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QUEUEING SYSTEMS WITH FEEDBACK

1. One of the fundamental characteristics of a queueing system is
the stochastic process n(t) defined as the number of customers being
in the system at moment ¢. In some cases this process is a Markov process
and its investigation is relatively easy. If the process n(t) is mot a Mar-
kovian one, its “Markovization” is possible and is usually performed
by an appriopriate extension of the state of the system or by constructing
an appriopriate imbedded Markov chain. The method of state extension
which consists in forming a vector process whose one component is the
Process #(t) gives immediately the interesting characteristics of the process
n(t). The method of imbedded Markov chains gives the characteristics
of process n(t) in selected moments only, e.g., the system GI/M /N is
usually investigated in the arrival moments. Thus, by using this method,
the interesting characteristics of the process = () in continuous time may
be obtained only through additional effort.

Let us notice that the limiting probability distributions of the state
of the system immediately before arrival moments of the customers
may be used to find the characteristics of waiting times. Thus, the in-
vestigation of the state probability distributions of some imbedded Markov
chaing has some value also in these cases when the state probability
distribution in continuous time is known.

For any queueing systems, the mentioned relations between the
Probability distributions of the state of w(f) and the selected Markov
chains are known (Fabens [1], Foster [2], Foster and Perrera [3], Takacs
[8]). This paper presents a method of finding these relations by the use
of extended Markov processes. We illustrate it, applying this method to
queueing systems with feedback ([5]- [7 D- -

2. We consider now two queueing systems. First, let us conmder
the system GI/M /oo with feedback of service intensity and queue length.
We denote by G(x) the distribution function of interarrival time lengths,

T =f° xdQ (x),
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and by u, (» =1,2,...) the momentary service intensity (in all service
channels) under the condition that » units are in the system. The second
system considered will be the system M /G/N with feedback of arrival
intensity and queue length. Here we denote by H (x) the distribution
function of service time,

1 (o e]
fal f ©dH (v),

” 0

and by 4, (» = 0,1, ...) the momentary arrival intensity under the con-
dition that n units are in the system. We assume, in addition, that neces-
sary expected values exists, and that G(0+) = H(0+4) = 0.

THEOREM 1. Consider the sysiem GI|/M|oco with feedback of service
intensity and queue length. If X (t) demotes the time interval to the next
arrival, then the stochastic process (n @®,X (t)) 18 a Markov one. The statio-
nary state probabilities of this process

P,(x) =Pr(n(@) =n, X@t)<w), »=0,1,..., >0,
provided they ewxist, satisfy the following sysiem of differential equations:

(1) Py (@) — Py (0) + i Py (%) = 0,

P,(2) — Py(0) — 1y P (@) + G (@) Py (0) + o1 Pra(@) =0, n=1,2, ...

THEOREM 2. Let {S,} denote the sequence of arrival moments to the
system of Theorem 1 and let {n,} = {n(8S,—0)}. The sequence {n,} is a Markov
chain and the stationary state probabilities of this chain

p, =Pr(n, =n), n=0,1,...,
provided they exist, are equal to
A
Ppy1 = —DPny 1 =0,1,...,
(2) ﬂn"‘l
| o A
Do = 1—2 P s
Pt

n=0

where p, = Pr(n(t) =n) = P,(c0), n =0,1,...
COROLLARY 1. For the system GI|M [N (with waiting) we have

| wn=12,...,N,
o Np, =n=N+1,N+2,..,

thus
A

(n+1)u
Pry1 = 2

N_‘upn ’

Pny Nn=0,1,..., N—-1,
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In particular, for the system GI|M |1 we have u, = pu, » =1,2,...,
thus Py, = Ap, [u, » =0,1,...,p, = 1—A/u (Foster and Perrera [3]).
COROLLARY 2. For the system GI|M|N with losses, we have
| mu, m =1,2,...,N,
fon _{ o, mn=N+1,N42,...,
thus
2 -

= =0,1,..., N—1
Pri1 n+1) Pny, T gLy eeey ’

N-1 1
S
(Takécs [8], p. 182).
Proof of Theorem 1. The behaviour of the process (n(t), X (t))
depends after moment ¢ only on the state of this process at moment ¢;

thus it is a Markov process. Assume it to be stationary. An analysis of
the state of the system at moments ¢+ and ¢ leads easily to

