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1. Introduction. In thiy paper I shall examine some consequences
of three theorems on the Geometry of Numbers which were proved in
an earlier paper ([2]). The notation and terminology ‘of that paper will
be assumed, often without special comment.

In 1967 Davenport and Schinzel ([1]) considered the following
question. Given integers a,, ..., a;, ¢ Wwith.

(1) (@ryens Oy @) =1,

can we find an integer # with

(2) (m,q) =1

for which

(3) max ffac /gl < 8-
Lk

Here it is to be wnderstood that 8 is a fixed positive number (0 < 6 < 1/2)
and that ¢ is Iarge. If the condition (2) were replaced by = 0 {mod g)
the angwer would be affirmative, and by Dirichlet’s theorem on Dioph-
antine approximation it would suffice if ¢z 6%, Ag they observed the
answer to the above guestion eanmot, however, be unconditionally
affirmative. For suppose there is a linear relation

{4) Byt .o - hgay, = by,
in 'which A s 0 and

(8) (Bay ooy lyy ) =1,
{6} (Byy -ons ) = 1,
and

k
(N Zmi[ < 6L,
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Then there is no solution of (2) and (3). For if
A== By ey By)y By =dhy (LI E),
then (d,A) =1 by (5) and d|g by (4). Now
I () 8y - ) | = [hfd] > ™,
gince (n,d) == 1 by (2). Hence '
i e g -+ 1R Inafqll > d™

which by virtue of (7) contradicts (3). (This whole statement is in fact
a somewhat weaker version of [2] Theorem 1.)

In thelr paper Davenport and Sechinzel proved that in prineiple
(that is, apart from the particular funection of § and, if we wish, & on the
right of (7)), the non-exiztance of 5 linear relation of the above kind is
in fact sutficient for the solubility of (2) and (3). To be explicit they proved

THEOREM. Leét &y, ..., t, § be integers satisfying (1). Suppose thai
Sor every integer n with (n, q) = 1 we have
(8) maXIIWf/QII >0 (0<d< i)

1=2i=lke
Then for all suffiviently large g (ie. g = qo(k, 8)) there ewist inlegers
Tty oouy By Bowwith b = 0 satisfying (4), (B) and (6) such that

%
®) 2 thyl << (%) 6~ F {log (28) 7442,

Retuening to the notation of [2] we ghall prove the following
THEOREM. 1. Suppose F* satisfies condition O and that for every point
- me A which gemmtes A over M we have

(10) : _ Ii{x) > 5.

Let I be the dimension of the space of A and M. Then, if k=8, given any
{small) & > O there ewvists an integer v, 1 <5 r << k, and » linearly independent
poinds 2, ..., 2 of A such that

(11) P <ok, ) 700 (1 i),

Also there exists o point 2*< A", primitive in A* but not primdtive in M,
linearly dependent on 27, ..., 2y and such that

{12) F*'(z*) < ek, &) d~0F,
Fugrthermore if
(13) (A M] =q = ¢k, &) FEEDT

then (11) and (12) hold for some v with 1 < r < k—1.
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Finally if & == 2 then (11), (12) and (13) hold with ¢ = 0 and constants
which depend onl'y on k.

It is perhaps worth stressing that the conelusions (11) and (12) hold
for all ¢ > 1 and not simply for all sufficiently large 4.
To interpret this in terms of the Davenport—Schinzel theorem we
take M to be the integer lattice in % dimensions and put
(I4) ) = maxiz,]
=gl
where & == {&, ..., i) with respect to the standard bagis. Then
13
(15) PHax) = 3,
=1
where @* = (a7, ..., #}), and hence clearly satisfies condition C. Given
integers ey, ..., 4;, ¢ which satisfy (1} we consider the lattice A generated
by the point @ = {a;/q,..., a,/¢) and M. The hypothesis (10) is then
precisely the assertion of (3). Moreover A* is now the set of integer
points {hy, ..., h;) which satisfy

b+ ... 3-hpa, = ha

for some integer h. Siuch a point is primitive in A* if (8) holds and im-
primitive in M* it (6) holds (observe that (5) and (6) together imply & = 0,
provided the point in question is not the origin).

We now see that Theorem 1 implies the Davenpori—-Schinzel theorem.
If r = 1 (k3 3) the right-hand side of (9) is replaced by o(k, &30+
and if (as iz the worst case, assuming (13) holds) » = k—1 we obtain the
bound ¢{k, &) 6-F D0+ which is still an improvement over (9). However
the theorem .implies somewhat more, for although- as » increases (12}
gives a progressively worse bound for F*(#*), thig loss iy compensated
by an increaging number of well bounded, lmeauly independent, poinfs
of A* given by (11).

