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One some general problems
in the theory of partitions, I
by

P. Erpis and P. TrriN (Budapest)

To ithe memory of H. Davenport

1. In our fourth paper on statistical group theory (gee [2]) we needed
and proved that “almost all” sums of different prime powers not exceeding

@ congist essentially of
6 @
.y
0g2 logaw

summands. Further needs of this theory make it necessary to find general
theoreros in this direction, i.e. when the summands are taken from a given
sequence

(1.2) A 0 <Ay <Ay < ..,

of integers. The only result we know in, this divection refers to the case
when .1 is the sequence of all positive integers. In thiz case Erdés and
Lehner (see [1]) proved even the stronger result that almost all “unequal”

partitions of » (Le. with exception of at most o(g(n)) partitions of » into
unequal parts) consist of

(1.3) {(140{1))

(1.1) (1-|—o(1)) 2v

2 l/wlogz Vo

summands; here ¢(n) stands for the number of unequal partitions of n
for which according to Hardy and Ramanujan (see [3]) the relation

5 ™o~
14o(1) ~~6],—§Vn

4V ) |
holds. Now we have found that having only asympiotical requirement
on the counting function
(1.5) ) = D)L
=<

wé can prove general theorems. More exactly we assert

(L) g{n) =
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TarorEM 1. If with an 0 < a < 1 and real § the relation

Lim @, (e “log’s = A

£-r00

holds then for almost all sysiems
(1-6) ii +ﬁi "}—..- & N,
the number of summands 8

(1.7) (L4 0(1)) 0, N/t yog= Pl N

1o iy < iy <y <oy

(l‘v.l m (‘f]‘(a) lﬁ;’ jl')

for N —» oo,
The explicit value of ¢/, i

P
I'la--1) (1 — o) ta) e+ 1))
(1.8) At 1.-_ T ;
{a(l-m —-7) Lo 1)}
for o =1 (E—F‘)C(a) means log 2. “Almost all” means in thisx case

that (1.7) holds with exception of o(g(N )) solutions of (1.6} ot most where
g(n) stands for the total number of solutions of (1.6),

The proof will follow mutatis mutandis from that of

TaworeM LI, If for ¢ — 4+

() = A" {1+o( ! )}

1.9 e
(-9 log’x logx

then for almost oll solutions of (1.6) the number of summands is
{1.10)

. GIN“”“"“1)10g"m““‘ 1) N{l4+0 (10g~——1,'4(u+1) M.

Moreover we remark that the nunber of solutions of (1.6) not satistying
(1.10}) cannot exceed,

OX {1, NI Mo =Kot N (1 (3 log 1 19 ) |
where O = Cyo, f, 4) > ¢ and
(LI1) g = am®ID(Lp )t D L4 (1 — 27"y (- 1) I (|- 1),

For the sake of ovientation we remark that in onr ease (1.9) the total
nnumbel of solutions of {1.6) iy

(1L12)  exp {C, N/ ]og A0 N (1 4 0 (log 41 § loglog V)] -
2. In the proof of Theorem IL the fact that the A’y are integers

v =1,2,... and N =log¥Y we get the

icm
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CoroLLARY 1. Abmost all factorications
Wyigily oo ¥, 2@ <@y <...

in different factors consist of

2V31l0g2 ——
lﬁf& Viog ¥ {1+ O(loglog ¥)~1/*}
factors. '

3. Though it i® not concerned with statistical group theory,
Erdos—Lehner’s theorem raises the npatural question whether or not
a general theorem analogous to Theorem II exists for the unequal A-parti-
tions of # (of course the A,’s are positive integers again). Denoting by
P,4(n) the nmmber of these partitions the easy eombination of Theorem I
and (1.12) we get

TaroreM ITL. If beside the limes velation (1.9) the imequality (U, in
(1.11))

(3.1)  logpa(n) > CynC+Dpg=fletNp (] _ log =ty (loglogn) ™)

holds then the number of summands is
(3.2) O, e og iy 1 1 0 (log— e+ 9n))

in every “unequal” A-pastition of n with o(p,(n)) ewcoptions af most.

