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This implies that the intervals I,, given by
L, md < |y —aof < {m-+1)4,
where (m-+1)é < }, contain at most two points %;, while every a; falls

in some I,,. Using the inequality

sm~2—1 = |y| for |y| < 1 we get

ZR' 1 1 ,2 =1 g
£ (sinm (2, ~ ;) m;o (sin 70 (2, — ) A Am2ot 12
17

wpely

It follows that

R‘T 1 w2
; (e )1 < 2N L4 - 207,
f=t
and (5} follows taking I the nearest integer to ;/Em §7'. This completes
the proof. 12
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1. Introduction. The inequality of the Large Sieve of Yu. V. Linnik,
in 2 general form, ean be expressed by:
Let @y, ..., ay be N complex numbers, then

2 Z*‘j% ( ZJ ya exp(...m—g—%)

e<Q z(modg) n=1 ¢SQ b=l m=1
{ha)=1

N
<O, Q) D loe

=1

2

where ¢ runs through all the rational integers not exceeding @, * denotes
swmmation over all primitive Dirichlet characters, and 8(N, @) is a func-
tion of N and @ alone.

That such a funetion 8(N, Q) exigts, which is in some gense ‘nob
too large’, was first proved by Linnik [13]. His result was successively
refined by Roth [18], Bombieri {1], Davenport and Halberstam [5],
and Davenport and Bombieri [3], [4]. We also mention the papers of
Montgomery {157, and Wolke [22], the first of which in particular combines
the large sieve with a method of Hélasz [10], and the second of which
further refines the function 8(N, ) under certain conditions. We state
this last result presently. We rnention in particular the inequalities

(N, Q)< N+, Davenport and Bombieri [4],
and '

8(N, Q)< Q*+ =N, Gallagher [8],
the final inequality having a very simple proof.

In their paper [6] Davenport and Halberstam plOVG that one
can take d(N,@) = 2.2max(¥, Q%) and ask whether there exists any
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simple best possible function §(N, @). Moreover, lirdds and Rényi [7]
also enquired whether any improvement could be effected if, instead
of all integers, ¢ was restricted to Tun through, say, the rational primes
not exceeding @. The result of Wolke [22] refexred to above, states that
if ¢ ¢ are arbitrary positive constants, and if 12 = ¥ < @ (log@)’, then
we can fake
'ﬁl(N, Q) < 02Q2 (IO'gQ)_lﬂ-
We note that it was proved in [6] that if §, ¥ — oo so that PN 0,
then one must have
BN, Q) = (L+o(L)N.

In fact, using the statistical properties of integers a similar more explicit
lower bound was given subject only to the condition that ¢ runs through
a sequence of prime moduli p for which }'p~" diverges.

2, Statement of results. In the present paper we make a few simple
remarks concerning the inequality of the Large Sieve, and sintilar ine-
gualities. In particular we point out that the devivation of imequalities
of this type is equivalent to the determination of the spectral radii of
certain Hermitian operators; and, moreover, that these inequalities always
come in pairs.

As a first example we investigate as a function of N and ¢ the minimnal
8(N, Q). When one of the variables, N, @ becomes large at the expense
of the other. Lower bounds for §(N,@) can be obtained quite simply.
As g further example we congider a continuous analogne of the Large
Sieve.

To be specific, let P be a set of |P| primes not exceeding . Define
A(N,Q) to be (for each pair N, @) the least number for which the
inequality

DS 5(<) ‘a9, @) 3
ps@ b=l : n=1

i satisfied for all complex numbers d,, ..., ay. Here, as for the duration
of Theorem 1, for real numbers a we define
N .
1 .
Sla) = ) anelna),  ola) =&,
n=1
and ‘ indicates summation over members of the set P.

All of the following remarks eould be proved for arbitrary sets of
moduli ¢ in place of P.

THEOREM 1. We have
(i) A(N,Q) = max(N, 2(; (p—1)},
e

icm
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(i) 4(N,Q) = %’P-I—O(l\ﬁ(lﬂgl‘f)‘l),
r<

in fact
Y JJ—_]:’ b 12 ' eid
iy 3 S8 (2 =( 3 s otz wory) ) 3
PR b=l » DEQ ’ n=1

with @ similar estimate for
(v) 3 3* | 3 aux(w)s
B Q x(modp) <N

(v) A(N,Q) =N+ 0(Q*|P)).
CONJECTURE.

