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ON THE SIMILARITY OF SETS

1. Introduction. In various practical questions we have to determine
the similarity of sets. Botanists, for instance, regard as similar such plant
complexes which differ insignificantly in their species. We may ask about
the similarity of those plant complexes or, in general, about the similarity
of two sets. Many authors tried to define similarity of sets. It is convenient,
investigating properties of the similarity of sets, to introduce the distance
of sets defined by the formula

(1) o(A,B) =1—s,

where s denotes the similarity of the sets 4 and B.

In this paper we give a necessary and sufficient condition for the set
B to lie between the sets 4 and C in the sense of triangle inequality and
the analogous condition for the function g to lie between functions f and .
The question concerning these conditions has been raised in paper [1].
It is interesting from the view, point of applications, e.g. to biology,
where the fact that the set B lies between the sets A4 and C can mean
for instance the way of evolution of plant complexes A, B and C.

2. Properties of the similarity index of sets of Marczewski and Stein-
haus. Marczewski and Steinhaus [1] investigated the similarity index

9 w
(2) $ = atb— o’

of the sets 4 and B, where o denotes the number of elements common
to the sets A and B, and ¢ and b are the numbers of elements of the sets
A and B, respectively. Let m(E) be the number of elements of the set E.
In view of (1) and (2) the distance of the sets A and B is then equal to

A—B
(3) o(4, B) Z%U—B))’



154 D.Czerwinska

where - denotes the symmetric difference. Since g is a metrie, the triangle
inequality

(4) e(4, B)+e(B,C) = e(4, C)

is satisfied.

Let us assume that to every element A there corresponds on the
plane a unit area. The sets 4, B and C divide the plane into atoms which
will be denoted by the Greek letters (cf. Fig. 1).

Fig. 1
Moreover, let us write: a+a =a, 48" =0b, y+y =c.

LeEMMA. Condition (4) 48 equivalent to the imequality

(5) P+Qé+Ré*>=p+qd+rd,

where
P = (a+b)(b+c)(a+e)+2(a+b)(b+c)f+(atb)ef+(b+c)py,
Q =2(a+d)(b+c)+(a+d)(at+p)+(+e)(B+Y),

R =a+2b+c,

P =(a+c)ay,

g =(ato)(aty),
r=a-tc.

Proof of this lemma may be found in paper [1].
As the criterion of the lying the set B between the sets A and C let
us assume that the triangle inequality holds.

THEOREM 1. If 6> 0, then
e(4, B)+¢(B, () = o(4,C)
ifand only if 8 =0, " =0 and 1° @’ = 0 and a = O either 2° o' = 0 and
Y =00r 3y =0and y =0.

Proof. Sufficiency. Immediate by substituting in (4) the cor-
responding values.
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Necessity. By the lemma, instead of (4) we can take inequality
(5) in another form:
(6) (R—7r)0*+(Q—q)6+P—p=0.

Note that R>r, @ > q and P > p (ef. [1]). If in (6) the equality
holds, then the equalities

(7) R =r, 8) @ =g, (9 P=p

are satisfied. Equality (7) implies

(10) B=0 and p =0.
From (8) and (10) it follows that
(11) ay’ =0 and o'y =0 and o'y = 0.

Condition (11) is equivalent to

(12) (¢’ =0and a =0)or (¢’ =0and y =0) or (y' =0 and y = 0).
(a=0vy =0A(d =0V 9y =0A(a=0Vvy=0)
=[(d=0Aa=0)v(e=0Aad"=0Ayp=0)]v(y=0Aad =0)V
V' =0Ay=0=("=0Aa=0)v(a =0Ay =0)vV
Vi =0Ay =0).

Thus, in view of (7) and (8), we obtained the condition contained
in the thesis of the theorem. It is easy to see that condition (9) gives
nothing new, which completes the proof of Theorem 1.

Fig. 2 shows cases 1° 2° and 3° of Theorem 1.

A=B A “ A
B=AvC X &>
c C' 8=c

Fig. 2

If the fact that the set B is lying between A and C in the sense of the
triangle inequality will be interpreted as the way of evolution of plant
complexes A, B and C, then condition (10) is obvious (cf. Figs. 2 and 3).
Unfortunately, this condition is not sufficient that the equality holds
in (4). There are several cases where condition (10) is satisfied although

2 — Zastos. Matem. 13.2
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the equality in (4) does not hold. In Fig. 3 some of these cases are shown
(the stroken set B).

THEOREM 2. If § = 0, then the equality in (4) holds if and only if B
=0, =0and 1° a>0 and (¢’ =0 and ' =0) or (y =0 and y' =0))
or 2°y>0 and (¢’ =0 and ' =0) or (a =0 and o' = 0)).