Ay (1.4) shows (3.1) is in the case when /A consists of all natural
integers, amply satisfied; hence for almost all nnequal partitions of #
the number of summands is

2V3logs
(3.3) T Yafl4- O (log P}
™

Brdos-Lehner’s proof gives the stronger estimation

2V3log2 Vo (i n o (m)}
s

if only w(n) # co arbitrarily slowly; we got however (3.3) from a general

theorem and used {L.4) very weakly. As shown by Ingbam (see [5],

p. 1038) the inequality (3.1) is amply satisfied for the A-sequence

1% 9% ..., k=1, integer.

In thiz case we have
A=1, a=1lk, p =1,

, . D141k (1—2""Y) E(1/R)  aer ou
(84 O = Ty a—sEL FL e O

hence we got the
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Corourary IL. Almost all partitions of n with different L-ih powe
of positive infegers consisls of

(3.53) O MDA O (log™ M)}

sumanands (& = 1),

Ag to the requirement (3.1) in Theorem ILL this can bo probab
wealened. Howover some additional restriction on. the sequence heyor
(1.9) 18 necossary; (1.9) alone cannot assure oven the oxistones of a sing
unegual Ad-partition of #.

4. It is again natural 1o ask the corresponding questions for pairt
tions permitting repetition of the same summand, t0o. In the speei
ease when A consists of all natural nwnbers, Erdos—Lehner Le. foun
that almost all such partitions consist of

—g—ﬁ l/'n:log 1 {il. +0 (-E)—-@ ) )}
4T

summands if ouly w(x) » co arbitrarily slowly. For general /-sequence
however — in confrast to Theorem 1T - asymptotical formulae lik
(L.9) arc no more sufficient to assure a similar statistical law for th
nwunber of summands, We shall return to these seomingly moro delical
problems ag well as to finer laws of the distribution of sumunands in latc
papers of this neries.

3. As told it is enough to prove Theorem XI (with Ay’8 not nocessaril
integers). Let D(y) monotonically increasing so that

(5.1) f@) = [ e™an(y)

exists for # > 0, Then we state the
Lmviva 1. Suppose that with an 0 < oy = L, Az 0 and roal By, 1

relation
, A loglog (1./2)
log fla) = _..mmzw“{, | )( £(1/a)
og f(w) Filogh (1] L+ ¢ log (1)

holds for @ — 4-0. Then we have for y — 4 oo
log D{y) = Cyy i Diog-fallttady (1 4 g (log et Yy loglogy)}
with :
04 . Ai,‘(l-l-al)(l _l_ al)L-‘;-ﬁl/‘(H-ul)ai—a]/(al-i-n_

Without remainder term this is due to Hardy and Ramanujan (see (4]

A detailed proof for the cago o, = 1 =1 can be found in our paper [2]
the present more general case follows mutatis mutandis.
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6. Next let @(¥) stand for the number of solutions of {1.6) and

{6.1) Folw) = [ e*dQ(y).
Thenr we have evidently '
(6.2) Fy(x) = ﬁ (1 -+ e~ ).
=1
Let further with a positive integer m
(6.3) Quiv) = D 1
Ly gy Ty
i <y < e gy
and .
(6.4) Fo(@) = [ ™ @, ).
Putting for ¢ >0 | ﬂ
(6.5) Golw, 7) =1+ ie"mﬁ’qm(w)
we have evidently -
(6.6) Gylw,r) = ff[(l—{—e"“vm).
=1

7. We shall nead the
Liempa IT. {1.9) implies for & — -0

. g b e L
(7.1) log Fy(w) = Gy~ "log ﬁ—cg{l—}—O(log lgloglog;)}
Wi
1
(7.2) C; mA(1—~~2—u~)I'(a-—|«l)E(a+1).
For the proof we remayrk that representation {6.2) gives at once
oq o
' ‘ DY)
log Py} = | log(L+6")dd,(y) = o ;—"—(— dy
0 0 e

(1.9} gives from this

20 .
. y" dy
"o . — L .
(7.3) IOgﬁ"(w)"Awhf Togh(y—=3) e

_Pk exu

=y oy
+0(‘”)J Tog i (yF2) 14e” "
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The contribution of the range y < x~'log™"*(1/2) to both integrals
i8 (roughly)

1
(14 P
(7-4) a*logf (1/x)
The same holds as iy easy to see, for y > L0z 'log(ljx). The remaining
part of the second term in (7.3) iy ovidently