AN, Q)< (1-+o(L)) (N + ggﬁ) (as N, |P| = o).

Remarks. (i) and (iii) show that if @ and & become large then one

of the terms N and ' p dominates, whilst (i) states, essentially, that
<@
at least one of these events always oceurs.

An estimate of the type (i) can be obtained for analogous inequalities.
Thus in the second of the two inequalities stated in the introduction we
have

5(N, Q) = max (¥, > o(q)
: esd
where p{g) denotes the number of reduced residue classes {modg), (Euler’s
phi-funetion). We note that for ¢ = 2,

Noig) =2 ¢+ 0Q1050).
=]
{See for example Hardy and Wright [12].)
As a second. example let N and T be respectively a positive integer
> 2 and a positive real number. We define o(N, T} to be the least number ¢
with the property that

r N

v
[ |2 an
-1

n=1

2 N
A< o D ey
n=1

holds for all complex numbers a,, ..., Gy.

We remark that it follows from a result of Davenport (see for example
Theorem, 1 of Montgomery [18] where one multiplies both sides by J
and lets § — 0-+), proved uging the method of the large sieve, that

0 < 2T+ 0(Nlogh).

We investigate to whati extent this result might be improved.
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THEOREM 2. For each velue of N =2 and every value of T we have
=27+ 0(Nlogh),

= 2T.

(i) For wny fized & >0, and all N = 2T+ 4,

(i) ol&, 1)

< (Zn) RN 4 0NV,
¢(N, T)

> y_ - O(NYEe T,
2Wn .
Remark. It follows from these results that at any rate for large
values of ¥V comparison with 7 (¥N**~* » ¢ will suffice) one has

p(N,T) = max (N/4, 2T)

%o that the first estimate in (i) could be unconditionally little improved.
An inequality of this last type probably holds for all ¥ = 2, T' 2= 2.

As in the above statements, ¢, ¢, ... will denote positive constants,
which will be renumbered from time to time when no confusion can arise.
These will either be absolute, or depend upon some (small) fixed given
positive number & In §6 we use the notation 4 < B of Vinogradov,
with the meaning that there exists a certain constant ¢, whose dependence
upon the varions parameters concerned will be clear, so that the inequality

4| < eB
holds. '

3. Proof of Theorem 1. Expanding the swm in question, and in-
verting the ovder of summation we have

ve(p WW%)).

m=1 n=1 'ﬁéQ Danl

This is a Hermitian form in the variables a,, ..., ay which we can write
shortly as .

aBB"g"

where * denotes the transpose of & matrix, ~ denotes complex conjugation,
and ‘ '

6 = (01, ..., ay),
( (b )) columns 1§ <N
B =l¢|—m
? rows 1<ch<Cp—1,2<p<Q,pel.

The matrix B need not, of course, be square.
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We denote the eigenvalues of BRZ, in decreasing order, by 4yy ...y An+
These arve real, and sinee our form is non-negative definite the 4; are alse
non-negative.

It is well known that any Hermitian form can be diagonalised by
a suitable unitary transformation. Thus, there is & matrix U, satisfying

UU? =1,
wlhere I is the N x ¥ identity matrix, so that if @ = Uy, then

N
aBB"a" = Y i ly;i*.
j=1
Hence
aBB a” < i|ly|* = illa|?

where A is a maximal eigenvalue of BBT. Tn particular, we can choose
a value of @ =0 to effect equality.
It follows that (N, Q) can be taken to be 1, the greatest eigenvalue

(= spectral rading) of the matrix BﬁT, and that when the a, are to be
mrestricted, this choice is hest possible.

We note that a typical non-diagonal component of BB” hag the form

Z'Ee(%(m—n)) = N p-im,
@ b=1 ’ plﬂ(;zan)

and that down the principal diagonal all the elements have the value

Mp—1)=t,

p<Q
BAY.
Since
N - S ,
M, = teace(BBT) = N D (p—1),
Frl pﬁ_@

we sce that _
AN, Q) =iz=t,

which is the second half of assertion ’(i) of Theorem 1.
We write

BE? ——dla,gonal(t)NxN—i—( D B)www (= Py

pl{m—n)
I((;;r

where it iz nnderstood that in each of the final two matrices, the elements
of the principal diagonal are to have the value zero.
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A simple caleulation shows that the last matrix on the right hand
gide of the above equation has eigenvalues

|Pj, {(N—1) times; (1—XN)|P|, once.

