 6y, s, ...] and [0, a_;, a_s, .

of the set .D. Then, with

..] is a continued fraction

T8 = [y @y -

410, Gy gy -]

we hEbVB
m = M{(HVd = min(1/8;).
i

Choosing @, = =, then from (3.1) we may choose «; and e, for D go that
8, 18 any number in the interval

9%&5—1@1 s 8, < n—}-l/:’%—]:va

andt.we note that 5-—V2L = 4174242, V21— 3 = L.B825767 so that this
interval is of length greater than 1, so that taking » =5,6,7,... we
obtain every number greater than 11—V21L = 5.4174242 as a value
of 8p. It i % 0 and @, = 1,2, or 3, then §; < 3+ 141 = 5, while if @, = 4
then gince there is no sequence, 1, 4 or 2, 4 in D, then a, , 1, 2 if { i
positive while, a@;,, 1,2 if ¢ is negative, and so

S 44-10,1, ..

J410,3,...] = 5.3333 < &,.
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Thus in all these cases m = 1/8, and. we have every m possible 0 < m < 1js
¢ =11L—¥21. Now let D, be the subset of D for which @, =1 and D,
the subset of D for which 4, = 2. Then for a¢D,

V2141
[0,1,1,8,1] YR pssess,
10
— V21—3
(3.2) [0,1,3,1,8] =5 = 7012878,
Val+l o Va1—3
w72
and for aeD,
=
a— Val1—1
[0,2,1,3,1] = ———— = .3582576,
10
. — 9-Y21
(3.3) 10,2,3,1,3] :——lf = 4417424,
vo1—1 _ 921
—_——
10 T

We now form the doubly infinite sequence 8§ by taking a, = 4, and
ay = [0, a, &y, ...1Trom D, and a, = [0, &y, @&_y,...] in the first ingtance
from D, and in the second instance from D,. Alternatively we might take
a; from D, and ¢, from D;. In the first ingtance the values of §, are in the
interval from (V21+21)/5 = 5.1165151 to 1+V21 = 5.6826757. In the
second instance the values are in the interval from (20--V21)/3
= 4.9165151 to (174 2V21)/5 = 5.2330303. Freiman and Yudin have
ghown that D; and D, may be obtained by Cantor subdivisions in which
the length of the middle interval removed iz shorter than either interval
remaining. Since the lemgth of D, (.0834348) iy greater than one-third
the length of D, (.2330302), it follows from Theorem 2.2 of the anthor’s
paper [5] that Sy = 44 a,+ 0, takes on every value in the interval in
both ingtances.
To complete the proof of the theorem we need to ghow that if

V21—3  Vi8—o
2 3

Sy = 4+ = 5,1006390

thenford s 0, 8, < 8,. Hereif a; = 1,2, 0r 8 then §; <34+1-4+1 =5 < Sy
and 50 we need only consider cases with a, == 4. Again if 2= 2 and
o; 122 then 8;<<44+3-44 =5 < 8. Thus we need only congider cases
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in whielL @,_; OF @, is 1. But as 1, 4 does not arige in Dy or Dy, this must
have arisen from & sequence 4,1 in Dy or D,. Hence if i is positive ;.
may be 1 but not a,_,, while if 4 is negative a,_, may be 1 but not a;.,.,.
Letb us suppose that ¢ is positive since replacing e; by a_; throughout
in § does not alter the values of §; to be considered. Thus @; = 4, ¢;,,
with 4 > 0. Since a, is 1 or 2, and D, and D, do not contain a sequence
1,dor 3,451 and 4 # 2, so that i = 3. Now

Vo1—3

- = 4.7912879.
2

(3.4) [4::1:ai-1-21"~-]‘~<=[45f§1=4+

Since {23 @, 4 is a sequence in Dy or I, g0 that a,_, #=1,2. If
;. = 4, then
(3.5) [0, dqyene] =1[0,4,...] <.25

and heve §;<C5.0412789 < §,. If a;_, = 3, then I assert

——  V48—6
(3.6) [0, 8, &g, .--] <[0,3,4] =—g
This is certainly troe if a_, = 1,2, or 3. If g, , =4, then a_, #* @&
since @, is 1 or 2 and here a;_, = 3. Thug with ¢;,_, =4, and i—2> 2
then «;_s = 4 is & sequence in [, or D, and so ;.5 = 4. If a;_, = 4 the
inequality (3.6) cerfainly holds. Hemee suppose @, = 3. Continuing
SUppose
(3.7) [0, @ gy Qiozy - o vy Bpopy Biop1y ] =10,3,4,8,...,4,3,8_,,]

with @;_,_, # 4, » odd, or
(3.8} [0, @y, @i_gy v ey ai—-n: &1y ] = [07 3,4y..0y 3,4, a’ﬁ—n_.:[]