A \\\\ c A

Fig. 3

Proof. Sufficiency follows the same lines as for Theorem 1.
Necessity. Condition (4) takes on the form

ata +g+4 B+B'+y+yv ata +y+y
atad +B+f +y+8  pApH+y+y tatd T ata +y+y +p+8]

where the Greek letters denote the atoms from Fig. 1. Obviously, the
denominators in this formula are greater than zero.
Since 6 = 0, we have

(13) a+b+y>0, b+e+a>0, a+c+pg>0.

Instead of condition (4) we can consider condition (5). Hence in
(4) the equality holds if condition (9) and three inequalities (13) are simul-
taneously satisfied.

Equality (9) implies that § = 0. From (9) again and from the in-
equality a+4¢ > 0 it follows that

a(f'+7)+y(@ +8) -+ +)a +5) =0,
which implies that 8’ = 0. We have thus inferred that § =0, ' =0
and ay’+a’y+a’y’ =0 with a4y > 0 and a-+¢> 0, which completes
the proof of Theorem 2.

It easily seen that Theorems 1 and 2 can be written in the form of
the following theorem (cf. Fig. 2):

THEOREM 3. The equality in condition (4) holds if and only if A = B
either B =C or B =4 v (.

3. Another properties of the similarity index of sets. Measure m used
in Section 2 may be generalized to any abstract measure defined on
subsets of a space X. Let two functions f and g be defined on X. The
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distance of functions f and ¢ is definde by the formula

[1f—gldm
fmax([fl, Igl, If—gl)dm

In particular, if f and ¢ are non-negative, formula (14) can be reduced to

[If—gldm
fmax(|f], lgl)dm’

(14) en(fs 9) =

(15) enlf; 9) =

The distance of sets, defined by formula (3), may be regarded as
the distance (15) of characteristic functions of those sets,

om(4, B) = om(Xas XB))

where y, and x5 are characteristic functions of the sets A and B, respec-
tively. But the distance (14) of functions may be regarded as the distance
(3) of some sets, i.e.

Qm(fr =0 Cfa c )

where C, and C, are the sets of points lying between the diagrams of
functions f and g, respectively, and the X-axis, whereas » is a measure
in the sense of simple product of Lebesgue measure and measure m. The
presentation of full analogy between the metric spaces (M,, o) and
(ZLms o) Where M, is the family of subsets A of a space X such that
m(A) < oo and £, is the class of all m-integrable real functions defined
on X, may be found in [2].

In Section 2 we have considered the cases where the equality in
triangle condition holds for sets. For functions, as the analogue to Theorem
3, we have the following

THEOREM 4. In the triangle inequality

(4) on(fy 9)+ 0mlg, h) = on(f, b

the equality holds if and only if 1° f = g — m almost everywhere either 2
g = h—m almost everywhere or 3° g(x) = sgnf(x) max(]f( My 1R ( m)]) for
almost every x and the functions f and h are of the same sign.

We assume the criterion that the function ¢ lies between f and &
if there holds the equality in condition (4’) with definition (14) of the
distance. If § = 0 and g’ = 0, then the function g lies between f and &
In the usual meaning, i.e.

f@ <g@) <h@ or hz)<g@) <fl@)

We see that the fact that function g lies between f and % in the usual
Ineaning is not a sufficient condition for the equality in (4’) with the
distance defined by (14), but it is only a necessary one.
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The following example shows an interpretation of the distance of
sets for plant complexes. Let m, as previously, denote the number of ele-
ments of a set, i.e. the number of species in the given plant complex.
Let f and g characterize numerically two forests with respect to 5 species
of trees. In the first forest every 10 trees contain: 4 pines, 2 oaks, 3 birches
and 1 alder; in the second forest: 2 oaks, 1 birch, 2 alders and 5 spruces
(the data are taken from paper [1]). The following table contains these
values and gives the intermediate results:

pine oak birch alder spruce 0
[
f 4 2 3 1 0
g 0 2 1 2 5
If—gl 4 0 2 1 5 12
max (|fl, |g]) 4 2 3 2 5 16

Thus we have o(f,g) = 12/16 = 0,75.
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CZERWINSK A (Wroclaw)

0 PODOBIENSTWIE ZBIOROW

STRESZCZENIE

W pracy podaje si¢ warunek konieczny i dostateczny na to, aby w niecréwnosei tréj-
kata, dla odleglosci zbioréw zdefiniowanej wzorem (3), byla speliona réwnoéé. Wa-
runek ten moze stuzyé do definiowania wlasnoéci lezenia zbioru miedzy dwoma inny-
mi zbiorami [1]. Poniewaz jest analogia miedzy przestrzenia (M, ) zbioréw miary
m-skoficzonej z odlegloScia zbioréw (3) i przestrzenia (ZLm, op) funkeji m-calkowal-
nych z odleglosciag (14), wiee podano réwniez warunck konieczny i dostateczny na
to, aby nieréwno$¢ tréjkata dla odlegloéci funkeji byla réwnoécia.



