G. Shimura, On the theory of automorphic functions, Ann. of Math. 70 (1959), pp. 101-144.

[21] O. Zariski, An introduction to the theory of algebraic surfaces, Springer Lecture Notes, No. 68, p. 67.

Received on 25, 10, 1969; Revised on 25, 1, 1971

Cyclic overlattices, II

(Diophantine approximation and sums of roots of unity)

by

A. J. Jones (Cambridge)

In memory of Professor H. Davenport

1. Introduction. In this paper I shall examine some consequences of three theorems on the Geometry of Numbers which were proved in an earlier paper ([2]). The notation and terminology of that paper will be assumed, often without special comment.

In 1967 Davenport and Schinzel ([1]) considered the following question. Given integers a_1, \ldots, a_k, q with

$$(a_1,\ldots,a_k,q)=1,$$

can we find an integer n with

$$(2) (n,q) = 1$$

for which

$$\max_{1 \le i \le k} ||na_i/q|| < \delta.$$

Here it is to be understood that δ is a fixed positive number $(0 < \delta < 1/2)$ and that q is large. If the condition (2) were replaced by $n \not\equiv 0 \pmod{q}$ the answer would be affirmative, and by Dirichlet's theorem on Diophantine approximation it would suffice if $q \ge \delta^{-k}$. As they observed the answer to the above question cannot, however, be unconditionally affirmative. For suppose there is a linear relation

$$(4) h_1 a_1 + \ldots + h_k a_k = hq,$$

in which $h \neq 0$ and

$$(b_1, \ldots, b_k, h) = 1,$$

(6)
$$(h_1, \ldots, h_k) > 1,$$

and

and
$$\sum_{i=1}^k |h_i| < \delta^{-1}.$$

Then there is no solution of (2) and (3). For if

$$d=(h_1,\ldots,h_k), \quad h_i=dh'_i \quad (1\leqslant i\leqslant k),$$

then (d, h) = 1 by (5) and d(q) by (4). Now

$$||n(h_1'a_1+\ldots+h_k'a_k)/q|| = ||nh/d|| > d^{-1},$$

since (n, d) = 1 by (2). Hence

$$|h_1'| ||na_1/q|| + \ldots + |h_k'| ||na_k/q|| > d^{-1}$$

which by virtue of (7) contradicts (3). (This whole statement is in fact a somewhat weaker version of [2] Theorem 1.)

In their paper Davenport and Schinzel proved that in principle (that is, apart from the particular function of δ and, if we wish, k on the right of (7)), the non-existence of a linear relation of the above kind is in fact sufficient for the solubility of (2) and (3). To be explicit they proved

THEOREM. Let a_1, \ldots, a_k, q be integers satisfying (1). Suppose that for every integer n with (n, q) = 1 we have

(8)
$$\max_{1 \le i \le k} \|na_i/q\| > \delta \quad (0 < \delta < \frac{1}{2}).$$

Then for all sufficiently large q (i.e. $q > q_0(k, \delta)$) there exist integers h_1, \ldots, h_k, h with $h \neq 0$ satisfying (4), (5) and (6) such that

(9)
$$\sum_{i=1}^{k} |h_i| \leqslant c(k) \, \delta^{-(k+1)} \left(\log (2 \, \delta)^{-k} \right)^{k+2}.$$

Returning to the notation of [2] we shall prove the following

THEOREM 1. Suppose F^* satisfies condition C and that for every point $x \in \Lambda$ which generates Λ over M we have

$$(10) F(x) > \delta.$$

Let k be the dimension of the space of \wedge and \wedge . Then, if $k \ge 3$, given any (small) $\varepsilon > 0$ there exists an integer $r, 1 \le r \le k$, and r linearly independent points z_1^*, \ldots, z_r^* of \wedge^* such that

(11)
$$F^*(z_i^*) \leqslant c(k, \varepsilon) \delta^{-(1+\varepsilon)} \qquad (1 \leqslant i \leqslant r).$$

Also there exists a point $z^* \in \Lambda^*$, primitive in Λ^* but not primitive in M^* , linearly dependent on z_1^*, \ldots, z_r^* and such that

(12)
$$F^*(z^*) \leqslant c(k, \varepsilon) \delta^{-(1+s)r}.$$

Furthermore if

(13)
$$[\Lambda: M] = q > c(k, \varepsilon) \delta^{-(1+\varepsilon)k}$$

then (11) and (12) hold for some r with $1 \le r \le k-1$.