Py(@) =Pr(n(t) =0, tr< X)) < aw+7)+
+utPr(n(t) =1, t < X() < 2+1)+0(7),
P,(#) = L—p,7)Pr(n(®) =n, i< X)) < x+7)+
+G(z)Pr(n(t) =n—1, X(t)< 1)+
+,L¢n+1'cPr(n(t) =n+l, 1< X(@)< w‘-l-'c)—l—o(t), n=1,2,...
From this it follows
Py(2) = Po(2+ 1) —Po(7) + p1 v [P1(#+ 7) — P1(7) ]+ 0(7),
P, (#) = 1 — po7) [Pr(@+7) — Pp(2) ]+ G(@) P,y (v) +
Flp 1T [ Ppp(@+7) =Py (v)]+0(r), n=1,2,...
After derivating and taking the limit for = — 0, we have
Py (%) — Py(0) + p1 P1 (%) = 0,
P (#) — P, (0) — 1, Py (#) + G (@) Pp_1 (0) + g1 Prya (@) =0, m=1,2,...

This completes the proof of Theorem 1.
Proof of Theorem 2. Let

(3)

P(@) = Pr(X(t) <a) = ) P,(a).

From system (1), after sidewise summation, we obtain

P'(x)—P'(0)+G(x)P'(0) =0
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and, since P(0) =0, P(o) =1, we have
(4) P(@) = A [ (L—G(w))du.

0

For # - oo, P,(x) = p, and P, (x) — 0. The last relation is obvious
because otherwise the probabilities P,(z) were unlimited. Taking the
limit for # — oo in system (1), we have '

—Py(0) + p1p;, = 0
_P;(O)_ﬂnpn‘f'P;z—l(O)+ﬂn+1pn+1 =0, n=1,2,..,
hence

(8) P;L(O) = Uny1Pni1y n=0,1,...

From (4) it follows

P,(0) = lim — 1 Pr(n(t) = n, X(t) < r)

= lim i Pr(X(t) < r)Pr(n(t) =n|X()< r)

}' T
=lim — | (1—@(u))duPr(n, = n) = ip;.
>0 T
0

This and (5) imply (2) which completes the proof of Theorem 2.

THEOREM 3. Consider the system M |G |N with feedback of arrival inten-
sity and queue length If, for m(t) >0, we denote by X,(t), ..., Xmin(nw,m(?)
the times necessary to finish the services of customers being served at moment t,
the stochastic process [n(t), X(t), ...y Xmin@me,a(@)] s a Markov one.

The stationary state probabilities of this process

P, = Pr(n(t) = 0),
Pn(wl‘, ...,ﬁmm(n,N)) = Pr('”;(t) = n, .X,,(t)<m,,, 7:=1,2’ ...,min(n, N)),
n=1,2,...,

satisfy, provided they exist, the following system of differential equations:

. 0
(6) —}*oPo‘l' P P1(0) =07
T
0 0
(7 Py (#,) + A H (%) Py + 2 — . Py(xy, 0) =0,
2

o, ' 0z,
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n ' -
Z—Pn(mli tey mn) A\J a n(mly oy $,'_1, 0,',$j+‘1,' ceey _mn)f’" -

— A Pr(@yy ..oy 2y)+ ZIZH(wj)Pn—l(ml"“7wj—1’wj+17“'7$n)+

=1
+(n+1)- Ppiy (@15 %,y 0) =0, n=2,3,..., N1,
0%y 41
ZN’ap(w ) N’ip(m %y, 0, @ ) —
. Om,- N\Wypy ey VN ',-=h_ 6.’13_,,- N\WLy eory Wj_19y Vy VjL1y ceoy N
N

A
N—1
2 (Bry e eey Bj_1y Bypry-ees By)+

— AnPr(@yy .o0y

+Z_H(w PN+1(¢17 ceey Ti_g,y Oy Zj119 000y By) = 0_,

N N
0 0 '
(10) ;_El Bw—jP”(w“ ooy BN)— ,-=§1 %Pn(mu_-:-;:'mi—1’ 0, @, 1900y @y)—
— AP (@15 ooy Bn) + 201 Py g (®1y .« y @)+

+2H($j) ’ n+1(w17't'?wj-—UQg»mH-l}"'7wN_) =0,
n=N+1,N+2,...

We present Theorem 3 without proof. Equations (6)-(8) are iden-
tical with those in Sevastyanov’s system, also the proof of (6)-(10) is
similar (see Gnedenko and Kovalenko [4], p. 386).