€ r A 1
7.5 Ol e f e gy = () .
(7.5) (],og’""(l. /.‘u))‘.l L e (:ﬂ“lug:"" (1 /m))
Replacing in the remaining part of the fivst term in (7.3) log” (y-+2) by
log?(1 /@) the error is
0 1 10(;{100( / )
w logh (1 )
A further easy reasoning gives — with the same error term — for the
main term
Am fa 'j/u d Aa,} {® C:O ?lﬂ
O e v e (e .
log” (1 /) J 16 y log? (L} E.J 1-¢
indeed (7, in (7.2)).
Combining Lemmas T and LT we obtain
(1.6) log@(N) = O, N/ ]og~tlerlt vy £ L O (log V&) Nloglog N)}
indead (C, in (1.11)).

dl] - Ol “10;‘ 1

8. Let further

[+

N VoL
(8.1) Rix) = 2 T

' |
Weo shall need the
Lmvma IIL For w -+ 0 the relation

(8:2) MM~Gvﬂw”1%oH“%(“ﬂ
log (1fi)

holds with

(8.3) O = Al a41) (1 o ;,;)é‘(a)

The proof of this lemuna follows that of Lemng 11 wutatis mutandis
instead of the integral formmla

Af - wdjwo
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we need

9, Now we may turn to the prooi of Theorem II. Let
(9.1} M=M(N) 7 0, 7,=r{N)N0, & =a(N)N0
to be determined later and we start from (6.5). This gives
1+ Z o, (#0) 60 < G2y, 1)

1M
and « fortiord

(9.2) D) By, (@) < Goliy, 7o) 6™
Since for each fixed m (6.4) gives

B (@0) > fﬁw%ﬂ/“MfMM)=W%%WL
we get from (9.2)

08) ) Qu) = glay, 7 775 = Bofay) {2800 e,

The expression in curly bracket is
14-g "o he {1L—eT0)g™ M0
E:FHT*IYF*“?qfuo}

r=1
- S 1 7o
< QXIJ{(G rg*l)Zm}( exp{—i*u(l—»ﬁm)lﬂ(mu)}.
. 1

From this and Lemma IIL we obtain from (9.3)

2 Qm(N) & Fc.?(mo) EN% X

e N
‘ y "o oy L ( (108108“( fﬁo) ))})
X 6X] (fro %III — (1— _2“) gty “log an 140 oz (1/a7)

Applying Lemwma IT this gives

y {M” i %-) “‘@gaﬂ o (E%%fﬂ )
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10. Now we choose with 2 constant i to be determined Infer
1

(10.1) e AN [l
%o
Then
Oy
Ha+ “Iog 1/:}3:
1
= Jtetog ey L gt ap (0% et )

We want to determine A so that
1 .
(10.2) ﬁ O (14 a)ﬁ =, = a—u.’(a+1)(1__|_ a)1~|--lif(l+ﬂ) U},”“ a}

(using (7.2) and (1.11)). This can however bo writfen in the form

a
_‘-}.Gy(bl-u)(l_,{__ a)ﬂ,’(l+a)a1,r(1+a))

+{;{0§/(1+n)(1 + a)ﬂ/(l‘l‘a)al/(l'l*”)}"- = g1,
which meang that
£ = AO‘;I(I-M)(]_ + a)ﬂ/(H--“)all(H‘ﬂ)

satisfies the equation

a

— b p® = 1

s o
which is patisfied with # == 1. Thus choosing
(103) I = 0;1’(1+a)(1 -+ a‘)—ﬂl(l-{-a) a—-l/(H )

and using (10.1), (9.4) can be writben as

ZQm(N.) < exp (%N“""*-l)log—ﬂ!(aﬂ)l\? {1 + 0 (l%@f)_{iz_\r_)} -
el og N

7y {Mm (1———) A" (1 -+ ) Ne/te+ D gghita: 1)1\7(1 40 ( toglog ¥ ))})
](g.N

Taking (7.6) into account this takes the form

(10.4) D QM) < Q) exp( (el Diog=(eDiteid) )y Joolog N) -
mss M
' loglog NV
. o af(e1) - {at1) M St 2l
+nfu (1 eueog e, o PEELY

owing to (8.3), (10.3), (7.2) &nd {1.8). Choosing
(10.5) 7y = 10gm11(4a+4.) N
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and
(10.6) M = M, L g, FeiCepgrilet (1 glog~Hiteth J)
{10.4) takes the form
(10.7) Z Q@ {N) < Q(N)exp{— N/} ]og=E+BitatD 3y

meily
with an unspecified positive constant ¢. This proves the first half of
the Theorem, II, concerning the solutions of (1.6) with “few” smmmands.

