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I. The hasic large sieve inequality as formulated by Davenport
and Halberstam [3] states that if oy, ..., 2p arve distinet real numbers
such that .

min iz, —all = 4,
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where ||2|| = min |z~n|, and if
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where (f iz an absolute constant. It was pointed out in [1] that one could
talke ¢ = 14-¢ for Né large enough, and later Bombieri and Davenport
[2] improved (1) showing that one could take N 547! instead of
C(N+-1[d). This result, with the improved constant, hag some interesting
consequences for the small mieve; see [1] and H. L. Montgomery [4].

The proof given in [2] is rather complicated. We want to give here
a short proof of the following '

Turorey. Let x;, S(z), 6 be as before. Then we have
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The arguments used in the proof of (2) are new and very gimple and
were found in conversations with Professor P. X. Gallagher of Columbia
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University and with Professor Atle Selberg of the Institute for Advanced
Studies; in particular, T owe to Gallagher the remark that inequality (1)
was best understood in the framework of the theory of Hilbert spaces
(this was also done independently by Selberg), and I owe to Selberg both
the statement and proof of Proposition 1.

II. We give here the proof of the theorem.

ProposirioN 1 (Selberg). Let H be o Hilbert space with dmmer product
(,) and let ¢y, ..., o5, feH. Then we have

G g,
= g; ey 23]

Proof. The proof is by a Bessel inequality argument. ‘We have

R
|F— X a0
=1
for every complex number &. Hence
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substituting (4) into (3) and taking
(Fy o)

‘E-;; = K=
-«:%1'(%’ ‘Pma

we get what we want.
In order to prove (2) we may suppose, replacing N by 2N or 2N +1
and making a tranglation, that ‘

N .
8(z) = Z @, 65T
n=—N
Now we take H = P, the Hilbert space of sequenées o = (a,), —o0 <N
< 4 oo, with inner product
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and 1orm
[s.2]
lat = > laal*.
fo=—00
We apply Proposition 1 with
a it ml<<N
f = (fn) = " . '
0 it |ml>N
and .
¢ 2T it |m< W,

fry = (9"-:17,) = L‘le(N+L_ ]9L|)1[23—2nim3- i
0 if

N<nssN+L,
n| > N+ L

where L is a positive integer to be chogen later. We have

[(fy @) = |18 (2)],

N
1= > lauf®,
fn=—N
hence by Proposition 1 the inequality (2) will be proved if we
show that
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we have
1
Hegy p5)] = T {KL+N(‘”1—%)—KN(‘”¢“%)}
hence S e
(@i @) = 2N+Lr
while if § =4
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Now wo use the condition

min ||, — @
1] '

| = 6.
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This implies that the intervals I,, given by
L, md < |y —aof < {m-+1)4,
where (m-+1)é < }, contain at most two points %;, while every a; falls

in some I,,. Using the inequality

sm~2—1 = |y| for |y| < 1 we get

ZR' 1 1 ,2 =1 g
£ (sinm (2, ~ ;) m;o (sin 70 (2, — ) A Am2ot 12
17

wpely

It follows that

R‘T 1 w2
; (e )1 < 2N L4 - 207,
f=t
and (5} follows taking I the nearest integer to ;/Em §7'. This completes
the proof. 12
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1. Introduction. The inequality of the Large Sieve of Yu. V. Linnik,
in 2 general form, ean be expressed by:
Let @y, ..., ay be N complex numbers, then

2 Z*‘j% ( ZJ ya exp(...m—g—%)

e<Q z(modg) n=1 ¢SQ b=l m=1
{ha)=1

N
<O, Q) D loe

=1
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where ¢ runs through all the rational integers not exceeding @, * denotes
swmmation over all primitive Dirichlet characters, and 8(N, @) is a func-
tion of N and @ alone.

That such a funetion 8(N, Q) exigts, which is in some gense ‘nob
too large’, was first proved by Linnik [13]. His result was successively
refined by Roth [18], Bombieri {1], Davenport and Halberstam [5],
and Davenport and Bombieri [3], [4]. We also mention the papers of
Montgomery {157, and Wolke [22], the first of which in particular combines
the large sieve with a method of Hélasz [10], and the second of which
further refines the function 8(N, ) under certain conditions. We state
this last result presently. We rnention in particular the inequalities

(N, Q)< N+, Davenport and Bombieri [4],
and '

8(N, Q)< Q*+ =N, Gallagher [8],
the final inequality having a very simple proof.

In their paper [6] Davenport and Halberstam plOVG that one
can take d(N,@) = 2.2max(¥, Q%) and ask whether there exists any