The existence of the exceptional eigenvalue (1—
the fact that

N)IP| is suggested by

— (= P

is a matrix, all of whose terms are non-negative, so that u form of the
Perron-Frobenius theorem (Gantmacher [9], §2, p. i3} applies.
Each eigenvalue £ of

P)NxN

p|(n~-n)

4]

Hes in a Gershgorin dise (Wilkinson [21], § 13, pp. 71-72), centred on
a diagonal elemenf, which, in our present case, is at the origin. Thus it
is bounded by

N

d<mx S5 p[< D ¥

tsnsN gy wllm—n) Wes 137\14:
mEn P

7 N 3 -
< 2 pl— <o, N (log¥)™
p<min(iV,Q)
In particular, the spread
max. |f;—fl
st <j< N
of possible f-values does not exceed 2¢,N*(log N)~?

I.t iy well known (see for example Wilkinson [21], (44.10), p. 102)
that if 4 and _B are real symmeiric matrices, then the eigenvalunes of
A+B &].1(1 A differ, when in corresponding order, by at most the spread
of the eigenvalues of B. Applying this to the above situation, and taking
into account the translation by t, we see that the cigenvalues of BB are

D' p+ 0N (logN)™), (N—1) times,
neQ
and

N p—N|P|4+0(N*(log¥)™),  once.

P=Q

From thig the assertions (ii) and (111) (from the reduced form of BBT)
of Theorem 1 are proved. ‘
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‘We can prove (iv) in a like fashion, save that cotresponding io the
matrix BBT we now consider the matrix
diagonalBy,w+{ D @=D+ X Uyawt(— Plhyax

n|(m—n), pimn Dimn
ns Pt

The details are similar to the case (v).

4. Tn order to prove a result of the type (ii) in the statement of the
theorem we should like to reverse the réles of @ and N. One way in which
to do this is to congider the conjugate inequality (but which is concerned
with another space than €V, since B iz not necessarily square}. Thus
in place of the inequality

(o) 2 Z vm e(—%H\A(N,Q)Zj:mﬂP

PELQ b=l
we consider the inequality

315 Sl

PR b=1

’ 222
®) V <H@Q) D) D lonsl

g b=l

which ig to be valid for some function »(N, @), and all vectors ¢ with
components 6,; L <<b<p—1 2K ps @, pel
Expanding once again we can express {(f) in the form

eBTBe”

where B is the same matrix as in § 3. Here, once again, B"B is a non-
negative definite Hermitian maitrix, now of order{x? (¢ defined ag in § 3).
Let us denote ity eigenvalues in decreaging order DY pory --ey pty- Then
as in §3 we can choose

#(N, Q) = u = maxy;,
L=t

and. for unrestricted vectors ¢ this choice is best possible.
The situation i now clarified by the fact that the 4; and w essentially
coincide.

Levmwa 1. We have
A= for 1<j<min(¥,1),

and all remaining eigenvalues of BE” or BTB are zero.
Remark. Considerations of rank show that A =g =0 if j
> min{.N, ).
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Proof. A proof of thiz well-known lemma can be given shortly as
follows. For any vectors P,, ..., P, 1 < s min(¥N, 1),

Max [jaBli/|all = 25

holds when the maximum is taken over all those vectors @ = 0 which
satisfy

pat =0 (r=1,...,3).
Moreover, a set of vectors p, exists for which equality iy attained. Thig
is known as the Courant—Fisher theorem (see for example Courant and
Hilbert [2], or Wilkinson [21], § 43, pp. 99-101). Then for any vector ¢,

leBcT| < [laB]| ||€%] (the inequality of Cauchy—-Schwarz)

< Aoqi lial] l6¥] (by hypothesis, with suitable p,).

Hence we can set 6@ = Be” to deduce thatb

(%) 6”1 (BT < 2
holds for all vectors ¢ # 0 which belong to the space
pBeT =0 (v=1,...,8).

By Fhe Courant-Fisher theorem the maximum of the left hand side of
(¥) is at least wu,y,, 50 that m,,, <Ay, holds for 0<s < min(¥,d). "
The converse inequality, and so the lemma is now clear.