with a;_,_, 5% 3, % even. In (3.7) with @;_, , = 1,2, or 3 the imequality
{3.6) certainly bolds. Since a_y, @, @y are 1, 4,1, or 2,4,1, or 1,4, 2,
then in (3.8) 4 —n is positive and as a_, = 4, and D, and D, do not contain
a sequence 1, 4 or 2, 4, then i—n > 3 and hence a;_,, =3 ox 4. As we
assomed @, # 3, we must have @, =4 and so the imequality
(8.6) holds. . .
. Yol—3 V48—6 -
Thus in every ease in which §,>4-- 2 e 3 we have
8, < 8, for i # 0 and we have completed the proof: of the theorem.

TurorEM 8.3. The Markoff spectrum is of measure zere for m = 1 /V 10.
Proof. In a doubly infinite sequence

(3.9) 8 “(---ab—z,b—lvbo:bmba’---)
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it there is a 3 the smalles possible value ma.xS,; = [bm,bwl,...]mg—

4 [0, b1y -0 1{:. zuttamed by [‘3 3]—}- [0, .3] = 1/13 If the b\ are 1’8
and 2% the greatest value is § =[2,1 2]+ [0, 1, 1,2] = V12. Thus there
is & gap in the gpectrnm between. 1/1/12 and 1/1/1.5

- Thus for m > 1/V¢ 3 we may suppose that S consists entirely of 1’s
and 2’s. Now suppose that 8 hag a sequence 1, 2, 1, 2 and we take thig
'fh:st 2 as b, Then ’

(3.10) =12, 1 2,2,1 1“[0 1,1, 2]
' = (84 +1413)/33 = 3.2802639.

} s . R N )

Now suppose tljmt S hmﬁ & sequence 1, 2,1, 1, 1. Then
(3.11) 85> [2,1,1,1;1,2]+[0,1, 1, 2]
_' == (814-14V3) /33 = 3.1893548 .

Now suppose thaitS ha;ls a gtla'Quence:l_,Q, 1,1,2,2. Then

(3.12) 8>1[2,1,1,2,2,2,1]400,1;1,2]

3
#

— 24 (82-V/3)/143 V3 /3 = 3.1628800.
. Now we suppose that & conslsts ent]rely of 1’s and 2’s and does have
a-sequence 1, 2,1 bub none of the sequences 1, 2, 1,2 or 1,2,1,%3,1 or

1,2,1,1, 2,2 or their reverses. Then the only possﬂolh’ny iy thf\t S iz the
Seqience 2, 1,1 repeated infinitely often. Here

(3.13) o i1z 31410, 1, 1 2]

=10 = 8. 1622777

As V10 is less than the values in (3.10), (3.11) and (3.12) it follows that

1/1/10 ig the largest ninimam corresponding to sequences of 1'% and 2%
containing a subsequence 1,2,1. The form corresponding. to (3.13) i

.(_3.14:) J f(m, y) = 2502__ 43;?]“ 3yz

for which & = 40. Tt ig easﬂy seen that mf[f(_m, y)| for (w, fe;) (0 0)
and integral is 2 so that m = M(f) /1/ d =2)V40 = 1/1/10 Furthermore
from (8.10), (3.11) and (3.12) we see that 1/1/10 iy an isolated value of m.
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The largest §, which can be constructed from a sequence of 1's an(d
oy which does not contain a subsequence 1, 2,1 is easily found to be

(3.15) 8 =12,1,2,2,2]+[0,2,3,1,2]
= (V1204-8)[7+ (V120 —8)/7
C = 2V130/7. = 31208432 < VH0., .. . o,
A corresponding quadratic form is
R y

(3.16) f(m,g/?”: Tm“ - 16ay— Sy”

for which M (f) = 7 and d = 480 a,n(l m =T /1/480 Thus there is a gap |
in the Markoff spectrum between 7 /1/480 and 1/1/_6 and’ all sequences

of 1’s and 2’5 not containing a snbsequenee 1, 2 1 have mzT /1/480
Let ' - : o :
(811) Qhémwmpn¢ﬁmy

Wy = [by, ;’1: -,-,-I: ‘bfﬂ a_a].-

“fhen if @p_y/¥,-, and z,/y, are the ]@uﬁt two cpnye’rgents to [boy bysever 8]
%@r+@;£’ i =14
Yt Yrmn
and gince, as is shown inferxon (73
(3.19) &=y 1/Yr =
wo will have from (3.17), (3.18) and (3.19)

v (=17 e — )
'(3‘2'0) waT = y,,(a,;{— &) (az+ 5) P '

I8

"We consider the :n.umbers [0 bl, by, ...] where b, =1 or 2_ eontmmnn' :
no subsequence 1,2, 1 as formed by Cantor subdwnsmn of gn initial
interval from A tfo B where

(3 -18) 'u.; ==

[0,‘5?., Dpyy -3 01, wryr—l_mr—lyr = (—1) 2,

T

{3.21) =[0,2,1,2,2] = (V120—~8)/8 = 3693064,
' B —[0,1,2,2,3] = (VIZ0—6)[7 = .TOTTTST.

