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A TRANSPORTATION SYSTEM
VIEWED AS A QUEUEING SYSTEM

1. The system. Fig. 1 shows a transportation system encountered, e.g.,
in the building industry. Four elements are distinguished in this system:
(a) the loading point consisting of one or more loading devices, (b) the
unloading point with a similar structure, (¢) trips from the loading point
to the unloading point and (d) return trips.
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We assume that the loading, unloading, {rip and rcturn times are
random variables. The cumulative distribution funections of those random
variables are denoted by F,, F,, G; and @,, respectively. We assume
also that the loading and unloading times are exponentially distributed
and that the trip and return times have finite expected values. Moreover,
we assume that loading, unloading, trip and return times are independent.
This last assumption can usually be made in an automobile transportation
but not in a railway transportation where it can not be true.

To complete the description of the system, the vehicle park is described
now. Assume that it consists of one tractor and trailer and of m > 1 trailers
at the loading point as well as » > 1 trailers at the unloading point. The
trailer hauled by the tractor is left at the loading and unloading points,
and the tractor takes a new trailer from there. The maneuvering times
are added to the appropriate tractor trip times.
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The purpose of this paper is to present a probabilistic description
of the operation of this system and to propose an efficiency index. This
problem has been posed by O. Kaplinski at the Winter School on Queueing
Theory, Reliability Theory and Similar Problems organized by the Mathe-
matical Institute of the University of Wroclaw in Karpaez in January
1971. For practical purposes, generalizations of this system, e.g., by
introducing more tractors, would be of great intecrest.

Similar problems have been considered in queucing theory before.
Particular cases of this problem are resolved under the assumption that
the number of tractors is equal to the number of trailers. For instance,
if the unloading takes place without waiting (multichannel unloading
point) or if the unloading times are negligibly short, the unloading, trip
and return times can be treated jointly as the tractor working time and
the transportation system can be interpreted as a machine repair system
(see Barlow and Proschan [2], Kopocinska [4] and Takdes [5]). Or, if
we assume that the loading, unloading, trip and return times are expo-
nentially distributed, the transportation system leads to a network of
waiting lines. Arya and Stachowski [1] have published a solution which
was a direct generalization of that considered by Jackson [3].

2. Notation. Let m(t) be the number of loaded trailers at the loading
point in the moment ¢, let n(f) be the number of empty trailers at the
unloading point in the moment ¢ and let X (¢) = (m(t), n(t)). Also, let ,,
kE=1,2,..., denote the departure moments of the tractor from the
loading point and let (my, n;) = (m(t+0), n(t+0)), k =1,2, ...
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Fig. 2 shows the operation cycle of the system between consecutive
loading moments. On two parallel time axes the departure and arrival
moments of the tractor and the corresponding random variables are
marked. So ?, and {, ., are tractor departure moments from the loading
point, (my, n;) and (mg,,, ;) are the corresponding random variables,
X is the loading time of the trailer being loaded at moment t,, Y is, for
n; < m, the remaining unloading time (counted from moment %), Y’
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is the remaining unloading time at the departure moment from the unload-
ing point, & is the trip time, ¢ is the waiting time for the return trip
(if there is no empty trailer at the unloading point), 7 is the return trip
time, and ¢ is the waiting time for departure from the loading point (if
there is no loaded trailer there).

From the assumptions it follows that the random variables X, ¥, Y,
¢ and 7 have the following distributions:

P(X<x) =F,(x) =1—cxp(—4o), x>0, 1,>0,
P(Y<x) = Fy(x) =1—exp(—4), =0, 2,>0,
P(Y' <z) =F,(x), n<n,
P9 <) =Gy(x),
P(r<®) = G,(2)
The random variables § and p can be expressed as
5 0, n, > 0,
B max(0, Y—9), n; =20,
(1)
07 ny > 07
" | max(0, X—9—6—17), my =0.
Introduce the notation
(2) X* = 0ym X and Y =0,,7Y,
where
5, = lO, @ #]:,
' 1, ©1=).

Now, the random variables ¢ and ¢ can be written as follows:
6 = max(0, Y*—49),

3
©) o =max(0, X*—9—5—1).

3. Imbedded Markov chain. The state of the system is described by
the two-dimensional stochastic process X (t) = (m(%), n(t)), where m(t)
denotes the number of loaded trailers at the loading point in the moment ¢
and 7 (t) is the number of empty trailers at the unloading point in the mo-
ment {. Under our assumptions the process X (f) need not be Markovian.
We investigate it knowing that the stochastic chain (m,, n,) is an imbed-
ded Markov chain. In fact, it is easily seen that if the state of the system
in the moment ¢, -+ 0 is known, then the state of the system in the moment
11+ 0 depends only upon ¢, Y, Y’, 7 and X. All these random variables
do not depend upon the state of the chain up to the moment ¢,; for the
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random variables ¥, Y’ and X, this fact follows from the exponentiality
of their distributions.