In particular, the ‘best possﬂ)le’ choices of 4A(N, Q) and »(¥V,Q)
coincide. However,

4
2 = trace(BTB) = 1V,
=1

80 that 4 =y = N, and the first part of assertion (i) of Theorvem 1 is
proved.

We now consider the location of the eigenvalues py- These lie in the
Gershgorin diges

S 3%~ 2)0)

] e e = N
PEQ b=1 | n=1 P P
{b0)#(b1,p%)

where 1<<8' <p'—1,2<p <Q,p’eP. The multiple sum bLere can be

estimated not to exceed
p=l g \
Z 'I‘cz_'P Z?)Q%Q |,

=g =1 2“‘“"‘_,' DEQ r=l
r

r

l—N| <

p—1
5
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the @ term arising in each sum over b, 1 < b <X p—1, from the af most
one term bjp which falls within a distance of 1/2Q of b'/p’. For thiz term,
since p'b = pb’,

1 1
2.—"72?-

Note that in the above double sum we use [|aj] to denote the distance of
the real number o from the nearest integer.

Tn this way we have shown that every eigenvalue u,, and thus p
and A also, satisfies

— e e

1b b’
rpp

lw— N << &G\ Pl
This proves Theorem 1 (ii), and so recaptures the result
AN, N < e (N+Q°)
of Rényl.

5. In Theorem 2 we are interested. in funetmns 91 and g, of N and T,
&0 that

T N N
) [ Y agn < o 3 lani?,
. - a=l n=1
holds for all complex numbers ag, ..., ¢y, and
N
®) 3 f fOn#at* < g f |F)pat

n=1 —

holds for all funetions of the Lebesgue elass I*(—7T, 1).

We see that, ag in § 4, Lemma 1, we have without loss of generality
0y = 0,. For here we have cage & = 0 of that lemma, and the proof 1ses
only the inequality of Cauchy-Schwarz, with no appeal to the Courant—
Fisher theorem.

In (y) we have a Hermitian form

3 3wt

peal p=1

T
(mn hy~it gt

once again, so that we can take for p, the greatest eigenvalue of the
associated matrix.

In (3) we have a (linear) operator from the space *{—1T,T) ioto
itself, given by

r
A fy - [ Fw)glu, 2)du
wip
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with

N
_ 2 =)
n=1

With the usual definition of inner product L*{— T, T) becomes a Hilbert
space, and our operator satisfies for functions fy, f, of the space

(Aflffﬂ) = (fu A-fe)

and so is Hermitian. As with all self-adjoint operators, the norm of 4
gz = sup |l Af|| = sup[fI~*|L4f ]|
=2 fo0

belongs to the spectrum of A, which in particular is a closed set. Morcover
since ¢{w,v) is continunous on [—T,T]x{—T,T], the operator 4 i.CI
completely continuous (transforms bounded sets into compact sets), and
?t-s spectrum consists entirely of eigenvalues (Halmog [117]). Hence,
in our second. case, also, p, can be taken to be the largest eigenvalue of
the operator concerned.

6. Proof of Theorem 2. (i) (cf Titchmarsh [30], Theorem 7.1,
. 115-116, where an application of the Cauchy-Schwarz inequality
yields a result of type (i) with an error term O(N**)).

We have

r

f ‘Za i

=T m=

dt = aGa”,

where a ty‘plca,l component of the & x N matrix & iy
2T if

m = mn,
T ‘ 1
J‘ (mn ™) s = { O o) o
-1 log —
'n

Exactly as in §3
oN = trace @ = 27N
go that o = 2T.
Each eigenvalue of G les in a Gershgorin dlisc,
N

a-21< Do,

H==]
MEN

-1

% e; Nlog N

ch,'g;»wi
n

for some value of n, 1 £ V. This proves part (i).
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Before proceeding to the proof of part (if) of Theorem 2 we need
two results.
The integral operator A has a kernel g{x—y) where
g(w) = Zu’i“’.
#wS N
We give an estimate for this function.
LevMa 2

1~

1—dw + 0(N° (max (N, |w|+ 2))&(1—a)+s)

glw) =

holds for each fived & > 0, uniformly for 0 <o <1, N =2 and all real w.
Thus if N> lw|+2, then g(w) = N'"*(1—iw ~14 O(N'*%) holds
for any fixed &> 0.
Proof. Let N, be the nearest rational number of the form m -+ % i, m
integral, to . If we replace N by ¥, in the definition of g({w} we change
ity valne by at most an absolutely bounded amount. Moreover, it is clear

that
N

e N = [ <1,

N

1
1—dw

It will thelefore suffice to prove the lemma with ¥, in place of N. For
the remainder of the proof of this lemma we therefore assume that N = N;.

