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REMARKS ON THE AMBIGUITY OF DISTANCE DETERMINATION
IN FRIEDMANN’S COSMOLOGICAL MODEL

As we have mentioned in the introduction to [3], the distance between
two objects in Friedmann’s cosmological model is not uniquely determi-
ned by the angular and linear diameters.

An ante-meridiem observer, who works before the radius of world
reaches its maximum value, applying the method of linear and angular
diameters may obtain two numbers, only one of them is the real distance
(only under special circumstancies he is able to determine the distance
uniquely).

The post-meridiem observer, who works after the moment of the
maximum world radius, is sometimes in a similar position though, in
general, the method determines then four numbers, only one of them is
the real distance from the observer to the source (there is also possible
the case when one gets three such numbers). In order to explain it in
more detail let us introduce the notion of the observer’s antipode. This
notion is clear if it is understood geometrically, because the space in
which the observer is situated is a spherical one. However, we are inte-
rested in a somewhat different notion of an antipode in time. Suppose
that the observer received a light signal at a moment at which the world
radius was R,. The antipode of R, is, by definition, a world radius R,
such that the light signal emitted from the geometrical antipode of the
observer at the moment when the world radius was R, will be received
by the observer at the moment when the world radius will be R,.

As we have shown with Dulewicz in [1], R4 is an antipode of R,
if an only if:

1° R, is an ante-meridiem world radius;

2° R, is a post-meridiem world radius (for the definition see [3]);

3° B4+ R, = R,,
where R, denotes the maximum radius of the spherical world.

Let us note that if R, and the linear and angular diameters of an
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object are given then there exist (in some cases) two moments which pre-
cede the moment corresponding to R,, and two moments which follow
it, such that the light from the given object could be emitted at any of
these four moments. For some values of linear and angular diameters
such two pre-antipodal moments do not exist.

The above assertion is a corollary from an equation relating the
radius of the world at the moment of emission, the radius of the world
at the moment of reception and the linear diameter as well as the obser-
ved angular diameter of the object, and from a theorem on extrema of
funections, which will be formulated in the sequel.

The equation in question is obtained in an elementary way from
the well-known laws of relativistic optics and of spherical geometry [2].

Let f be a continuous function on the closure D of a bounded plane
domain D. We shall define the following notions.

Definition 1. A left point of D is a point whose abscissa is not
greater than the abscissa of any point in D.

Definition 2. A function ¢ on D is pseudo-increasing at x, from
the right side if there exists a sequence {z,} converging to «, and such
that z, > z, and ¢(z,) > ¢(a,) for each n (n =1,2,...).

Definition 3. A point (%,%) of D is a maximum left point with
respect to the function f if it is a left point of D and f(Z, %) > f(x, ¥)
for all left points (x,y) of D.

Since the set of all left points of D is compact and f is continuous,
we have

LeEMMA 1. There exists at least one maximum left point.

Now we shall prove the following:

LEMMA 2. If @ is a continuous function on [a, b] and ¢(z,) < ¢(x,),
and @(x;) = @(x,) for some x,, ,, 23 and x, such that a < v, < x, < 3 < 2,4
< b, then there exists an x such that x, < x < x,, and ¢ admits a weak lo-
cal maximum at x.

Proof. If ¢(x,) = ¢(x,) or ¢(2;) = ¢(x,) the assertion is obvious.
If ¢(x,) < @(x;) and ¢(x3) > ¢(x,) then the absolute maximum of ¢ in
[2,, #,] cannot be achieved at the endpoints x, and x,. It has to be achie-
ved at some inner point z (2, < < #;) and the absolute maximum in
[z, z,] is at least a local maximum in [a, b].

THEOREM. If f is a continuous function on the closure D of a plane
domain D and

(1) there do not exist weak local maxima of f in D;

(2) for each fixzed x,, belonging to the projection (a, b) of D onto axis
@, f(@,, y) admits an absolute mazimum at an inner point of D;
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(3) there exists a maximum left point of f in D, at which f is pseudo-
-increasing from the right side with respect to the variable z,
\ then the function F defined as follows

F(z) =m’~,axf(w) Y), Jfor we(a,d),
(a"’y)‘D

8 imcreasing in (a, b).

Proof. Note first that F is a continuous function and it does not
admit weak local maxima in (a, b). Otherwise there would exist a weak
local maximum of f in D, contrary to the assumption (1).