Finally if k = 2 then (11), (12) and (13) hold with $\varepsilon = 0$ and constants which depend only on k.

It is perhaps worth stressing that the conclusions (11) and (12) hold for all q > 1 and not simply for all sufficiently large q.

To interpret this in terms of the Davenport-Schinzel theorem we take M to be the integer lattice in k dimensions and put

$$(14) F(\mathbf{x}) = \max_{1 \le i \le k} |x_i|$$

where $x = (x_1, ..., x_k)$ with respect to the standard basis. Then

(15)
$$F^*(\boldsymbol{x}^*) = \sum_{i=1}^k |x_i^*|,$$

where $x^* = (x_1^*, \ldots, x_k^*)$, and hence clearly satisfies condition C. Given integers a_1, \ldots, a_k, q which satisfy (1) we consider the lattice Λ generated by the point $a = (a_1/q, \ldots, a_k/q)$ and M. The hypothesis (10) is then precisely the assertion of (8). Moreover Λ^* is now the set of integer points (h_1, \ldots, h_k) which satisfy

$$h_1 a_1 + \ldots + h_k a_k = hq$$

for some integer h. Such a point is primitive in Λ^* if (5) holds and imprimitive in M^* if (6) holds (observe that (5) and (6) together imply $h \neq 0$, provided the point in question is not the origin).

We now see that Theorem 1 implies the Davenport-Schinzel theorem. If r=1 $(k \ge 3)$ the right-hand side of (9) is replaced by $e(k, \varepsilon) \delta^{-(1+\varepsilon)}$ and if (as is the worst case, assuming (13) holds) r=k-1 we obtain the bound $e(k, \varepsilon) \delta^{-(k-1)(1+\varepsilon)}$, which is still an improvement over (9). However the theorem implies somewhat more, for although as r increases (12) gives a progressively worse bound for $F^*(z^*)$, this loss is compensated by an increasing number of well bounded, linearly independent, points of Λ^* given by (11).

In a second application of the theorems of [2] we shall consider what information can be extracted concerning sums of roots of unity (see § 3, Theorem 2). In particular we shall show that if

$$a = 1 + e\left(\frac{a_1}{q}\right) + \ldots + e\left(\frac{a_k}{q}\right) \quad (e(\theta) = e^{2\pi i \theta})$$

where $(a_1, \ldots, a_k, q) = 1$, is a sum of k+1 roots of unity, then by making all the prime factors of q sufficiently large we can make $|\overline{a}|(1)$ as near to k+1 as we please (see § 3, Theorem 2, Corollary or § 7, Theorem 3).

⁽i) We denote by $|\overline{a}|$ the maximum absolute value of any algebraic conjugate of a, including a itself.

2. Proof of Theorem 1. We first deal with the case $k \ge 3$.

In [2] Theorem 2, take $\varepsilon = \varepsilon_1 < 1/k$, and let $c_1(k, \varepsilon_1)$ be the corresponding constant in [2]–(27). We saw in [2]–§ 4 that condition C on F^* implies $V_F^{-1} \le c(k)$, hence the inequalities [2]–(27) and [2]–(28) certainly imply bounds on the right of the type $c_2(k, \varepsilon_1) D^{-1}$ and $c_3(k) D^{-1}$ respectively. We can (by increasing $c_2(k, \varepsilon_1)$ and $c_1(k, \varepsilon_1)$ if necessary) arrange that $c_1(k, \varepsilon_1) > 1$ and

$$(16) c_3(k) D^{-1} \leqslant c_2(k, \varepsilon_1) D^{-1} \leqslant c_1(k, \varepsilon_1) D^{-1+\varepsilon_1}$$

for all D > 1.

Now choose D > 1 so that

(17)
$$\delta = c_1(k, \varepsilon_1) D^{-1+\varepsilon_1}.$$

For this D, (10) and (16) provide a contradiction to the conclusion of [2] Theorem 2. Hence

$$\Lambda_D^* \neq \mathsf{M}_D^*,$$

which certainly implies that $1 \le r \le k$, where r is the dimension of W_D^* . Choose ε_1 (< 1/k) so that

$$\varepsilon = \varepsilon_1/(1-\varepsilon_1),$$

where ε is as in the enunciation. From (17) we have

(19)
$$D = c(k, \varepsilon) \delta^{-(1+\varepsilon)}.$$

The existence of linearly independent points $z_1^*, ..., z_r^*$ satisfying (11) now follows from (19) and the definition of W_D^* .