By a standard application of & theorem of Perron (see, for example,
Titchmarsh [20], pp. 53-55) we have

et
oy
(w) _>_ no =

fC(wH— )
n<N !

( Ne Nlog N
D{e—1) D )

uniformly for ¢ >1, D = 2. We choose o = 14 (log N)™', so that both
of the ervor terms here ave

£ D ' Nlog V.

The integrand has @ simyle pole at the point & == 1—déw. Assuming that
2 w2 we move the line- -gegment (¢-+3t, 1| < D) to

0iD 2 g—iD ™ o4 iD 3 64D,

where o satisfies 0 < ¢ < 1. We then pass over the above pole, and from
Cnuchy’s theorem obtain for the integral in (u) the estimate

Nl_?&w -}-Z o f@' 410 - 8) E-cls

1—w J4£8
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We now appeal to the inequality
¢(atii) < (4420

which is valid for any fixed ¢ > 0, in the region 0 C a1, la+i—1] =
{see for example Titchmarsh [20], Chapter V). By means of this inequality
and the fact that D = jwj+2 we see that

1 ) N
S [ L{iw8)—ds <€ D} NepMi-ote g N-i-ofite
27l L lr, s

Moreover, the corresponding integral over the line-segment L,
< _DE(I—::)-i-sNa’
go that altogether
Nl—iw
glw) = ~|—0(

1—dw

Nlog NV N . o)e
& — + e TN D )

holds uniformly for all D>2, and 0 <o <1 Apart from the factor
D*log N the gecond of these three error terms is larger than the first, and
for D €N iy smaller than the third. Choosing D = max (N, [w|+2)
we obtain the result stated in the lemma.
Our second preliminary result is an analogue of Gershgorin’s theorem,
Lemaca 3. Let 2 be an eigenvalue of the operator TP (— 1T, T) — L* (T, T)
which 1is given by

- iy
tloy > [Fui(z, w)du,
-

where h(x,y) is continuous on the square [—T, T Then A satisfios
2 < sup [ IR (, u)idu.
el <T - 7p
Proof. We ean clearly assume that 4 % 0. Let ¢(v) be an cigen-
funetion corresponding to A. Then g () is essentially bounded, and we set

M = esssup |g(w)].
jol LT
It M = 0 then Ag{x) is identically zero, and since g(z) is not identically
76T, We have 1 = (0, contrary to assamption. Hence M >> 0, and for each
positive number &, 0 <5 <1, we can find a point 2 so that |g(#)]
> (1—e) M. Hence
T . Iy
W (1—e) X< [ IF)] b2, w)ldu< Msup [ |hiz, u)du,
- |

and since & can be taken arbitrarily small, the lemma ig proved.
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Consider now the funecbions

1—iw

g (w) = s gafw) = glw)—g(w);

1= i

and their corresponding integral operators:
El‘

Ap f@) — [glo—pfma (G =1,2).

CLet p (= 0, = ps), A denote the largest eigenvalues of the operators

A and 4, respectively. Then we assert _t.ha,t
() ¢ =X+ O(N'TT)
holds for any fized & = 0, uniformly for ell N == 27+ 4, To see this we apply
Lemina 4 to the operator A,, to deduce that every eigenvalue u of A,
satisfies .
T 27
i <sup [lga—mldy < [ lga(w)dw.

lel<T _ip -2
Since 2T--2 < N, Lemma 2 shows that for any fixed valve of ¢ which
sutistios 0 < ¢ < 1 the integrand in this final integral is uniformly

< Nﬂ+!¢(1“")+31'2.

Choosing ¢ = ¢ we see that the spectruni of A, lies entively with a disc,
centered at the origin, of radius O{¥N*+*T). Taking f(#) to be in twmn
2 snitable eigenfunetion of 4, and then of 4,, we justify the assertion (v).