The transition matrix P for the random variables X (t, 4+ 0) = (my, n,)
and X(#,,.,+0) = (mp,,, ngyy) can be expressed as the product of the
matrices of consecutive transitions between the 7 random variables defined
as the state of the system in appropriately chosen moments. These random
variables and the transition matrix notation are given in Table 1.

TABLE 1

/

State of the system Transition matrix

X(tk + 0)

Py
X (tp+9—0)

P2
X(tg+90+6-0)

'P3
X(tgp+9+040)

P,
Xtp+9+0+7—0)

Py
X+ +d0+t+0—-0)

X(tg+9+d+t-+0+0)

In the numerical analysis, the states of the process X (¢) are to be
linearly ordered in any fixed manner. However, during the calculation
of the transition probabilities P,, P,, ..., P;, the two-dimensional form
of the process is more convenient. The transition matrices are expressed
by means of Poisson probabilities and cumulative distribution function:

(A=) _,,
(k,ﬂz) _'_7;!“‘ 17
Pk, 22) = p(i,2), k=0,1,...,2>0
t=k+1

Let P.(¢,j;¢+k,j+10), i,+k =0,1,...,m; j,j+1=0,1,...,n;
r=1,2,...,6, be the probabilities of transition from the state (7, )
to the state (¢+%,j+1) in the transition matrix P,. They are found as
follows:

1. Transition from the state of the process X (¢) in the moment ¢, 4 0
to that in the moment ¢.+ & —0. In the considered time interval only
loadings or unloadings can be finished, therefore, the probabilities of



Transportation system 433

transition from the state (¢, j) to the state (1 4-k,j+1) are

Py(iy itk i) [P(i,j;i+k,j+1;2)dG(2), k=0, 10,
1 ] ; 9 == 0

0 otherwise,
where
Pk, A,2)p (1, 452), i+k<m, jH+l< n,
.. . P(m—1, 22)p(l, A32), i+k=m, j+l<mn,
r : k l;2) = i
(’L,],'¢+ y )+ 7z) p(k,l z) (n— ]’22 )y 1+ k< m,j-{—l:n,
P(m—i,2,2)P(n—3,222), t+k=m, j+1=n.

2. Transition from the state of the process X (f) in the moment ¢, +
+ 9% —0 to that in the moment t;,+ ¢+ 6 —0. If at the beginning of this
time interval there holds j > 1, then 6 = 0; thus the state of the system
does not change. If j = 0, then ¢ is the random variable with exponential
distribution F,(x) with parameter i,. Thus

1, j>1, k=1=
Py(i,j;i+k,j+1) = fP@ 0;i4+%k,0;2)dF,(2), j=0,k>0,1=

0 otherwise.

3. Transition from the state of the process X(¢) in the moment
t,+ 9+ 06—0 to that in the moment ¢, + 3+ d+ 0. A departure from the
unloading point takes place in this time interval; thus, (i, j)—(¢, j—1),
j = 1. Therefore,

1, k=0,j>1,1= —1

0 otherwise.

’

Py(i,j;i+k,j+1) = l

4. Transition from the state of the process X(¢) in the moment
tx+3+6+0 to that in the moment #,+®@ 4 d+7—0. During that time
only loadings and unloadings are finished. Therefore,

P(i,j;i+k,j+1;2)dG,(2 E>0,1>0
P(i,j;i+k,j+1) = {f o o ’ ’

0 otherwise.

5. Transition from the state of the process X () in the moment
t,+94+6+7v—0 to that in the moment ¢, 494 6+7+9—0. If at the
beginning of this time interval there holds ¢ > 1, then ¢ = 0; thus the
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state of the system does not change. If ¢ = 0, then p is the random variable
with exponential distribution F,(x) with parameter 4,. Thus

1, 121, k=1=0,
Py(i,§51+k,j+1) = fP(07j507j+l;z)dF1(z)a 1 =0,k=1,1>0,
0

0 otherwise.

6. Transition from the state of the process X (f) in the moment
e +9+0+7+0—0 to that in the moment ¢, +¢+ 0+ v+ ¢+ 0. During
this time a departure from the loading point takes place; thus, (¢, )
—~(t—1,j), ¢ = 1. Therefore, '

. 1, 7:>1’k:-17l=07
Pelty 3504k, +1) 0 otherwise.

4. Efficiency index. Indices of efficiency of the system can be based
on the limit probability distribution of the state of the chain (my, n,)
and on the behaviour of the process X (#) during one operation cyele.
These indices can serve, then, to formulation of system optimization
problems.

A simple efficiency index can be based on the tractor waiting times
as follows:

_ E(5+9)
E(®+7+0+0)

The values of EJ and Er are determined from the probability distri-
butions made in the assulmptions about the system. It remains, thus, to
determine the expected value of the random variable d + p. From (3) it
follows
(4) 6+ =max(0, Y*—9)+max(0, X*—9—max(0, Y*—3)—1)

= max (max (0, Y —9), X*—9—1)
= max (max (¢, ¥*), X* — 1) — 9.