'THEOREM 4. Let {o,} be the sequence of momenis of service ends in
the system defined in Theorem 3 and {n,} = {n(c,—0)}. The stationary
state probabilities of this chain,

Py =Pr(n, =mn), n=1,2,...,
provided they exist, satisfy

(DL —po) Py, W= 0,1, N=1,

(11) I =
N(l po)upn+1, n=N,N+1,...,

where p, = Pr(n(?) —n) (00, +ey .00).
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COROLLARY 3. In the system M |G|N with limited queue length to
K — N places, we have

l’ %=0,1,...,K—1,

Ay =
0, n=K, K+41,...,
thus
Mpp_y
_ =1,2,...,N—-1, N
. n‘u(l_po)7 b b) ’ b ’
Prn = ap
—=r1  w=N+1,...,K.
Nl"(]-_po)’ S
In particular, we have in the system M |G|N with losses
A
P & S . n=1,2,..,N.

C mu(l—p,) 1—p,’

We used here the formula p, = Ap,_,/nu (Sevastyanov, see [4],
p. 382).
COROLLARY 4. In the system M |G/[1 (withoul losses) we have

* Mr_y

_—— =1 2 vee
P w(L—po) Prn-1y, N )4y

(Foster [2]).
Proof of Theorem 4. First, we shall prove that

(12)  P(@) =Pr(X,()<a) = po+1—pop [ (1—H(u)du.

It is easy to verify, by substitution into (6)-(7), that

(13)  Paldny e @) = pp 2 [J f ’ (1—H@w)du,
n=12,...,N.
Introducing the functions
P,(#) =Pr(n(t) =n, X,(t)< ) = P,(, o,..., ),
we may write
(14) P, (#)—P,(0)(1—H(x)) =0, = =1,2,...,,N—L1.

Substitution of #, =, ¥; = oo for j =2,3,..., into (9) and (10)
leads to

0
Py(z,0)— Ay Py () +

(15)  Py(x)—Py(0)— (N —1) e
2



Queueing systems with feedback 379

+ 1}" [H (%) Py_,(00) + (N —1)Py_,(#)]+ H (@) Ply,1(0) +

@1 - Pyia(0,0) =0,
(16)  Py(a)—Py(0)— (N —1) - - Pa(0,0) = A Pa(@) haaPaa @)+

, 0
+H(m)Pn+1(0)-l—(N—l)%—PnH(m, 0)=0, n»=N+1,N+2,...
2
Obviously,
P(z) = Pr(X,(t) < @) = D) P,(2);
n=1
thus summation of (14), (15) and (16) gives
P'(z)—P'(0)(1 — H () +

AN_

[(N—l (00)— (N —1) Py _, (@) —

—PN(O)H(w)] -

From (13) it follows that the expression in the square brackets equals
zero, hence we obtain the differential equation P’(») = P’(0)(1L—H (w)),
which is solved under the conditions P(0) = 0, P(04) = p,, P(oc0) = 1.
We have

P(@) = po+(1—po)pu [ (1—H(u)du,

which completes the proof of (12).
Taking in (6)-(10) the limit for x; - o0, j =1,2,..., and using
the fact that
%Pn(mu very Bi_1y 0y W54, eey) —>P;%(0)
and

0
%—P,,(wl, ceey @) >0

i
for every j, we obtain the following system of equations:
— Aopo+P1(0) = 0,
—’I’GP;,,(O) ~ npn_l'}'n 1Pn- 1+(%+1) n+1(0) = 0 " = 1’ 2’7 ""N—I-’
_'NP'n(O)_ npn+ln—1pn—1+NPn+1(0) =07 n =N,N+1,..
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Hence

[ (b 4+D)PLL(0), w=0,1,..., N1,
| NP0, n=DN,N+1,...
From (12) it follows that

(17) APy

, 1 o
P,(0) = lim —Pr(n(t) =n, X,(6)< 00, ..., X;_,(t) < oo,

-0 T

| X;(0) < 7y Xjua(t) < 00 wory Xot) < o0)
=limiPr(0 <X,()<7)Pr(n() =n|X,0¢) <7, X @) < o0,...)

-0 T
= (1 —Po) #Py-
This completes the proof of Theorem 4.

