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Portunately many of his lectures were either publishoed or mimeo-
graphed and will be a source of pleasure for many years to come.

His early death is a great loss to mathematics and to all who know
him. I count myself very fortunate to have known him for some 45 yoars,
He is assured of 2 permanent place among those great mathematiciang
who have advanced the theory of numbers, called by Gauss, the (Queen

of Mathematics.
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It iy well known what an important part has been played by problerns,
aven of the simplest character, in furthering research, discovery and the
advancenient of mathematics. Hilbert’s famous address on problems is
a classic illustration. The solution of a problem frequently requires new
ideas and new methods. The generalization it suggests, its consideration,
from a clifferent point of view or its rephraging may lead to a new problem
of far greater sigmificance than {he original one which may turn out to
be only a very special case of a general theorem. Sometimes it seems
almost incredible what striking and far-reaching fundamental developments
have arisen in directions which seem very remote indeed from the problem
from which they arose.

Problems are the life-blood of mathematics, Davenport wrote nearly
two hundred papers and in them he studied a great variely of problems
on number theory and related topics. These stimulated a great deal of
research and often proved the starting point for much work by his collea-
gues and students. Two problems in particular led him and others to
investigations of the greatest importanee which have greatly enriched
mathematies, opening up entirely new and unexpected fields of research.
Tven at the present time, their possibilities have not been exhausted.

The first problem was tackled in his very first paper published in
1931. It is really wonderful what this led to and it makes a fascinating
story to follow its congequences and to discuss the influence it had in
shaping some of the best mathematical research for many years. I propose
to do this in some detail. The problem, proposed to him by Littlewood,
was to estimate the sum
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say, where p is a large prime and the braclet denotes the Legendre
guadratic character modyp. The case when fio) is a quadratic polynomial
is really very simple and had been investigated by Jacobsthal ag long
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ago as 1906. It is very surprising that the only results known for tho
cubic cage were nearly frivial ones. Davenport found the estimate

(2) 8 = 0(p*"),

where the constant involved in 0 is independent of f(»). This wag a really
significant result. The problem was a most suggestive and interesting
one, and I noticed thai it could be considered from a different angle,
Let N be the number of solutions of the congruence

(3) y? = (e a) (w4 b) (@-+ o) (modp).
Cleaxly

2 &) (w+b)(w+e)
) ¥ = Z(H( ) =245,

where the bracket denotes the Legendre character. One immediately
thinks of the general problem of estimating the number N of solutions
of a polynomial congruence

(5) ' F(@, y) = 0(modyp)
in the form
(6) N =pt+0@Y,

where 1 is a constant, and in particular, of the best possible value of A
Tsolated resulia had been known for many years. Gauss’ work on eyclotomy
had led him to some cases, e.g.,

f®,y) = a®+by*+o,
and Fermat’s lagt theorem had led to the case
fla, y) = a2+ by"+c.

The congideration of the congruence (B) peemed Lo abtract little
attention or proved too difficult. I made a start which enabled me to
deal ‘with some new instances of (5), by applying a method of discrete
averaging, Let f(z,y) involve linear parameters a,, ag,...,a,. Then
it iz well known and eagy to see that N is given by, say,

) Feparnt = Fa = D o[ 2o tims, 1),

where the summation g extended over 0 to p—1 for ¢, ©y, ¥, since the
gmmn in f, vanishes unless f(#y, 1) == 0. Then
»—1
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where B == ¢, f(@y, )+ .. 50 (@, ¥,), and #ig an axbitrary even nmnbor.
Sun now for the paramnecters « from 0 to p-—1. The sums in the @ vanish
undesy their coefficients are congruent to zevo, and thiy leads to » nwmber
of congruences for the varxiables a, . The mumber M of their solutions
can, sometimes be found, and so we have & result of the forn
Al
7 N (N—p) = p"M.
[

Thig simplities on noting the solutions when. all the 4 are zevo. If some of
the N, are equal, say for p” values of the parametbers e, wo have an esbimate

(8) P (Ny—p) = 0" " H).