To obtain the point z^* of (12) we observe that (18) permits us to apply [2] Theorem 3, with the D given by (19). Hence [2] (37) implies

$$F^*(z^*) \leqslant c(k) \lceil c(k, \varepsilon) \delta^{-(1+\varepsilon)} \rceil^r \leqslant c(k, \varepsilon) \delta^{-(1+\varepsilon)r}$$

as required. Similarly to obtain (13) we use the final statement of [2] Theorem 3.

If k=2 then in [2] Theorem 2, only the inequalities [2] (28) and [2] (29) apply. This means that in (16) we may ignore the last inequality and putting $\varepsilon_1 = 1/(k+1)$ we may choose $c_2(k, \varepsilon_1) = c_2(k)$ so that $c_2(k) > 1$ and

$$c_1(k)D^{-1} \leqslant c_2(k)D^{-1}$$

for all D > 1. We now choose D so that

$$\delta = c_2(k)D^{-1}$$

and proceed as before. This concludes the proof of Theorem 1.

3. Sums of roots of unity. Let

(20)
$$\alpha = 1 + e\left(\frac{a_1}{q}\right) + \ldots + e\left(\frac{a_k}{q}\right)$$

where $(a_1, \ldots, a_k, q) = 1$. To apply the results of [2] we shall again take M to be the integer lattice in k dimensions and Λ to be the lattice generated by the point $\mathbf{a} = (a_1/q, \ldots, a_k/q)$, where a_1, \ldots, a_k and q are the integers of (20). The case k = 1 is trivial, from now on we always suppose $k \ge 2$. Our result is then

THEOREM 2. Let a be a sum of k+1 roots of unity given by (20) with associated lattice Λ . Let D>1 be any given real number. Then **either** (i) $\Lambda_D^* \neq \Lambda_D^*$ and the following conditions are satisfied:

(A) There are r ($1 \le r \le k$) linearly independent relations between the a_i which satisfy

$$(21) h_1 a_1 + \ldots + h_k a_k = hq,$$

$$(22) (h_1, \ldots, h_k, h) = 1$$

and

$$\sum_{i=1}^{k} |h_i| < D.$$

(B) There is a relation between the a_i which is linearly dependent on those of (A), satisfies (21), (22) and

$$(24) \qquad (h_1,\ldots,h_k) > 1,$$

(25)
$$\sum_{i=1}^{k} |h_i| \leqslant c(k) D^r.$$

(C) If
$$D > 2$$

(26)
$$\overline{|a|^2} \leqslant (k+1)^2 - 8(k+1)D^{-2};$$

or (ii)
$$\Lambda_D^* = M_D^*$$
, and

(27)
$$|a|^2 > (k+1)^2 - c(k, \varepsilon) D^{-2(1-\varepsilon)}$$

Furthermore if $q > c(k)D^k$ then in (i) we may take $1 \le r \le k-1$. We have the immediate

COROLLARY. If $q > c(k)D^k$ and every prime factor p of q satisfies $p > c(k)D^{k-1}$ then (27) holds.

7 - Acta Arithmetica XVIII

4. Two lemmas.

LEMMA 1. The region & in k dimensional space defined by

$$(28) |1 + e(x_1) + \ldots + e(x_k)|^2 > (k+1)^2 - K,$$

$$|x_i| \leqslant \frac{1}{2} \quad (1 \leqslant i \leqslant k),$$

where $0 < K < (k+1)^2$, contains the ellipsoid defined by

(30)
$$\sum_{i=1}^{k} x_i^2 + \sum_{i < j} (x_i - x_j)^2 < K/4\pi^2,$$

provided $0 < K \leq \frac{1}{2}\pi^2(k+1)$.

