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A larger sieve
by
P. X. GarvaegaRR (New York, N.Y.)

1. Linnik's ‘large sieve’ gives an upper bound for the number of
integers which remain in an interval of length N after f(p) different
residue classes (mod p) have been removed, for each prime p. In its refined
form, due to Bombieri and Davenport [1], [2], and Montgomery [4],
the upper bound is ' '

NLo@g?

Y fw)
8@ 7

p—f(»)’

and ¢ is a posifive constant. In the applications, ¢ is chosen a little less
than N'? to minimise the bound.

In some oases, the bound obtained iz nearly best possible. For example,
if the quadratic nonresidues (mod p) are removed for each prime p, the
perfect squares rvemain. Here f(p) = 3(p—1) for odd p, so S(¢)> €.
Thug the upper bound iz <& N2 for @ = N,

In this note we give a simple sieve method which gives a comparable
bound in this example and is more effective than the large sieve when
f(p) is close to p. We put g(p) = p—f(p) and congider also prime power
moduli. _

TEROREM 1. If all but g(g) residue cdlasses (mod g) are removed for
each prime power g in o finile set &, then the number of integers which remain
in any interval of length N is at most

@) (qzy‘ A(g)—logN) / (Q; % ——.logN)

provided the denominator is positive. Here A(q) = logp for ¢ = p°.

Proof. Assume Z integers # remain in a given interval of length ¥,
and of thege Z(h, ¢} satisfy # ==k (mod q). Then

) where §(g) = M (@) [

< nlg

¢ 4
7 = (220, 0f <g@) >80k, of
=1 h=1
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for e, since Z(h, ¢) = 0 for all but g(g) values of 4. Summing over

¥, we get
- N
2 2; m—fn(q) IGEIZ-@; (mf»énid l) (qu 4 (Q))
<7 ) Alg)-+(Z—2)log ¥,
qsF

since Y A(g) = log|d|, for d # 0. Tt follows that the expression (2) is an
T

q
upper bound for Z, if the denominator is positive.
In the example above, g(p) == (p+1) for odd p, so

logp
Z 2(0) = 2log@ -+ 0 (1), Zlogp <@

p<@

by well-known estimates. Choosing @ = ON'2, the bound given by (2)
is < N as before, for sutficiently large C.

CorOLLARY. If all but at most G residue classes (modq) are vemioved
Jor each ¢eS”, then the number of integers whioh remain in any interval of
tength N ds

(3) <@, if D Alg) >G210gN'
g

(4) <26—1, if Z A{g) = BGlogN
. g

Proof. With an obvious notation, the theorem givey

L—1

Z<—'——"‘"-m
S LjG—1 G+

Fl—Gl

It L@, then Z< @+1. We may assume @ ig an mt.eger, g0 this
implies Z <G I L>20, we get Z < 2G~1.

The upper bound given in (3) is certainly best possible since any
G ditferent integers will represent < @ different residue elagses (modg),
for every g. The condition L > G*1 in (3) is also best possible, if & = 1.
For example, if ¥ is a square-free positive integer and & iy the sel of
prime divisors of N, then Z = I, while the two integers 0 and N represent
only the zero alass (modp) for each p<.

It f{p) = p-—@ for p > @ and f(p) = 0 for p < G, the bound given
by (1} is > min(GlogN, G°). In fact,

< S [14 <o &

o<l
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N+ CQ*
8(@) Q*

from. which our assertion follows, on considering separately the cases
Q:a e ;\;r]]z and. Qa > Nl/z_

— > ( —{—1) min{Glogd), &),

2. In [3] it was shown that the number of integers » < N for which
exp, (n) < N° (Y for all primes p < NV is < N°loghN, uniformly for
6 < }—s, for each &> 0. The following result improves this,

TuuorEM 2. The number of integers n << N for which exp,(n) <<
for all primes p < N°F* is & N°, uniformly for 0 < 6 < L.

Proof, For each prime p < g, we remove all residne classes (mod p)
except the zero class and the classes of exponent < #. Since there are
¢(f) claszes of exponent f for f|p—1 we have
(5) 9) =1+ Y o(f).

P

The Schwarz inequality and the prime humber theorem give

(6) (Z ogp )(Z g(P)logp) (2 lcgp)2> Yo

Py =Y DY

From (b) we get

(7) D a(p)logp < y+logy X o(Nay, f,1).

PRy <o

The Brun Titchmarsh theorem [1] gives the bound

7(y:f51)< _y>f1+s.

(f)logy
Hence for ¥ > #7°, the right side of (7) is <€ zy, and therefore, by (6),

logp K
Z 9(p) >

PsY

Put » = N° and ¥ — N’ Theorem 1 gives a bound

< NM/[(CN*~log N) <N"’
provided N = N,. For bounded ¥, the result is tlma,l._

(!} We denote by OXpy (1@) the least positive integer ¢ such that nﬂ = 1 (mod g}
if (n, g) = 1; otherwise, we set expg{n) = 0.
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3. Schinzel has proved in [5] that if 4, b are positive integers, and
b = o'® (mod p) for each prime p, then b = ¢". In this section we show
how a weaker result can be proved using the corollary to Theorem 1.

TemorEM 3. Let @, b be positive integers and let P be a finite sel of
primes. Assume b = o’ (mod g) for each prime power ¢ = p* with pg P’
Then b = a’.

We may suppose @ > 1, and that P contains the prime divisors of a.

Loy, Let & =Pk, &) be the set of prime powers ¢ = p° wilk
p¢P for which k|exp,(a) and exp,{a) < G Then (for fized a,k, P),

(8) DA > E (G326
g
In particular, there is a ¢ = p° with p¢ P for which k|exp,(a).
Proof. Put e{g) = exp,(a). We first show

{9 D Alg) ~plgloga (g~ oo).

e(g)=y

By the Mibius inversion formula, the sum iy

Suld) D) A-

dlg &{e)|gfd .
Since ¢(g)|f if and only if &/ = 1mod ¢, the inner sum is log(a®*—1),
g0 the sum, is

2 p(d)log(a”*—1) = glo_ga,z u(@)d+ 0 (2 a,—rmz) ,
dlg g dlp
from which (9) follows.

Apart from the restriction g 4¢P, (8) follows from (9) and the fact
that (for fixed k)

D) >E (G,
s klg
From o®@ =1 mod g, we get a®?d > g Hence if e(g*) <@, then
a<€@ (for fixed ¢ and p). Thus the confribution to 3} A(g) of the
[ &
powers of the primes in P is €@, and we get (8), Witﬁ%: different .
Proof of Theorem 3. We remove all integers # < I except those
for which n = a"®" (mod ¢) for each ¢ == p° with p¢P and exp,(a) < &
Here g{g) = exp,(a). By the corollary to Theorem 1 and the lemma, with
k =1, the number of integers »<{ N which remain is < & provided
@ = OGlog N. Choosing & = Clog N, we get that < log ¥ integers remain.
X b satisfies the hypothesis of the theorem, so do each of the integers
&’b*. Since there are formally> log® N such integers < N, a contradiction
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with the previous paragraph is avoided only if they ave not all distinct,
from which we get ¥ = o’ for some integers %,» with % 3 0.

We may assume (k,») = 1. Then ¢ =% b = ¢ for some integer
¢ > 1. The hypothesis now reads

v = kv (g) modexp,(c)

for each q = p*, p¢P. Applying the second statement of the lemma to
6, k, P, we get &|». Since (k, ») = 1, this means & = 1, and hence § = «".
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