The first subdivigion, is into intervals 4, to B, and 4, to B, wheroe

L

(AQ (0,2,1,2,2,2] = (V120—8)/8 = .3693064,

)/8
: B, =1[0,2,2,1, 2,21 = (V120 8)/7 ="4220643,
3.22 AT o
@28 ,(Al. [0,1,1,2, 2 2] = 1/120 1)/17 = .3856559,

B, =[0,1,9,2,2,1] = (V120—6)/F = .7077787. :
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The second subdivision iy

Ay =10,2,1,2,2,2, 1] = (V120—8)/8 = 3693064,
By =10,2,1,1,2,2,2] = (33—V120)/57 = .3867640;
Ay =[0,2,8,2,1,2,2] = (V130—6)/12 == .4128709,
B, =[0,2,2,1,2,%,2] = (V120—8)/7 = .4220645;
Ay =1[0,1,1,2,2,2,1] = (V130—1)/17 = 5855559,
B, =[0,1,1,1,2,2,2] = (16—V120)/8 = .6306936;
A =[0,1,2,2,1,2,2, 3] = (V1204 1)/17 = .7032030,
By =1[0,1,2,2,2,1,2,2] = (Y120—6)}/7 = .7077787.

We note that in the lagt inferval by == 1, b, = 2 forces b, = 2 Dbecauge
no sehsequence 1, 2, 1 is allowed.
In an interval u, to wu,
ty = [0yDyy byyueny by, ],
2y = [0, by, bayovey by, ap)

if b, =1, a, and ap are [1,2,2,2] = (V120--6)/12 and [2,82,2,1]
= (#1204 6)/7 in this order if » is odd and reverse order if r is even.
If b, =2 and b,_, = 1, this forces b,.., = 2. Hence we neod ounly consider
cases with b, =2 and b, =3. Here ¢, and o, ave [1,2,2,2] =
(V120 6)/12 and (2, 1,2,2] = (l/m+8)/7. Thus in subdividing we
congider two types of intervals, type 1 in which b, =1, and type 2 in
which 0, =2, b, , = 2.

Subdivision of type 1 interval, b, =1
I ‘Alto,bl, by -y by 1,2, 2,2, 1],

Bi[0,by; by, o0y 01,1, 2, 2,2

(3.24)

(3.25)

Asl0, b1, b5, .5 8,,2,9,1, 2,2, 2],

I, = Ly, I
Bpal0, by, by, .58, 2,2,2,1,2, 3],

These limits are in inereasing order if 7 is odd, decreasing if » ix ¢ven.
The lengths of the whele interval and the two subintervaly are

5120+ 3 120 190-- 6
(. Y120 + O)/yz(l/1‘>0+6 +E)(V1J(l1 4 - 8),

I

a4 12 7
- [3Y120—30 V120 -6 V1201
3.26 =T )/ :
@26 L ( 84 )/y"( 12 +e)( 7 ““)’

V120—8) 7 (V12048 . \(V120-¢
I, (m_)/?lﬁ(*-——wg—im +a)(~—~—”‘20+6+e),

56 7
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and the ratios of the subintervals to the interval arve,

" =(13—;/E)(u/i§§+e +)/(§2_T;ig n 8),
(347) 19750 | VI20 +6 V12048
LI ﬁ( 20 )( 2 +'3)/(__75_“%*6)'

Since b, == 1 and e = [0, b,, b5, ..., 0], 1/2 < e<{5/7. As I,{I is a de-

creaging function of e and I,/I is an increasing function of & we find the

laxgest value for I,/I by taking ¢ =1/2 and the largest value for I,/

by taking s = 1/2 and the largest value for I,/I by taking s = 5/7.
I,/I < (33—V120)/57 = .3867640 < .387,

(3.28) _
T,/T < (1083—-921/120)/2085 = .0360626 < .037.