Proof. We may rewrite (28) as

$$k+1+\sum_{i=1}^{k}2\cos 2\pi x_{i}+\sum_{i\neq j}2\cos 2\pi (x_{i}-x_{j})>(k+1)^{2}-K.$$

Since $\cos \theta \ge 1 - \frac{1}{2}\theta^2$ for all real θ , this inequality will be satisfied if

$$\sum_{i=1}^{k} 2 \left(1 - 2\pi^2 x_i^2\right) + \sum_{i < j} 2 \left(1 - 2\pi^2 (x_i - x_j)^2\right) > (k+1)^2 - (k+1) - K,$$

which easily reduces to (30). Furthermore (30) implies $|x_{\nu}| \leq \frac{1}{2}$ ($1 \leq \nu \leq k$) since $K \leq \frac{1}{2}\pi^{2}(k+1)$. To see this consider the following chain of inequalities, where to avoid notational complications we take x_{1} to be a typical x_{ν} .

$$\begin{split} \sum_{i=1}^k x_i^2 + \sum_{i < j} (x_i - x_j)^2 &= x_1^2 + \sum_{i=2}^k x_i^2 + \sum_{j=2}^k (x_1 - x_j)^2 + \sum_{\substack{i < j \\ i \neq 1}} (x_i - x_j)^2 \\ \geqslant k x_1^2 - 2x_1 \sum_{j=2}^k x_j + 2 \sum_{j=2}^k x_j^2 \\ \geqslant \frac{(k+1)}{2} x_1^2 + \sum_{j=2}^k \left(\frac{x_1^2}{2} - 2x_1 x_j + 2x_j^2 \right) \\ &= \frac{(k+1)}{2} x_1^2 + \sum_{j=2}^k \left(\frac{x_1}{\sqrt{2}} - \sqrt{2}x_j \right)^2 \geqslant \frac{(k+1)}{2} x_1^2. \end{split}$$

Hence by symmetry

(31)
$$\sum_{i=1}^{k} x_i^2 + \sum_{i < j} (x_i - x_j)^2 \geqslant \frac{(k+1)}{2} x_i^2$$

for any ν (1 $\leq \nu \leq k$). Clearly equality occurs in (31) only if

$$x_i = x_{\nu}/2 \quad (1 \leqslant i \leqslant k, \ i \neq \nu).$$

From (30), (31) and $K \leq \frac{1}{2}\pi^2(k+1)$ we have $|x_{\nu}| \leq \frac{1}{2}$ ($1 \leq \nu \leq k$) as required.

COROLLARY. The region $\mathscr R$ contains the cube $|x_i| < H$ $(1 \leqslant i \leqslant k)$ provided

$$(32) H^2 \leqslant K/2\pi^2(k+1).$$

Proof. By Lemma 1 and (31).

LEMMA 2. The region & is contained in the ellipsoid defined by

(33)
$$\sum_{i=1}^{k} x_i^2 + \sum_{i < j} (x_i - x_j)^2 < K/16$$

provided $0 < K \leq 4k$.

Proof. As in Lemma 1 we write the inequality (28) as

(34)
$$k+1+\sum_{i=1}^{k}2\cos 2\pi x_{i}+\sum_{i< j}2\cos 2\pi (x_{i}-x_{j})>(k+1)^{2}-K.$$

The next step is to show that for K in the range $0 < K \le 4k$ (34) implies $|x_i - x_j| \le \frac{1}{2}$ for $1 \le i < j \le k$. If this is not the case then we may suppose, without loss of generality, that

Now

$$\cos 2\pi x_1 + \cos 2\pi x_2 + \cos 2\pi (x_1 - x_2) = 4\cos \pi (x_1 - x_2)\cos \pi x_1\cos \pi x_2 - 1.$$

By (35) and (29) with i=1,2 the first term in this last expression is negative. Hence

(36)
$$\cos 2\pi x_1 + \cos 2\pi x_2 + \cos 2\pi (x_1 - x_2) < -1.$$

Denote the left-hand side of (34) by L. Then using (36) we see that

(37)
$$L < (k+1) - 2 + \sum_{i=3}^{k} 2\cos 2\pi x_i + \sum_{\substack{i < j \\ (i,j) \neq (1,2)}} 2\cos 2\pi (x_i - x_j).$$

In the final summation of (37) replace each cosine for which $i \ge 3$ by its maximum (viz. unity). Then

$$\begin{split} \mathrm{L} < (k+1) - 2 + 2 \left[\frac{1}{2} k(k-1) - 1 - 2(k-2) \right] + \\ + 2 \sum_{j=3}^{k} \left(\cos 2\pi x_j + \cos 2\pi (x_1 - x_j) + \cos 2\pi (x_2 - x_j) \right), \end{split}$$

that is

(38)
$$L < k^2 - 4k + 5 + 2 \sum_{j=3}^{\kappa} (\cos 2\pi x_j + \cos 2\pi (x_1 - x_j) + \cos 2\pi (x_2 - x_j)).$$