We shall show now that F neither admits weak local minima in
(a, b). Suppose, on the contrary, that there exists a weak local minimum
of F in (a,b), say at point z,. Hence there exists =, in (a, b) such that
vy < x, and F(x,) = F(x,).

Let (2,,y,) be a maximum left point of f at which the function f,
considered as a function of a single variable z, is pseudo-increasing.
Then there exists a point x, such that z, < x, and f(2;, ¥,) < f(25,9.),
and f(@;, ¥1) < F(x,).

From the definition of F and the maximum left point we have also
(@1, y1) = F(2,), so that finally F(2,) < F(w,).

Applying lemma 2 to the points z,, #,, #; and x,, defined above,
we conclude that F admits a weak local maximum in the open interval
(1, #;). Thus f admits a weak local maximum in D, which is a contradic-
tion to the previous statement.

Since F in (a, b) admits neither weak local minima nor weak local
maxima it has to be monotone. The function # cannot be decreasing since
F(x,) < F(w,). Thus it has to be increasing which ends the proof of the
theorem.

Remark. In practice we may apply a simple criterion for the verifi-
cation as to whether a function is a pseudo-increasing one by means of
the estimation of its derivative or the difference quotient. In order to
verify that f does not admit weak local minima it suffices to prove that
both partial derivatives of f do not equal to zero simultaneously. On the
other hand, the assumption that f is differentiable and both its partial
derivatives do not vanish simultaneously neither simplifies the formul-
ation of the theorem nor makes it easier to prove it. The assumption
of this kind implies the non-existence of a maximum of F, i.e. the
max maxf(x, y), but it does not imply the non-existence of a minimum
of F (there are examples of f and such points (z,y) in D at which f
admits minmaxf while the partial derivatives are not equal to zero
simultaneously).

4 — Zastosowania Matematyki 12.2
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If the linear diameter of an object is fixed, then the angular diameter
of the object depends on the distance between the object and the observer
and on the moment of observation or, what is equivalent, it depends on
the moment of emission of the signal. We shall not write this dependence
in its explicit form since the analytic representation of the function would
be different in many subcases which ought to be considered.

If we want to use the above theorem for the investigation of this
dependence we must first verify the assumptions (1), (2) and (3), which
is rather complicated and a purely calculatory problem [2]. However,
let us note the following situation, which is rather typical for many problems
concerning ambiguity of the distance. Function f, considered as a function
of only one variable 2 (the moment of emission), admits two local maxima
and therefore its inverse f~'! is in general a four-valued function. The
domain D may be docomposed into two domains D, and D, such that
flD;y i = 1,2, admits only one (local) maximum; let us denote them by

Fi(z) = max f(#,y) and F,(z) = max f(z,y).
(x, 'yz)ls Dy (=, y}le Dy

The projections of D, and D, into axis 2 coincide. Let (a,b) denote
this common projection and let ¢ be the middle point of (a, b).
Function F, is symmetric with respect to ¢, i.e.

Fy(c—v) = Fy(c+v) for [v|< (b—a)/2

Let us decompose the closure D, of the domain D, into D, and D;,
D, and D; being the domains lying over [a, ¢] and [¢, b], respectively.
Function f satisfies the assumptions (1), (2) and (3) in each of the domains
D, and D, and, moreover, F,(a) = F,(b).

According to the theorem both F;, and F', are increasing functions.
Hence the values of F, on (a,c] are greater than the values of #; on
[e, b). Since F, is symmetric with respect to ¢, the values of F, are greater
than the values of ¥, on the whole interval (a, ). Thus, for angular dia-
meters greater than F,(x) and less than F,(z), function f admits each
value between F,(x) and F,(r) exactly at two points belonging to the
domain D,. For the angular diameters less than F,(x) the function f
admits each value less than F,(z) exactly at two points of D, and exactly
at two points of D,.
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UWAGI 0 WIELOZNACZNOSCI WYZNACZANIA ODLEGLOSCI
W KOSMOLOGICZNYM MODELU FRIEDMANNA

STRESZCZENIE

Jak wspomniano we wstepie do poprzedniej pracy [3], odleglodé dwu obiektéw
w kosmologicznym modelu Friedmanna nie jest jednoznacznie wyznaczalna metods
Pomiaru frednicy katowej i liniowej danego obiektu. W niniejszej pracy pokazano,
%Ze — w zaleinofci od momentu obserwacji — mozZna otrzymaé dwie lub nawet czte-
ry rézne wartokci, z ktérych tylko jedna jest rzeczywista odleglofcig obiektu od

obserwatora.