In this way with r = 6, I showed that Davenport’s exponent } in (2)
could be replaced by % and also attacked several other cases. Some
yvears before, Artin had produced a conjecture that the exponent should
he 4. In problems involving orders of magnitude, it often takes a long
time to sharpen estimates, but not for the present one. Davenport was
staying with Hasse at Marburg in the early thirties and challenged hin
to find a concrete lustration of abstract algebra. This led Iasse to his
theory of the elliptic function fields, a stundy initiated by Artin, and lo
proved Artin’s conjecture, namely:
The number N of sclutiong of the congruence

) ot = g3 Aw{- B
satisfies the inequality
{10) IN—p—1] <2Vp.

Then Weil took up the question and developed a general theory for {he
congruences (5) and found the best possible vesult for the namber of
solutions in, tho forw

¥ —p| <KV,

where % iy an explicitly given absolute congtant.
In recent years, attention has been paid to the more general case

when f(e, y) is replaced by a function of several variablos. One could

never have foreseen what applieations of congrence theory would have
been made to diophantine equations and to zeta funetions associnted
with the manifolds defined by polynomial congruonces.
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The study of congruences was facilitated by the use of exponentiul
gums. I noficed that the method of diserete averaging proved useful
alzo for them. Write

Pl

(11) 8 = 26(2;: f(m)),

Ppa= )

where p i a large prime and f(@) is & polynomial of degree # with integer
coefficients. Then T found that
(12) § == 0(p*),

where the congtant in O iy independent of p. and the coefficients of f(z).
This estimate was improved for some » by Davenport in [3]. Here again,

the problem arises of finding the best possible value. It hag heen shown
by Weil that

(13) 18] < (n—1)p".

While the proof for (12) is really elementary, that of (13) is of a very
advanced nature.

Obvions extensions arise when f(#) iz replaced by a function of soveral
variables.

Linnik told me that the method of discrete averaging led Vinogradoff
to his important estimation of exponential sums by continuous averaging.

Davenport was very much interested throughout his life in con-
gruences and. exponential sums as can be seen from. the large number
of papers on these subjects mentioned in his list of papers. One might
mention in particular two of his early papers. Bxtensions and generaliza-
tions of many classical results are contained in [8], a joint paper with
H. Hasse. In [27], he finds estimates for character wumsy by elenentory
means, results which could be improved only by Weil’s deep methods.
He algo proved a conjecturs of Hasse on some functional equations for
L functions.

What a wonderfol cornucopia big first paper proved to he!

Davenport did not play a vital part in the greatest developmuonts
arising from his frst problent. In big second one, however, he was the
ploneer who wis able to find o path over untrodden ground. Lob
Ly, Ly, ...y Iy, Ve n linear homogeneous forms in n variables (@) with
determinant D. It iz easily shown that integer values of the o not all
zero exigh such that

(14) Ly Ly ... Ly < k|D,
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where & is a constant independent of the coofficients of the L. Values
ol % are eagily found from Minkowski’s convex region theorem applied
to the region -
(15) EAES) ARSWERY ARSI

e.g. if the coefficients of the I arc all real, then & ean he laken as nl/n™.
The problem is to find the bost possible value of & When »n = 2, the
problen is casy. When # =3, the known results follow from results
for (18). I suggested to Davenport that he should try to irwprove then..
Two cagos must be congidered. The first is when the coelficients of the [
are all veal, and the second when the cocfficients of L, aro real and those
of L, and L, are conjugate imaginary. Fe first sharpened the old estimatos.
Then iu paper [253], he found the best possible value, & == 1/7 in the
fivgt cage. This wag the first time that an exact result had boen found in
the Geometry of Numbers for non-convex rogions apart from those
avising for » == 2. Then in paper [26], he sottled the second case and
found that & = 1/V§:§. These were great accomplishments indeod and
gave him an international reputation. The proofs, bowever, as might
be expected from such difficult problems, were rather complicated and
g0 it 'was not easy to extract from them a simple idea which permitted
of further applications or generalization.

In thinking about hig work, I hit upon a method of reducing the threo.
dimensional problem to a two dimensional one. Iere, this lod o the
congideration of an inequality .