Consider the terms in the summation of (38). We have

$$C = \cos 2\pi x_j + \cos 2\pi (x_1 - x_j) + \cos 2\pi (x_2 - x_j)$$

= $(1 + \cos 2\pi x_1 + \cos 2\pi x_2) \cos 2\pi x_j + (\sin 2\pi x_1 + \sin 2\pi x_2) \sin 2\pi x_j$.

Whence by Cauchy's inequality

$$C \leq ((\cos 2\pi x_j)^2 + (\sin 2\pi x_j)^2)^{1/2} ((\dots)^2 + (\dots)^2)^{1/2} \leq (3 + 2(\cos 2\pi x_1 + \cos 2\pi x_2 + \cos 2\pi (x_1 - x_2)))^{1/2} < 1,$$

by (36). We now obtain from (38)

$$L < k^2 - 4k + 5 + 2(k-2) = k^2 - 2k + 1.$$

On the other hand from (34) we have

$$L > (k+1)^2 - K$$
.

These two inequalities taken together imply K > 4k, which is contrary to hypothesis. We have shown that (34) implies $|x_i - x_j| \le \frac{1}{2}$ for $1 \le i < j \le k$.

Now
$$\cos \theta \leqslant 1 - \left(\frac{2}{\pi^2}\right)\theta^2$$
 for $-\pi \leqslant \theta \leqslant \pi$, so (34) implies

$$2\sum_{i=1}^{k}(1-8x_{i}^{2})+2\sum_{i< j}\left(1-8(x_{i}-x_{j})^{2}\right)>(k+1)^{2}-(k+1)-K,$$

which reduces to (33).

COROLLARY. The region $\mathscr R$ where $0 < K \leqslant 4k$, is contained in the cube $|x_i| < H \ (1 \leqslant i \leqslant k)$ provided

(39)
$$H^2 \geqslant K/8(k+1)$$
.

Proof. By Lemma 2, (31) and the remark following (31).

5. The geometric interpretation. From the two lemmas of $\S 4$ it is clear that we ought to take our distance function F to be the one corresponding to the quadratic form which appears in (30) and (33). On the other hand by retaining the distance function

$$F(x) = \max_{1 \leqslant i \leqslant k} |x_i|$$

of (14) we shall only lose a little on the constants in the final result and we are not bothering about the constants anyway. Thus we shall not use the full strength of Lemmas 1 and 2 but merely the corollaries.

The conjugates of a are

$$1+e\left(\frac{na_1}{q}\right)+\ldots+e\left(\frac{na_k}{q}\right)$$

where (n, q) = 1. If

$$na_i \equiv n_i \pmod{q}$$
 $(1 \leqslant i \leqslant k)$,

where $|n_i| \leq \frac{1}{2}q$, we shall call $(n_1/q, \ldots, n_k/q)$ the point corresponding to the n-th conjugate of α . Each point corresponding to a conjugate of α is a generating point of Λ over M, and conversely.

We now state as two lemmas, for convenience of reference, the deductions from the corollaries of § 4 which are relevant to the problem.

LEMMA 3. If F(x) < H for some generating point of Λ over M then

$$|a|^2 > (k+1)^2 - 2\pi^2(k+1)H^2.$$

Proof. Take $K = 2\pi^2(k+1)H^2$ in (28). Then by hypothesis and Lemma 1 Corollary there is a point corresponding to a conjugate of α which lies in the region \mathcal{R} .

Lemma 4. If F(x) > H $(0 < H < \frac{1}{2})$ for all generating points of Λ over M then

$$|\alpha|^2 \leq (k+1)^2 - 8(k+1)H^2$$
.

Proof. Take $K = 8(k+1)H^2$ in (28). Then by hypothesis and Lemma 2 Corollary every point which corresponds to a conjugate of α lies outside the region \mathcal{R} .

