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1. Introduction. Let us consider a network system which consists
of N service facilities or stations such that a unit after being served in
one of them may either leave the system or immediately apply for serv-
icing in another station.

Jackson [3] studied a special case of a system where all stations
are arranged in one line. New arrivals always enter the first station and
then pass all the line so that the only output is after servicing in the last
station. In another system considered by Jackson [2] arriving units may
enter immediately any of N stations with possible output after the service
being completed as well as the transfer between any pair of stations.
In both cases a Poisson input with constant arrival rate 2 was assumed
and there was no restriction on the capacity of waiting rooms at the stations
of the system. Under such assumptions the steady-state probability distri-
butions were obtained for the possible states of the systems.

In this paper authors generalize the results of Jackson [2] allowing
for the dependence of the arrival rate on the total number of waiting
units. Results presented here were obtained by the first author but only
for a special case of a specified system with three stations (see Example 1,
p. 170). The second author, being a referee of the former manuscript sent
in by the first author, obtained the general solution, formulated Example
2 and prepared the present version of the paper.

The first author is grateful to Dr. C. Mohan, Reader in the Depart-
ment of Mathematics at Kurukshetra University (Kurukshetra, India),
for suggesting the problem and supervising the investigations and to
Professor S.D. Chopra for his keen interest in the work.

Both authors wish to express their sicere thanks to Professor J. Lu-
kaszewicz from Wroclaw University (Wroclaw, Poland) for his help in
the redaction of the paper and verification of the manuscript.
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2. Specification of the network system and steady-state probability
distribution of its states. We consider a network system which fulfils the
following assumptions:

1° The system consists of N stations.

2° There are k; service channels at the ¢-th station (¢ =1, 2,..., N),
each of them having the exponential service-time distribution with the
service rate u;.

3° There is no limitation on the length of queues at the stations of
the system.

4° Units entering the system form a Poisson process with the arrival
rate Af(l) depending on the total number ! of the units actually present
in the system (4 is a positive constant and f(I) is a bounded function having
non-negative values and defined for non-negative integer arguments 1).

5° Arriving unit with probability 2;/A2 applies for servicing in ¢-th
station (¢ =1,2,...,N; L, +2,+...4+4y = 2).

6° A unit, having the service completed in the ¢-th station, with
probability @,; immediately applies for servicing in the j-th station
(¢,j =1,2,..., N) and with probability

N
(1) Q:Zl_ZQﬁ

it leaves the system.

7° All random decisions concerning the first application of entering
units as well as their consecutive transfers or outputs are independent
of each other and of the actual state of the system.

The work of the defined system can be described by a multidimen-
sional stochastic process

(2) v(t) = [v.(2), v2(t), ...r va ()],

where »;(t), + =1,2,..., N, stands for the number of units in the ¢-th
station (in service channels and in the queue) at the moment ¢. From the
above-mentioned assumptions it follows that (2) is a Markov process. Let

(3)  P(nyy Byy ovy y5 ) = Priy,(t) = 5y, v2(2) = Bsy ..., vy(t) = ny}
be the probability of the state (n,, n,, ..., ny) at the moment ¢ and let

(4) PNy, By ooy ty) = MP(Ny, Bgy .oy By; B)

t—o00

be the steady-state probability, assuming it exists, of the same state.
We prove the following
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THEOREM. If there exists a steady-state probability distribution for
the process v(t), it has to be of the form

n—1

”f l) ”IY’IL‘L

(5) Py, gy tiy) = - P(0,0,...,0),
”ﬂ l’ln’ 7“
where n = Ny, + Ny +... + 0y,
n,;! for n; < k;
(8) B ki, mi) = L

(B)VEF  for m; > Ky

and I'; are the solutions of the system of equations
(7) F_2+ZQ,, ., i=1,2,...,N.