For large values of N in eomparison with T, the cage in which we are
interested, the study of the operator A therefore redunces to the study
of the operator

_ T i)
A fla) > f i
-7

dy.
=) fay. .
~ Upper bound for ;. We obtain the upper bound A, < (2m) RN
by interpreting A, as two successive Fourier transforms. For any function
fe) of the elass L*(—T,T) we can write the action of 4, in the form
N [
f@) — [ &= [ <) ay) d,
0 -1 .
the inversion in the order of integration being justified by an application
of Fubini’s theorem. Letting 2 = ¢* we express this double integral in

the form
log N

T
w(E —ix) =T ay) duw.
_i & | U;;:G flz) y) w

27 — Acta Arithmetica XVIII
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et

) — Vorfly) it WI<T,
27 e otherwise.

Then f,{y) belongs to both the class L(— oo, oo) and the class L3{— oo, oo).
Moreover, in the urual notation
:_'tl

1 . »
= | #wa =fiw),
"

the L(— oo, oo) Fonrier transform of the function f,(y). By an argument
of . Riesz (see Titechmarsh {79], pp. 75-76), for example, one deduces

that f,(z) belongs to the class I*(—oo, oo), and that
oo 0 a
[y < [ Ifuw)irdy = 2n [ IF@)Pdy.
—(0 —_— -7

We now have
log &V

floy > [ = DVanf (w)dw.
Further set )

Zr:swfl(fw} if w<logh,
] otherwise.

flw) = l

Then.
A.f(@) = 7;_; ) i e~ () dwr = (o)

where the function f,(#) belongs to the classes L{— oo, co) and

I*(~o0, o), %0 that fy(w) certainly belongs to the class I*(~— oo, oo).
Taking norms we obtain

[4,F] (in IX—T, T)) < |foll (in L*(— o0, o))

< |Ifs| (Bessel’s inequality in. IF(--oc, o0))

og N o0
= ([ amevifipay)” <omy ( [ ifiray)”
< 2xN|f2l| (in L*(— oo, o))
< 2nlN ||f1]] (Bessel’s inequality in

| I?(— o0, o) once again)

< @nPRN|f| (in L*(—T,T).
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Sinee the operator 4, is completely continuons Hermitian we deduce
that
A< (2r)PN.

Lower bound for i,. We shall prove that for 7> 64, N =2,

L
YT ayn

We consider the action of the operator A4, on the function

A

1—ix

fol@) =

1—ia’
which belongs to the space I*(—T,T). We have

dy
—ile—y))(L—y)

. T
—Alfﬂ = NI f (l
-~

For values of # which satisfy 32|#| < T we replace the integral in this
expression by the contour integral

7 - f dz
T [—ie—e)(1—1i2)

taken over the line-segment — 7T < Rez < T,Ime = 0. The integrand
iy regnlar over the whole plane save at the points z = —¢and 2 =it
wlere it has simple poles, with respective residues
1 1
- and .
-2 -+ 2%

We apply Caunchy’s theorem to a semicirele on the line-segment L as
a {iameter (we can choose either side) to deduce that

1 az
e riny rf I—ilw—2)(1—iz) "

where I" congists of one half of the circle [¢! =T. On this are the ine-
qualities
(L=t —2))| 1 —d2)| = (le] — (14 |2]) (el — 1)
2
21‘2(1_,1)(%_&.)25_
T/\32 7/7 8
are satisfied, so that
1

8@
me—l—?:i 7 (19 < 1).
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On taking norms in the space L*(—T,T) it follows that

82
PR I
—T{32
N ﬁ]!_az de N"( © _— HN&
Td etz L e 4+ms)f»“§'.

On the other hand

F o dw
i <3t [ o = 2.

Hence

N
= Aol Ilfel ™" = PYVat

T
a8 was agserted.

In view of our ezimate (v) the proof of part (i} of Theorem 2 iy now
complete.