@, 9 = (g bey) (agm+byy) (agm+ by < VD]
where I ig the discriminant of the cubic f{z, ¥). It the best possible value
of § conld be found, the value for !in (15) when n = 3 follows easily. In

this way, the question arose of finding the best posaible estimate for the
mininmm of a binary cubie form

(16) f(2,y) = aw®~+bu*y+ coy® + dy®

of diseviminant I} for integer values of @, ¥ not hoth zero, in the shapo
L .

(17) [Fe, )] < VDI

Partial resulls had been found around the middle of the Last conlury
by Eisenstein, Arndt and THormite hut real progress seomod so slow s
difficult. that the problem was pafi agide wntil L was Jed 1o it by the
consideration. of Davenport’s work. Fortunately, after much hard worl,
the problem was solved by reduction to a problem in the geometry of
nutmbers for non-convex regions. Thuy when D > 0, o linear xubstitution,
with real coeflicients led to tho wegion

Al ARl A L Y
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a. type which had mnever been previously considered. When 1) > 4,
T showed that § = 49 and that equality was required only when

{18) af (@, y) ~ 8°++ a2y — 2ay?— yo.

When D << 0, ther § = 23 and equality was required only when

(19} af (@, y) ~ &*—wy?—yo.

The proof was very complicated but before long Davenport found two
proofs of whieh the second was a characteristically beautiful and simple

one. For the case D > 0, in {45] he followed Hermite in calling tho eubic
reduced if ity quadiatic covariant

Azt 4By -+ Oy* = (bo-+ cy)*— (Baw - by) (ow -+ 3dy)

iz reduced, i.e. if €= A > 2B. He then shewed that if f(z, ) is reduced
and has determinant 49, at leagt one of

.f(.l}o).! f(Orl): f(lal)a f(lt _]-)

does not exceed 1 numerically. One of them iy numerically less than I
except when

df(@, y) = a4 ay—2ayP— 3.

In [46], e congidered the case D < (. Now write

Na, y) = (w4 6y) (Pa? -+ Quy + By,

where #, P, @, B are real and f(x,y) i3 called reduced if |@]| < PR
and 6 > 0. Then if f(», y) is a reduced binary cubic of discriminant —23,
at least one of

f(]-:O): f(osl)s f(l,—-l), .f(ls_z)

does not exceed 1L numerically. One of them iz numerically less than 1
except when

f,9) = o+ a2y + 20924 y° ~ g’ — gy,

and then all four values are 4-1.

The new wmethod employed for the binary cubie led to great develop-
ments in the Geometry of Numbers. Previously only couvex regions
had been stmdied, but now the road was open to the study of non-convex
regiong. Important contributions were made by myself, Davenport,
Mahler, Rogers and others.

Davenport’s results for # =3 in equnation (i4) were extended in
# most unexpected and remarkable way. It iy well known that when
# = 2, there is a succession of isolated mininia, the so-called Mackoff
chain. T suggested the possibility of an analogous result for » = 3. Before
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long, Davenport found a second minimum & = 1/9. He also showed that
< 1/9.1 except for two gpocial cases. Recently by applying Davenport’s
methods and a computer, Swinnerton-Dyer has found some additional
twenty minima! The proof appears in this volume.

Davenport maintained his interest in the geneyal problem of the
minimmm of the product of # linear forms. However, even the case # = 4
has not been settled. But sghortly Defore Davenport’s death, he and
Swinnerton-Dyer wore engaged uwpon joint work upon this case. Swinner-
fon-Dyer thinks there ix now & possibility of finding the best possible result.

Both Daveuport and 1 were interested in the similar problem t_lfm- the
product of » inhomogeneous linear forms, Flere the problem requires an
palininte

| Ly~ €1 [ Dyt €] oo (Lo 6] 5 [ D1,

where the ¢'s are real congtants. .

A conjecture attributed to Minkowsldi states that the best possible
value of % is 1/2" He gave a proof for n = 2, and several others are known.
Remak found a lengthy and very involved ome for n =3, but in [29],
Davenport produced a short and elegant proof for thiz. The result for
n = 4 is due to Dyson. For general n, an. estimate & <27 ™+ had
been found by Tchebotareff. I and then Davenport gave sharpgngd
estimates in several papers. The general problem had been in our ninds
for maxny years and we gpent much tims on it. Our offorts, however, have
not been successful. The problem still remains unsolved.