In a second applieation of the theorems of [2] we shall. consider
what isformation can be extracted concerning sums of roots of unity
{see § 3, Theorem 2). In particular we shall show that i

@ == 16 (__‘)_{_ —{—e(rql‘,) ~(6(0) - enm'a)

where {ay, ..., tg, ¢) = 1, is 8 sum of k-1 roots of unity, then by making
all the prime factors of g sufficiently large we can make |l (*} as near
0 I‘\-‘]'-‘E as we please (wee § 3, Théorem 2, Corollary or § 7, Theorem 3).

(*} We denote by [¢] the magimum n.bso]ute value of a.ny algebraic con]ugam
of «, jneluding « itself, -
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2, Proof of Theorem 1. We first deal with the case k= 3.

In [2] Theorem 2, take ¢ = ¢ < 1/k, and let e¢,(%, &) be the
corresponding constant in [2] (27). We saw in [2] §4 that condition
¢ on I™ implies Vi' < e(k), hence the inequalities [2] (27) and [2] (28)
certainly imply bounds on the right of the type ¢;(%, &).D~" and ¢, (&) D!
respectively. We ean (by increasing ey{k, &) and oy (%, &) if necesvary)
arrange that e, (%, &) > 1 and

{16) (k) D < ea(ky £1) DTV 0y (R, o) DT

for all O > 1.
Now choose D > 1 xo that

(17 5 = oy (F, &) D10,

For this D, (10) and (16} provide a contradiction to the conclusgion of [2]
Theorem 2. Hence '

(18) Ay #= M,

which certainly implies that 1 < r < &, where r is the dimension of Ww7,.
Choose & (<< 1/k) so that

e = gf(l—eg),
where & is a8 in the enunciation. From (17) we have
{19) D = ek, &) 5707,

The existence of linearly independent points 27, ..., 2} satisfying (11)
now follows from (19) and the definition. of W7,

To obtain the point 2* of (12) we observe that (18) permits us to
apply [2] Theorem 3, with the D given by (19). Hence [2] (87) implios

¥ (2% < o(B) ek, &) 6~ < ¢k, &) o=

as required. Similarly to obtain (13) we use the final statement of [2]
Theorem 3.
If & = 2 then in [2] Thoorem 2, only the inequalities [2] {28) and
{21 (29) apply. This means that in (16) we may ignore the last incquality
and putting & = 1/(k4+1) we may choose ¢,(k, g) = ¢y(k) s0 that
a;(k) > 1 and
5, (B0 < 6,(k) D

for all D > 1. We now choose I so that
8 = ¢o (k) D!

and proceed as before. This concludes the proof of Theorem 1.
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3. Sums of roots of vmity. Let
(20) a=1+e(ﬂ)+...+e(ﬁ’f~)
q q

where (@, ..., ay, ¢) = 1. To apply the results of [2] we shall again take
M to be the integer lattice in & dimensions and A to he the lattice generated
by the point @ = (a,/q, ..., a/q), where @, ..., @, and ¢ are the integers
of (20). The case # = 1 is trivial, from now on we always suppose & 2> 2.
Our result iy then

TuUBOREM 2. Let « be a0 sum of k1 roots of wnity given by (20) with
associated lattice A. Let D > 1 be any given real number. Then either (i)
A» #= M) and the following conditions are satisfied:

(A) There are v (1< v < k) linearly independent relations between the
a; which satisfy

(21) bty ...+ hya, = hy,
(22) (Buy ooy By B) =1
and
' &
(23) DIl < D.
. 1=1

(B) There is a relation between the a; which is linearly dependent ow
those of (A), safisfies (21), (22) and

(24) (hyy ooy By) > 1,
T
(25) ) Wl < o(B) D"
=1
QY IfFD>2
(26) [af < (b+1)'—8(k-+1) D7

or (ii) AL = My, and
(27) Ta] > (k1) —o(k, &) D22,

Turthermore if q > o(k).D* then in (i) we may tole L<r<k—1.
‘We have the immediate

CorOLLARY, If q > ¢(k)D* and every prime faclor p of g satisfies
p > o(k).D** then (27) holds.