7. Concluding remarks. One can reformulate the problems of the
type considered in Theorem 2% in the following manner. One could ask
for the best valoe of u so that the inequality

T co
‘HZw s‘”“fN ““l ad<u 2]0&,,

-~ n=1

holds for all veetors @ = (ay, @y, ...) With [j@|® = }¥'|2,|%® < co. Thus the
vectors @ helong to a Hilbert space. The presence of the exponential
factors on the left hand side lays emphasis on the early coordinates a,
with. o € N of @, whilst being technically convenient fio use. The frans-
ferred. problem then becomes that of the integral operator B: L*(—1', T')

—I*(—T,T) given by
T
f@y~ [Rla—nfEady,
~ir
‘where
k{w) = 26""""‘\’%"5“’.
7=l

This kernel can be computed in a manner analogons to that used in
Lemma 2, using the fact that

24ico

f L) I i) NP0 gy

21
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Here I'(s) denotes the nsnal analytic continuation of the gamma function
of Euler. The presence of this function enables one to move the line of
integration Res = 2 over into the left half-plane Res << 0 to deduce that

B(w) = I'(1—iw) N9 £ (f0) + O (N2 (joo} + 2))

holds for any fixed & > 0, uniformly for all real w. In thig representation
the dependence of k{w) upon N is clear. An upper bound for u is easily
obtained using the analogue of Gershgorin’s theorem. To obtain a lower
bound one can consider the action of the operator wpon the function

fol@) = DA -+ig) N1+

and proceed as for the estimation of 2,, using the fact that
j' T(L i) Nt g—niN g
-t 14-ioe 7\ -5 .
f I'(s) (—) e "N ds = 2mme V.
N :

1--ic0

= LTt
%

However, for large values of T, but still small in comparison with
N, one might expeet that the operator B would behave somewhat like the
operator (: L*(— oo, o) > L*(—o0, o) given by

flo) — fI’(l—i('u—m)) flw)du.

This operator is bounded and Hermitian. It is amenable to iteration,
since (see for example Titchmaprsh [19], 7.7.9, p. 192)

1 Fe4-ico ( )
e fm T(s) [ {a=s)a™ds = g O <F<EW

that is to say (14+a)~% and I'(s)I'(a—s){I'(a)™") are Mellin transforms
if 0 < Res < Rea. One can therefore expect to approach w closely by
means of the Buclidean norm of the iterations of the operator ¢.
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ACTA ARITHMETICA
XVIII (1871)

Ovali ed altre curve nei piani di Galois
di caratteristica due

di

B. SEGrE ed U. BarToc0r (Roma)

Il presente lavore viene dedicato con profonds ammirazions
alla memoria degli eminenti malematici
H. Davenport e TV. Sterpidski

Prefazione. Liintroduzione e lo studio dei k-archi di un piano Sy, di
Galois e delle loro estensioni agli spazi superiori devesi esgenzialmente
a B. Segre ed a suoi discepoli. Ne sono derivate le cogiddette geometrie
di Galois, vari aspetti salienti delle quali trovansi esposti nella nota [24](1)
e nella monografia {27] (in gnest’nltima, aceanto & nuovi risnltati), le
quali contengono altresi un’ampia bibliografia sull’argomento, a cui
rinviamo con Paggiunta dei lavori elencati alla fine della presente Memoria.

Un k-arco & un ingieme di punti di S; 4, & tre a tre non allineati;
o350 denominasi un’ovale quando % sia tale che in §,, non esista nessun
(k+1)-arco. Rigunardo a queste ultime, occorre distinguere due casi
a seconda che g = p” & dispari o pari, ossia a seconda che il numero primo
p & maggiore od egnale a 2.

Mentre nel primo caso risulta &k = g+ 1 ed ogni {g+-1)-arco, coue
insieme di punti, & quello del punti di una conica non singolare di S, ,,
& vieeversa ([21]; [25], nn. 173-1.74), nel secondo caso — e ciodse g = o .-
per un’ovale si ha & = ¢-+2, la strutbura algebrica dei (g +2)-archi (e delle
loro estensioni agli spazi superiori) essendo perd in generale assal pilt
complessa che nel caso dispari e ben Iungi dall’essere pienamente nota.

Pitt precisamente, gualungue sia g = 2" si ottiene intanto un’ovale
di 8, coll’aggregare ai punti di una conica non singolare di 8, , il nucleo
di questa. Tuttavia ([25], n. 178), mentre per 2 =1, 2,3 non vi SOILO
altre ovali all’infuori degli insiemi cosl definiti, nell'ipotesi che sia b > 3 —
ad esclusione al pilt soltanto dei easi h = 4, h =6, il primo dei quali
& poi stato trattato direttamente con l'uso di un calcolatore elettronico,
cfr. [18] ~ i hanne fra Paltro le oveli ottenibili in 8, , con Paggregare

(1) I pumeri tra [ ] rimandanc alla bibliografia posta in fine del lavoro.