3. In the system defined by Theorem 3 we have an immediate feed-
back of arrival intensity and queue length. Assuming that the arrival
intensity at moment ¢ depends upon the state of the system at moment
t—7, one has the case of feedback with constant delay z. Assume now
that in the system with immediate feedback of arrival intensity and
queue length every customer before entering the system must undergo
a quarantine, the time of which is a random variable with the distri-
bution K (x). Such a system (without the quarantine) is called a sysiem
with delayed feedback of arrival imtensity and queue length [7]. As before,
let n(t) denote the number of customers being in the system at moment -
¢ and let m(f) denote the number of customers being in quarantine at
moment ¢. The.system M/M/1 has been considered in [7] under the
assumption that the time of being in quarantine is exponentially
distributed, K (#) =1 —exp(—»x). The stochastic process (m(t), n(t)) is
then a Markov process, and the stationary state probabilities of this.
process, '

P = Pr(m(@) =m, n(t) =n), m,n=0,1,...,
provided they exist, satisfy the following system of linear equations:
— APo,0+ 1Py, = 0,
—(lo‘*"m'"’)Pm,o+.“Pm,1+}~o?m—1,o =0,
(18) ~ (A ) Bon + BP0 1+ 9Prn = 0,
= (n+ 19 + 1) P, WP, i1+ (M +1) 9Py 1, n 1+ A Prnrn = 05
' m,m=1,2,...

THEOREM 5. Consider the system M|M|[1 with -delayed feedbdck' of
arrival intensity and queue length, where the delay. time. is distributed as
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K (x). If, for m(t) > 0, we denote by X,(1), ..., Xp(t) the times necessary
to end the quarantines the customers being there at moment i, the stochastic
process [m(t), n(t), X1();...) Xpy(t)] ts a Markov one. The stationary

state probabilities of this process,

Py, =Pr(m(t) =0, n(t) =n),

Prpn(@yyoovy @) = Prm(t) = m,n@t) =n, X,(t) < @y, ..., Xpu(1) < @),

m=1,2,..., n=0,1,

satisfy, provided they ewist, the system of equations

9 ,
- (ln‘i'ﬂ')Po,n‘*‘ bw_ Pl,n—l(O) +.“Po,n+1 =0,
. 1 .

9w,

0 .
+ A Py K (%) +2 ™ Py 1(®15 0) + Py i (@) = 0,

2

d
A Pl,n(ml) -

P) Pl,n(o)_(}'n+(1_60,n)#)Pl,n(w1)+
Ty

m

ceey

N 0 v 0 X
(19) Zggpm,n(mlf seey wm) '—Z a_me,n(wn ceey Tj_q, 09 Bit1y ey mn) -
=1 i

=1

- (2%—]' (1— 60,n)/‘)Pm,n(w17 ) Xp) +

PR
+ W Z-Pm—l,n($17 ey Ty_1y Tjqy oeey mm)K(wj)+
=1 '

+(m +1)

Pm—{-l,n—l(wl? cooy Ty 0)+P‘Pm,n+1(w17 cory @) = 0.
m+1

The proof of this theorem is similar to those of Theorems 1 and 3.

THEOREM 6. Consider the system M |M[1 with delayed feedback of

arrival intensity and queue length under the assumption that the quarantine
times are exponentially distributed with parameter v. If {8,} are the arrival
moments of customers at service (the moments of ending the quarantine)
and ’&f {(mH /n’r)} = {(M(Sr— 0)7 n(Sr_O))}7 a’%dp;z,n = Pr(mr =m,n = n)

we have

(20) P = Lmn
1—p,.

where p,, , are given by system (18), and p, = X P, .
. . n=0

m=1,2,..., n=0,1,...,

Proof. For #; > o, j =1,2,..., we have

A m,n(wl’ "'2wm) g 07
3.’1},- .
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thus, taking the limit in system (19) leads to (),

(21) _mP;z,n(O)—(ln'{'/‘)Pm,n"l'lnP —,nt
+(m+1)P;n+l,n(0)+.qu,n+1 =07 m,n =1727°'°7

where

’ .
Py n(0) = lLim N P @yyeeey®_1,0,05,0, .00, Bp).
x>0 0T

zm—mo

From the assumption K(») =1—e " it follows that

m
Pm,n(wh veey a’m) = pm,nn(l_e_nj)y
j=1
since such a substitution transforms system (19) into system (18). Hence

' .1
P, »(0) =lim—P,(7, oo, ..., 00)

7—0

= HmPr(0 < X,(}) < 7) Pr(m(t) = m,n(t) =n|0< X,() < 1)

>0
= (l—po.)vPr(m, =Mm,Nn, =n) = (l_po.)vp;z,n)
which completes the proof of Theorem 6.