T — Acta Arithmetica 2VIII
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4. Two lemmas.
LEMMA 1. The region % in k dimensional space defined by

(28) 1+ (@) + ..t el@)|2 > (h+1)2—
(29) lol <3 (A< Ry,

where 0 < T < (k+1)% containg the ellipsoid defined by
(30) | Zw + D (wi— ) < Ejaw,

t<q
provided 0 < < n?(k-4+1).
Prooif. We may rewrite (28) as

k414 220082wm + Y 2co82r(m— ;) > (k+1)2—

g

Since cos § 2> 1— 4% for all real 6, this inequality will be satistied if

T2(l—uw2 +22 1272 (@ — 2,)2) > (h+1)2—

'b—l i<y

which easily reduces to (80). Furthermore (30) implies |#,| < 3 (1 << k)
gince K< dn?(k--1). see this congsider the following chain of ine-
qualities, where to avoid notational complications we take , to be
a typlca.l 2, .

2mi+2 (z— )t *‘”1"‘2“9 —|-Z 1o =+Z(w—wj

i=1 i<g [

i#EL
&
= ka}—2z, ij +2 250?

k 1 g
- : ) i+2(ﬁi—2mlm }25[)

(B4+1) fw(wl I/Em)2 (k1)
(] * )

(b-+1)—

(=3 ml—i-
Hence by symmetry

k .
(31} me‘F Z(%“%‘)z = (—2———m;

fel i<
for any » (1 < » < F). Clearly equality occurs in (31) only if
=2 (1A<i<k i #9).

From (30), (31) and K < =*(k—+ 1) we have l#,] < 3 (1 < v<< k) as vequired.
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COROLLARY. The region & contains the cube |z <H (11K k)
wrovided

(32) H? < K[2n2(k-4-1).

Proof. By Lemma 1 and (31).
LemMA 2. The region & is contained in the ellipsoid defined by

&
(33) D i+ D @—ay)t < /16
Tel <)

provided 0 < K < 4k,
Proof. As in Lemma 1 we write the inequality (28) as

(34) E+1+ 2200327::& -+ 2200527: 3— &) >
i<f
The next step is to show that for K in the range 0 < K < 4k (34)
implies jz;— 2| < ¥ for 1< ¢ < j < k. If this is not the case then we may
suppose, without loss of generality, that

> (kA-1)%—

(35} 3 <lo—ml <1
Now
€08 2ne, -+ cos2mw, - co8 2n (2, — &,) = 4COBw (W — &,y) COR TR, COS L, — 1,

By (35) and (29) with ¢ =1, 2 the firgt term in this last espression is
negative. Hence

(38) o8 2m; + 6032w, + 0082w (2, - @) < —1.

Denote the left-hand side of (34) by L. Then using (36) we see that

{3%) L < (k1) 2+220052nw¢+ 2 2coR2m{w; ——~wf)

=

(’-‘-sf)?eil 2)

In the final summation of {37) replace each cosine for which ¢ = 3 by its

maximum {viz. onity). Then

L<(b+1)—2+2[1k(k—1)—1—2(k—2)]+

k
+2 Z (608 27, 4 008 2 (w0, — ;) + cO8 2T (%, — @),
§=3
that is

(38) L < k2— 4k+5+22 eos2nwf—i—cos2ﬂ( 2 — )+ €082 (9 — 1))

i=3
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Congider the terms in the summation of (88). We have

0 = coa2miu;-+ cos 2w (@, — o) c0s 2wy —ay)
= (1 -+ CO82me; -+ o8 Inay) cO8 2ma; -+ (8in2maw, - sin2mwp, ) in 27, .

Whence by Cauchy’s inequality

0 < ((cos2mnm,)2 - (sin2may) 42 {(.. )24 (.. )
= (3 + 2 (08 2mi; + €082, 4 COS 27 (2 — m.,z)))”2 <1,

by (36). We now obtain from (38)
L<l?—4k+552(k—2) =k2—2k+1.
On the other hand from, (34) we have
L > (k-+1)— K.

These two inequalities taken together imply K > 4k, which iz contrary
to hypothesis. We have shown that (34) implies |z,—m|=C 4 for 1-<4
< i<k
2
Now cosf < 1— (—2) 02 for —wm<< 0w, 50 (34) implies

T
i
2 D(1—8a})+2 } (L—8(w;— )% > (h+1)2~ (k+1)— K,
im1 i<t : o

which reduces to (33).

CoROLLARY. The region & where 0 < I < 4k, 48 contained in the cube
12 < H (1< i< k) provided
(39) H2> K[3(k+1).

Proof. By Lemma 2, (31) and the remark following (31).