11. Now we have to dispose with the solution of (1.6) with “too
many” swmmands. The form of Gy(z, r) in (6.6) shows that Gy(w,,r)
{with the m, in (10.1)) is an entire function of + and hence if

{11.1) tzr=r(N)N 0

to be determined Iater, then Oauehy s coefficient estimation ean he applied
to the segment
{11.2) Rer = —p;, 0 Imr < 2n.
This gives for each integer m

6m|1-1[1;1@m(m0) < Gy, —7y)

and hence as in Section 9

{11.3) Qu (V) < M7 M Qg (my, — 7).
It
(11.4) M, = M (N) » %
to be determined later then summation with respect to m > M, gives
1
(1L.5) D) @) < MGy, 1)
1—e
gl .
2
<—3Nw“_M1?1GQ(mo= —1).
7y
The represzentations {6.2) and (6.6) give
. 2 e [T L€
(1-1--0) 2 Qm(-N) = E_{lfTQ(wﬂ) 6an} !e Mn 1+ & o }
e My ¥=1
ol
2 Mgy | -y ¢r—1
= - Wolwoe °}{e : [1 I+ oy

< 2 (o) 0} oxp{— My, (61— 1) Biay)
1

< ':? {Fq(mo) 6™ 0} exp 1y {— My -+ (1472) Rwo)}) -
1
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Repeating the reasoning in Section 10 we can derive from (LL.6)

(11.7) Z G (V) =< TQ(N)GXP (O(N””“ D]gg -0 N loglog N -
1

meE=My

loglog N
4y — My A (L) OLNG/(“-I-I) km---ﬂf(fx--i-l)_N (-1‘ 40 (0{.1702: ))1) .
log N ]

Naw choosing
M, e G N Lo D N (1210 VOO N,

(1 1.8) py = 1(.){.’:. Lf(e 104) N

(11.7) gives
E 0, (N) <. Q(N)oxp (— eN“ g R Ny

[T

with an unspecified positive ¢. This completes the proof.
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On the order function of a transcendental number
by
K. Maurer (Columbug, Ohio)

To the memory of Harold Davenport

Some forty years ago, I introduced the classification of all (real or
complex) transcendental numbers into three digjoint classes 8, 7', and U
(see the detailed treatinent of this clagsification and of an equivalent
one by J. I. Koksma in Th. Schneider [57, Kapitel TIT). This classification
possessad the Invarianece Proverty; i.e., two numbers which are algebraically
dependent over the rational field Q always belong to the same class.

kn the present paper, a new classification will be introduced. I associate
with each transcendental number £ a positive valued non-decreasing
finetion O(u|&) of an integral variable u z= 1, called the order function
of 5. For such erder funetions, both a partial ordering and an equivalence
relation will be defined, and it will be proved that if any two transcendental
nunibers & and y are algebraically dependent over Q, then O(u|f) and
O(u|y) are equivalent. We may now put any transcendental numbers
into one and the same clags whenever their order functions are squivalent.
In this way we evidently obtain a classification of the transcendental
nnmbers into infinitely niany disjoint classes.

The order function O{u|£) iz defined in terms of the approximation
properties of & Unfortunately, the aetual determination of O(u[£) for
o given & is o difficudt problem, and more work on sneh order functions
i enfled Tor.

1. The following notation will be used. We denote by ¥V the set of
all polynomials
» ("'I’) =% g |- Pyt + P o™ ‘where P 7 07
by ¥ the wel of such pelynomials with integral coefficients. The exact
degree of a polynomial in ¥ ix denoted by
. Up(p) =0 (p) = m,
andd we further put

Ly(p) = L(p) = [pol + 2ol 4+ [Pul,  Ae(p) = A(p) = 2P L(p).