The probability P(0,0, ..., 0) of the system to be empty can be evaluated
Jrom the condition

o

D P(myymg, .., my) =1,

nl,n2,...,nN=0

Proof. From a straightforward consideration of the ways in which
the system can reach the state (n,,n,,...,ny) it turns out that for an
arbitrary moment ¢ > 0 and v > 0 we have

(8)  P(ny, nay ..., ny;t+7)
N
={ Z a(k;, n;)(1— Q,;,-)t}P(nl,ng,...,'n,N;t)+
N i=1
-I-Z,uia(k,-, ni+1)Q:P(”u Woy ooy M+1, ooy )T+
i=1

N
+fin—1) Y Ay W) P(Myy Noy ooy y— 1, ooy By BT+

H

+

=
Mz

,u]a(k], ’nj‘*‘l)jSY(’n/i)P(’nl, Moy euny ’nj—}—l, ceey %.,-—1, ooy Npry t)T

t=1

I
[y
W
Oy

+o0(7),
where a(k;, n;) = min(k;,n;) and y(n;) = a(1, n,).

Following the usual procedure of transferring P (%, fs, ...y By;?t)
from the right to the left-hand side of equation (8), dividing both sides
by r and passing to the limit as v approaches zero, one obtains a system
of differential equations (which will not be given here). Assuming the
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existence of the steady-state probabilities (4) one comes to the conclusion
that they have to obey the system of algebraic linear equations

N
©) {2+ Y pialk, m)(1—Qi) | P(ny, Boy ..., my)

i=1

N
= Zluia(kia ni‘}‘l)Q:P(nl, Thoy oeey Myt 1, .00y By)+
=1

N
+f(”_1)ZAiY(ni)P('”’17n27 vy My—1, iy Mp) +

N N
+Z Zﬂja(k’, %]—I—l)Qny('nl)P(’nl, Tooy oany ’n/)+1, ey ’I?vi—l, ceey nN).

i=1 j=1
J#i

We shall shaw that functions (5) fulfil system (9) of equations.
By substitution of (5) into (9) and some reductions we get

HﬂlHF”

A-l-z,uza(kn n‘t) 1 Qn} N
116,

N' ”f(l ”Fnrlw
= M athi, mi+1)0 — = B
= ]]ﬂ(krv n,) upra(k;, n;-+1) pu;

N ”ﬂlQPWﬂ

+(n—1) X hy(n)
1 T8 kr ) iy m 1)

+

i

Il

n—1 N ]‘]
+ ZZﬂja(k,-, %+ 1) Quy () ¥ a(k;, mj+1)p;
= & B (K, my) iy — 22—
a(k;y m;) s

J#1 r=1

Further transformation leads to

N N N
Y 1

n) A+ > uia(kyy m;)(1—Qy) = f(n) E Qi i+ E liﬂia(ku”i)lw +
i=1 im1 i=1 *

N N
T
-+ Z 2 pa(k;, ’”'i)jS'IT:
i=1 j=1
i
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which is obviously true since from the definition of @} and I it follows

that
’ N N N N N
Doiri= Y- ey = 21[11-— X
i=1 i=1 j=1 i= j=1
N N N
=2[I}_2Qijrz] :Z}‘J =1
i=1 =1 1=
and
N N I N 1 N
Z Z#ia(kn ’n’i)jSTi = Z.uia(ki’ ;) F‘ZQﬁFi
i=1 j=1 T =1 t =1
J#7 N VED)

1
=<2 pia(kyy n;) T (Ii—24,—QuT)
ey 1

N N 1
= D walle, n) (1—Q)— > dualk, m) 7
i=1 i=1 ¢

To complete the proof of the theorem it is now necessary to show that
system (9) has a unique solution. For this purpose let us consider an
imbedded Markov chain defined at the moments being the integer mul-
tiples of a given number k. The argumentation similar to that given by
R.R.P. Jackson in [3] leads to the conclusion that there exists a steady-
-state distribution of the defined chain and it does not depend on h.
From there it follows that the steady-state distribution of the process
is uniquely determined.

3. Particular cases.
I. The assumption

f=1 forl1=0,1,2,...

leads to a network system already considered by J. R. Jackson in [2].
I1. Another specification of the function f(1),

1 for 0<I< K,
F) =

0 for L>K,
leads to the case of a limited capacity of the system. The intensity of new
arrivals is constant as long as the total number of units present in the
system does not reach the number K and there is a complete balking
when this level is reached. This assumption results in a finite number
of possible states of the system. This is valid of course under a more general
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assumption
arbitrary for 0<I< K,

N =
Uy 0 for I>K,

which allows also a partial balking until the system is completely filled up.

Example 1. Let us consider now a network system consisting of
three stations 8,, 8,, 8;. Units enter the system from outside according
to a Poisson process with a constant arrival rate 4, and all new arrivals
apply first for servicing at the first station (1, = 4, 1, = 4, = 0).