5. The geometric interpretation. From the two lemmas of §4 it is
clear that we onght to take our distance function F o be the one corres-
ponding to the quadratio form which appears in (30) and (33). On the
other hand by retaining the distance function

Fx) = Max |2,
1=k
of (14) we shall only lose a little on the constants in the final result and
we are not bothering about the constants anyway. Thuz we shall not
uge the full strength of Lemmas 1 and 2 but merely the corollaries.
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The conjugates of o are

(*na,l) ('rmk)
1+4e +...-te
¢ q

where (n,q) = 1. If

na; =n;(modg) (L<i<k),

where |n; < 1q, we shall eall (n/g, ..., 5;/q) the peiat corresponding
to the n-th conjugate of a. Each point corresponding to a conjugate of o
is a generating point of A over M, and conversely.

We now state as two lemmas, for convenience of reference, the
deductions from the corollaries of § 4 which are relevant to the problem.

Leyma 3. If F(a) < H for some generating point of A over M then
ol > (k1)1 —2=2 (k4 1) 2

Proof. Take K = 2=3(k+1)H? in (28). Then by hypothssis and
Lemmsa 1 Corollary there is & point corresponding to a conjugate of «
which lies in the region #. _

LevMA 4. If Flae) > H (0 < H < 1) for all generating points of A
over M then

[e'< (B+1)2—8(k+1) H2,

Proof. Take K = 8(k-{1)H? m {28). Then by hypothesis and
Lemms 2 Corollary every point which corresponds to a conjugate of «
lies outside the region .

6. Proof of Theorem 2. If A} = M) then 1< r < & where » = dim W7,
and conclusion (A) follows from the definition of A}. Conclusion (B)
and the final statement of the enunciation follow immediately from [2]
Theorem 3. Also by [2] Theorem 1, we have

¥(x)>1/D
for every point x which generates A over M. Hence by Lemma 4 with
H = 1/D (s0 we require D > 2) we have
[af < (k+1)*—8(k+1) D"
which iz (26).

 The other possibility is Ap =
we have

(40) F(x) < elk, &) D7+

5. In this case by [2] Theorem 2,

for some generating point & of A over M. By Lemma 3 with
H = ¢k, ) D711
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this means that
Tal' > (k+1)2—o(k, £) D~
whieh i (27).
7. A remark on the Corollary to Theorem 2. One should perhaps
remark that the hypothesis that every prime p which divides ¢ satisties

2 > ¢(k)D"' enables one to eliminate the ¢ dependence of (27) and
replace it by

(41) [aff > (k4+1)2—e(k) D2

To prove. this we must consider the proof of [2] Theorem 2. We wsed
there the fact that :

»(n)
(42) glmy <2 ¢
p(n)

applied to divisors of q. On our new hypothegis we can give an improved
estimate for g(n).

LeMmA 5. If every prime p which divides n satisfies p > T > 1. then

e(e)n’

9'(%) < %(105‘2—1*2)‘1‘),'1031"
so that

(43) g(n) < n®8T (T > 9),

Proof. We use the first estimate for g(n) in (42). Our hyypothesiy
clearly implies

(44) . y(n) < lognjlogT.

Yor each prime pln we have

2 2
— 21+ —) <2 (1 _) == QOB IHUTN 2 9 UT
(1-1/p) ( ? + T

Whence from (42)
gln) < (2 < 0BT 0B

by (44). This proves the lemma.
If we now return to the proof of [2] Theorem 2, and wuse (43} with
T = e(k).D*¥' {0 obtain the upper bounds for the [ty], 'we see that the &
dependence of the first constant of [2] (36) vanishes and we can put
qa — QE/IOB'T
and

a2 __ . 2flogT
T; == Ty .
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To estimate the terms zj4;,, we write

Tidigr < Ai+1(c(k) #yves .”r:w-i)mogiﬂ < o(k) Aga (e - [T s
and then carry on as befors. The final result is now
(45) F () < o(k) D~ VHE-2/0eT

where T = o(k)D*'. The error term in (43) is

2(k—1) -
(k—1)z/log " _ <ot
Dl = &P [(IOgD) ((k— 1)log D+ 0(70))] =

Hence (45) asserts
(46) F(x) < e(k)D.

We now use (46) ingtead of (40) in the proof of Theorem 2. To sum
up we have

TasorREM 3. Let ¢ be a sum of k-1 roots of unily given by (20). Let
D>1 be any given real number. If g > c(k)D* and every prime p which
divides g satisfies p > ¢(k)D*! then

[al > (h+1)2—c(k) D,
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