Similarty for a type 2 interval, b,_, = 2, b, = 2 we have

‘Al = [0,bl,bg,...,b,.,l,z,Z,Z,l],

Bl = [Oi'bia bz: --'Jbr3151=2:2}2]5
(3.29)
T *Aa = [0?b17 bz: ...,br,2,2,1,2,2],

By == [0, by, by, ---:br:271:232:2]-

Here for the interval lengths we have

BY120+ 54 12046 /1208
I_(51/120+o4)/y2(1/120+b+£)(1 0+ +6)’

B 84 V12 7

B (51/iz_0m30)/ 2(1/120—1—6 )(1/1"2"6+1 )

(330) Iy = Y e i e
_ (Y1204-8) 2(VT56+8 )(1/3."56+3 )
I = =45 /” g T\ e

The ratios of the subintervals to the interval are

I I = (,55m51/%)(-'/—1—2~?7i§-+e)/(1/-139i3:+s),

T
(330 V120 \ (V120 Y120
. 12—-1¥120 12016 V12048
12”:( 1 )( 12+ +£)/( 8 +e)'



398 M. Hall, Jr.. Im“ o ﬂ"he‘ Mm"lwff _sj;_gatgf_um

. , 399
PO f ! .y
Here again. I,/T is.a decreasing function of ¢-and I/l is an.increasing e Reforenoos
fuqet:ion of & As _b“;‘rz"b}l =2’ We ;La;e; 21/(,:') Q;%IS}” ?’nl(} wegft;lgl [1] J.W. 8. Cassels, The Markoff c?mm, Aun. of Math. 50 (194%), pp. 676-685.
upper bound on Iy/I ?Y taking ¢'==2/5 and on I,/I by taking = = 3/7. (21 — sln Introduction to Diophanting Appramwnamon. Cambridge Traets in Mathe-
These upper bounds are © 77 Lattes and Mathematical Phykics, No. 45 (1957). i
T - P T, [37 L. E. Dickson, Inlroduction to the Theory of Numbers, Chicago 1929,

(3 3‘»'7)‘ II/I = (’5‘10'“ 3,5 l/‘120)1377 = ;63579%7 < -3‘;6: [4] — Studies in the T}wory of Numbers, Chicago 1930, .

B33 /I< ([‘t)—zl]/%)/ﬁz’i — 1790837 < 173 (57 Marshall Hall, Jr., On the sum and product of continued f'ractmns, Ann “of

* Math. 48 (1947), pp. 966-903.

. : . . 6] A. Markoff, Sur les ormes wadraligues binaire indéfinies, Ma.t]l Ann. 15 (1879),
Heré the interval T} is of tiype 1, the interval I, of type 2. The next stage L ] f ! ¢ f

pp. 381-400. , E
of subdivision gives [7] 0. Porron, Die Lehre von den Kettenbmohsn, Lelpmg and Berlin; 3rd edition,
o 336)(.387) < .131 . Btuttgart 1954
Lid )/I < ( )L )< ’ [8] E. Remak, Uber indefinite b'mme qua.da atische mmmalformm, Math. Ann, 92
(5.33) Ly(Iy)]1 < (.836)(. 037) <013, (1924), pp. 165182,
= L (T)]T =< (173)(. 336 ) < .0B9, . [8] G. A. Freiman and A. A. Yudin, On Markovian spectrum (Russian), Litovakil
I, (I)/T < (\173)(.173) < .030 Mat. Shornik 6 (1966), pp. 443-447.
Further subdivision of an mterml of type 1 gives e \ . . Reteived on 6. 4, 1570
LI < (.387)(.387) < .150, .
I I < (.387)(.087) < .015, FE ’ ¥ T r s
5t LIE < (8800 -

1)

i,

(T)/T < (.037)(.386) < .013, C

12(12)/1 < (.037)(.178) < .007. R

Thug we may subdivide an interval 4 of length 4| into four subintervals
Ay, Ayy Ay, Ay where |A|+ Aol | 44|+ A, < 233[4] or 185[4] de-
pending on whether 4 is of type 2 or type 1.
Yow we congider » sum set A+ B = ¢ congisting of all nmmbers
¢ =a+b,ned,beB. Then for the lengths of the intervals gpamned by ;
these sets we have

(8:35) | 0] = i4|-+ B | T

If we subdivide each of 4 and B inte four subintervals 4,, B, 1,
=1,2,3, 4, ( is the union of the sets C;; = 4;+ B; and we have “ '

(3.36) {0yl =4 D) 14| +4 D) |B)| < .932|4|+.932|B| < .932(C]. -
(%) [ 7

Hence subdivision multiplies the total length covered by gum intervals .

by a factor of at most .932. Subdividing = times gives a total length i

covered of (.032)"|L| if |L| was the initial length covered. Taking » ‘

suificiently large, the total length covered is arbitrarily small and so the

sum set of two numbers of the form [0, b,, b,,...] is of measure zero o ‘ ‘ _ r

where the #°s are 1’s and 2°s with no subsequence 1, 2, 1. This proves the - : : ‘ . .

theorem and the Markoff spectrum is of measure zero for m =1 /I/E.