THEOREM 7. Consider the system M [G[1 with delayed feedback of
arrival intensity and queue length, where the quarantine times are exponen-
tially distributed with parameter v. If we denote for n(t) > 0 by X (&) the
time necessary to end the service of a customer being in service at moment t,
the stochastic process (m(t), n(t), X (t)) 18 @ Markov process. The stationary
state probabilities of this process,

P, =Pr(m(t) =m, n() =0,
P, .@) =Pr(m@)=m,nt) =2, X@)<x), m=0,1,...,n=1,2,...,
satisfy, provided they exist, the system of differential equations
(22) — (mv+ A0) Py o+ 2o P10 +P;n,1 =0,
P;n,l(w) _P':n,l(o) — (my + A1) Py 1 (0) + A1 P11 (®) +
+ (M +1)9Pyy 11,0(@) H(®) + Ppy 2 (0) H(2) = 0,
Py, (@) = Pry, 0, (0) — (109 + 2y) Py 0 (®) + A Py, () +
+(m +1)9Ppy1,0-1(2) + Prn w11 (0) H(x) =0,
m=0,1,..., n =2,3,...,
where P_,, =P_, ,(®) =0, n =1,2,...

(1) We limit ourselves to presenting the equations for m,n =1,2,... and
we do not present the boundary equations for m = 0 or » = 0.
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We omit the proof of Theorem 7.

THEOREM 8. Let {0,} be the sequence of the moments of finishing the
services of customers in the system defined in Theorem 7 and let {(m,, n,)}
= {(m(s,—0), n(c,—0))}. The sequence {(m,,n,)} is a Markov chain and
the statwnary probabzhn’es of this chain,

P, =Pr(m, =m,n, =n), mn=0,1,...,
provided they exist, satisfy the system of equations
(28) ~(A—P)uPp—(my+21,)Ppn+t 2, Pp_yn+
+(m+1)9Pp iy ny+ (L —P o) P pyy =0,
where P, =Pr(m@) =m, nt) =n, X(#) < oo) =P, (), and P,
~ $».,

Proof. Let

oo

Px) =Pr0< X(t)<a) = 2‘ Z‘Pm,,,(m).

m=0 n=1

Summarize of the equations of (22) gives

[o o N <]

Po)=1—H@)[ Y D Pral0) +vaPmo]—0

m=0 n=2

and, since P(0) = 0, P(>o) =1—P,, we have

T

P(@) = (1—Po)p[ (1—H(w)du.
0
For 2 — oo, P, ,(#) >0, thus, taking the hmlt in system (22),
we obtain
P;n,n(o) - (mv—l— ln)-Pm,n'l' }*an—l,n'l' ('m‘+1)va+l,n—l +P;n,n+l(0) = 07

where

Pppn(0)=lim — -P'm 2(7)

—0

— lim— Pr(0< X (1) < 1) Pr(m(t) =m, n(t) =n]0< X(t)< 1)

=0 T
- This completes the proof of Theorem 8.
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COROLLARY 5. In the system M [M [1 with delayed feedback of arrival
intensity and queue length, where the quarantine times are expomentially
distributed with parameter », |

(24) pm,n=(1_p.o)P;z,m m=0717"-7'”'=1’27°“7
where p,, , are gi'ben in the system of equations (18) and where py = D) Py -
m=0
Actually, under the assumption of Corollary 5 the probabilities
P,.. are equal to probabilities p,,, given in system (18), also systems

(18) and (23) are equivalent. Equations (24) follow immediately from this.
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SYSTEMY OBSLUGI MASOWE] ZE SPRZEZENIEM ZWROTNYM

STRESZCZENIE

Praca poswiecona jest relacjom miedzy stacjonarnymi rozkladami prawdo-
podobienstwa liczby jednostek w systemie, rozpatrywanej w czasie ciaglym, i stacjo- -
narnymi rozkladami prawdopodobierstwa odpowiednio wybranych wlozonych lan-
cuchéw stochastycznych. Rozpatrzono w niej trzy systemy obslugi masowej: 1° system
GI|M | ze sprzezeniem intensywnosei obslugi z dlugoécia kolejki, w ktérym wlozony
lancuch (Markowa) zdefiniowano jako stan systemu bezposrednio przed momentami
zglonzen jednostek do systemu; 2° system M/G|/N ze sprzezeniem intensywnosci
zgloszent z dlugoécig kolejki, w ktérym wlozony lancuch zdefiniowano jako stan
gsystemu bezpodrednio przed momentami zakonczenia obstugi; 3° system M/M/1
z opéinionym sprzezeniem intensywnosci zgloszern z dlugodcia kolejki, w ktérym
wzigto pod uwage oba tu zdefiniowane wlozone lancuchy stocha,styczne.