All station are equiped with single channels (¥, =k, =k, = 1)
and at each of them the first-in-first-out queueing discipline is being obeyed.
After being served at the station 8, unit may leave the system of apply
for servicing at S, or 8; (@;; = 0). Those who have being served at S,
may leave the system or enter 8; (Q,, = s, = 0) while those who have
being served at S, must leave the system (Q;; = @, = @53 = 0, Q5 = 1).
A complete balking is assumed when the total number of units in the
system reaches the level K.

The above assumptions may be visualized by the following practical
situation. A mathematical model is thought of for a mechanical workshop
with three service counters S;, 8,, S;. All entering units have to be served
first at the counter S; where the technical diagnosis and simple repair-
ment is performed. The diagnosis may demand the specialized repair-
ment which has to be performed either at S, or at 8;. It is also possible
that the specialized repairment on both counters S, and S, is necessary
but always first on S, and then on §,.

Applying formulae (5)-(7) we get

o1t 032033 P (0, 0, 0) it n,+n,+n; <k,
0 if ny+n,+n,>k,

where o; = Iijp; (1 =1,2,3), I't =24 I's = 1Qy5, I's = A(Q13+Q12Q2a)-
III. If we assume the function f(1) to be of the form

N—-1l for 0K<I<K,
0 for I> K,

P(ny, 0y, 0g) = l

f) =

we obtain a model of the system with the limited number of input sources.
There are K identical independent input sources each of them equiped
with a single unit which is either inside the system or ready to enter it
with the intensity 4. Ifat a given moment there are ! units inside the system
the remaining K —! units provide the input intensity (N —1)A.

A similar model may be applied to describe a closed system in which
a constant number of K units continuously circles among N stations.
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To find the steady-state probability distribution of possible states of
a closed system we may apply the theorem proved here to the modified
system consisting of N —1 stations. The remaining station, say station
Sy with &,y channels, has to be excluded from the system and treated
now as a source of entering units.

For the modified system we have:

A=QQ=QyN)pux, 4 =QN,-.“N (¢t =1,2,...,N-1),
and
a(ky, k—1 for 0<l <k
f(l) _ ( N ) ?
0 for I >k,
where ! denotes the number of units at N —1 station S;, S, ..., Sy_,

Example 2. Let us consider a circular transportation model as
represented on the following scheme:

i—‘*ﬁ—' loading station ‘(——_——I
— [empty driv|

‘—’l unloading itation I

We shall assume the existence of K transporters and exponential
distribution of service times on all the four service stations:
S; — the loading station with k, channels each of them having the
service rate u,;
S, — transport with K channels (thus no queue ever possible at
this station) and service rate wu,;
8; — unloading station with k, channels and service rate u,;
8, — empty drive with K channels (no queue) and service rate u,.
All transporters circle in the system so that the transition probabi-
lities Q;; are Q.2 = Qo3 = Qs = @ux = 1 and Q; = 0 for all the remaining
cases.
The modified system consists here of only three stations S,, S,, S,.
This enables us to calculate the steady-state distribution of the possible
states of the system.
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0 SIECI URZADZEN OBSLUGI MASOWEJ TYPU M/M/n
Z INTENSYWNOSCIA NOWYCH WEJSC
ZALEZNA OD LICZBY JEDNOSTEK W SYSTEMIE

STRESZCZENIE

Autorzy rozpatruja ogélny system sieciowy M /M /n, analogiczny do systemu
opisanego w [2], w ktérym 1° strumien przebyé jest strumieniem Poissona z para-
metrem Af(l) zaleznym od liczby jednostek ! w systemie w danej chwili (4 — stala
dodatnia, ' f(l) — ograniczona funkcja o nieujemnych wartoéciach, okreflona dla I
calkowitych nieujemnych) oraz 2° przebywajace jednostki sa obslugiwane najpierw
w i-tym dziale z prawdopodobiestwem A;/A (¢ = 1,2,..., N; L, + 4+ ... +ixy = 4).

Autorzy podajg wzory na rozklad prawdopodobienstwa stanu systemu liczby
jednostek w poszczegélnych dzialach w warunkach stacjonarnych oraz ilustrujg
otrzymane wyniki dwoma przykladami.