6. Proof of Theorem 2. If $\bigwedge_D^* \neq \bigwedge_D^*$ then $1 \leqslant r \leqslant k$ where $r = \dim W_D^*$ and conclusion (A) follows from the definition of \bigwedge_D^* . Conclusion (B) and the final statement of the enunciation follow immediately from [2] Theorem 3. Also by [2] Theorem 1, we have

for every point x which generates Λ over M. Hence by Lemma 4 with H = 1/D (so we require D > 2) we have

$$\overline{|\alpha|^2} \leqslant (k+1)^2 - 8(k+1)D^{-2}$$

which is (26)

The other possibility is $\Lambda_D^* = M_D^*$. In this case by [2] Theorem 2, we have

(40)
$$F(\boldsymbol{x}) < c(k, \varepsilon) D^{-1+\varepsilon}$$

for some generating point x of Λ over M. By Lemma 3 with

$$H = c(k, \varepsilon) D^{-1+\varepsilon}$$

this means that

$$\overline{|a|^2} > (k+1)^2 - e(k, \epsilon) D^{-2(1-\epsilon)}$$

which is (27).

7. A remark on the Corollary to Theorem 2. One should perhaps remark that the hypothesis that every prime p which divides q satisfies $p > e(k)D^{k-1}$ enables one to eliminate the ε dependence of (27) and replace it by

(41)
$$\overline{|\alpha|^2} > (k+1)^2 - c(k)D^{-2}.$$

To prove this we must consider the proof of [2] Theorem 2. We used there the fact that

$$g(n) < \frac{n2^{*(n)}}{\varphi(n)} \leqslant c(\varepsilon)n^{\varepsilon}$$

applied to divisors of q. On our new hypothesis we can give an improved estimate for g(n).

LEMMA 5. If every prime p which divides n satisfies p > T > 1, then

$$g(n) < n^{(\log 2 + 2/T)/\log T}$$

so that

$$q(n) < n^{2/\log T} \quad (T \geqslant 2).$$

Proof. We use the first estimate for g(n) in (42). Our hypothesis clearly implies

$$(44) v(n) < \log n / \log T.$$

For each prime p|n we have

$$\frac{2}{(1-1/p)} \leqslant 2\left(1+\frac{2}{p}\right) < 2\left(1+\frac{2}{T}\right) = 2e^{\log\left(1+2/T\right)} < 2e^{2/T}.$$

Whence from (42)

$$g(n) < (2e^{2/T})^{\nu(n)} < n^{(\log 2 + 2/T)/\log T}$$

by (44). This proves the lemma.

If we now return to the proof of [2] Theorem 2, and use (43) with $T = e(k)D^{k-1}$ to obtain the upper bounds for the $|u_i|$, we see that the ε dependence of the first constant of [2] (36) vanishes and we can put

$$q^s = q^{2/\log T}$$

 \mathbf{and}

$$\tau_i^s = \tau_i^{2/\log T}.$$

To estimate the terms $\tau_i^s \lambda_{i+1}$ we write

$$\tau_i^e \lambda_{i+1} \leqslant \lambda_{i+1} (c(k) \mu_1 \dots \mu_{k-i})^{2/\log T} \leqslant c(k) \lambda_{i+1} (\mu_1 \dots \mu_{k-i})^{2/\log T}$$

and then carry on as before. The final result is now

(45)
$$F(x) \leqslant c(k) D^{-1 + (k-1)2/\log T}$$

where $T = c(k)D^{k-1}$. The error term in (45) is

$$D^{(k-1)2/\log T} = \exp\left[(\log D)\left(\frac{2(k-1)}{(k-1)\log D + c(k)}\right)\right] \leqslant e^2.$$

Hence (45) asserts

$$(46) F(x) \leqslant c(k)D^{-1}.$$

We now use (46) instead of (40) in the proof of Theorem 2. To sum up we have

THEOREM 3. Let a be a sum of k+1 roots of unity given by (20). Let D > 1 be any given real number. If $q > c(k)D^k$ and every prime p which divides q satisfies $p > c(k)D^{k-1}$ then

$$|a|^2 > (k+1)^2 - o(k)D^{-2}$$
.

References

- [1] H. Davenport and A. Schinzel, Diophantine approximation and sums of roots of unity, Math. Ann. 169 (1967), pp. 118-135.
- [2] A. J. Jones, Cyclic overlattices, I, Acta Arith. 17 (1970), pp. 303-314.

TRINITY COLLEGE Cambridge, England

Received on 28, 10, 1969