If the steady-state probabilities of the chain (m;, n;) are known —
and they can be found from the transition matrix of the chain — then,
using (2), we find
(5) Emax(max(#, ¥*), X* —1)

= P(my =0, n, = 0)Emax(max (4, ¥), X —1)+
+P(my> 0, n, = 0)Emax(d, Y)+
+P(m; = 0,5, > 0)Emax(d, X —7) +P(m,> 0, n,>0)EH.
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This allows to calculate E(d -+ p):

We express now the expected values of the right-hand side of (5)
explicitly. The calculation is based on the Laplace and Laplace-Stieltjes
transforms of G; and @G,.

Let -

Gi(s) = [ <G (x)de  and = [ ¢ a@, (@) = sG(s),
0

0
where ¢ =1, 2.
It is easily verified that

(6) Emax(d, Y) :f[1~P(nla,x(0, Y) < 2)|de
=ofw[l—Gl(z)JrGl(z)OXD(—lzz)]dz = Ed+ G5 (4,),

(7) Emax(ﬂ,X—r)=fm[1—G1(z)P(X—r<z)]dz

[1=6.(2) [ (1 —exp(— bz — M1)) aG, (1)) dz

0

J
=f [1 G, ( (l—OXp(—;» ]dz —Eﬁ‘f‘G (11)9';(;*1)7

(8) Emax (max (9, ¥), X —1)

ll—P(ma,x('ﬂ, Y)< 2P X —7< Z)]dz

oo

[1-6.(a) (1 —exp(— 2:2) [ (1 —exp(— iz —1,1)) a6, (1)] &2

0

= E’19+GT (42) _i_GT(Al)g;(ll) _GT(}'I ‘*‘12)9;(21) .

5. The case m = 1 and % = 1. In this case, directly after the de-
parture of the tractor from the loading point, the loading of the next
trailer begins, the chain (m;, n;) is thus determined only on two states
(0,0) and (0, 1); thercfore, only the chain {n;} is of interest. The state
probabilities of it can be written explicitly, also in the case of any arbitrary
loading time distribution. It can be casily verified that

9) P, =0) =P(Y' >1+0) =P(¥Y > v+max(0, X—9—06—1))
= P(Y' > max (r, X — ¢ —max(0, Y*—ﬁ)))
= P(n, = O)P(Y' > max (7, X —max (9, Y)))—{-
+ (1 =P (n, = 0))P(Y’' > max(r, X —9)).

2 — Zastosow. Matem. 13.4
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Assuming stationarity of the chain {n,}, we have
P(’nk_,_l = 0) = P(nk = O) = T.
Hence, from (9) it follows
P(Y' > max(r, X — ¢
(10) = = ( (. X—9) ,
1—P(Y’ > max(v, X —max(#, Y)))+P (Y > max(r, X — 9))

The calculation of (10), and also of the efficiency index p, using (4)
and (5), is usually cumbersome, though the used operations are simple:
composition of distributions, expected value and comparison of random
variables. Easy computation procedures can be given if the random
variables are discrete ones and take on the values an,n = 0,1,...,a > 0.
The exponential distribution is then replaced by the geometric distribu-
tion.

If in the considered case we assume, similarly as before in this paper,
an exponential unloading time, then after suitable transformations we
obtain

P(Y’ > max (7, X —max (¥, Y)))
= Ao {[1 — g7 (As) + A, G7 (22) 1G5 (A5) —
—[g7 (A1) — 91 (A + 22) + @ (A, + 22) 1G5 (A, + 20)},
P(Y' > max (7, X—ﬂ)) = 1G5 (Ag) — A5gy (A1) G5 (A1 + As).
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B. KOPOCINSKI (Wroclaw)

0 PEWNYM SYSTEMIE TRANSPORTU
JAKO SYSTEMIE OBSLUGI MASO'WE]

STRESZCZENIE

System transportu, przeanalizowany w pracy, sklada sie z czterech clementow —
punktu zaladowczego, zlozonego z jednej lub kilku linii zaladunku, jazdy, wyladunku
i jazdy powrotnej. W systemic pracuje jeden ciagnik i pewna liczba przyczep zloka-
lizowanych w punktach zaladowezym i wyladowezym. Celem pracy jest podanie opisu
probabilistycznego i propozycja wskaznika wydajnoseci systemu. Zaklada sie, ze czasy
zaladunku, jazdy, wyladunku i powrotu sg zmiennymi losowymi niezaleznymi o zna-
nych rozkladach. Analize¢ stanu systemu, zdefiniowanego przez liczby przyczep goto-
wych do drogi w punktach zaladowezym i wyladowczym, sprowadza si¢ do analizy
pewnego wlozonego lancucha Markowa. Dla tego lancucha zostala znaleziona macierz
prawdopodobieristw przejscia. Wskaznik wydajnosci systemu zdcfiniowano korzy-
stajac z charakterystyki czasu czekania ciggnika.



