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0. Introduction. In this paper we are concerned with a non-linear
problem in the theory of shallow shells of an arbitrary shape. The paper
is a continuation of previous works [11] and [12] and the results obtained
give further insight into the mathematical structure of non-linear dif-
ferential equations describing the stress state and the deflections of pre-
stressed shallow shells under action of forces. This problem is studied by
the use of functional analysis methods on appropriate Hilbert spaces.

Consider a thin elastic shallow shell of arbitrary shape under internal
and external loads. The basic non-linear mathematical model for a thin
elastic shallow shell under simultaneous action of lateral, internal and
boundary forces has centered around the system of equations (see [6]
and [18])

0*F 0*F

D .
(0.1) TAzw = L(w, F)+k, o7 +k, o +¢(x) in Q,
1 1 02w 0* w )
02 F&F = =g L w)—h G —h T 1) in £,

where w(x) and F(x) are real-valued functions of the independent varia-
ble # = (#,, ;) defined on a domain £ whose boundary is 02; 2 < E,,
the 2-dimensional Euclidean space; w(x) represents the deflection of
the shell from its initial position and F(x) represents the so-called Airy
stress function by means of which all stress components can be found
in terms of the second derivatives of it. D is the flexural rigidity, B is
the Young modulus, » is the thickness of the shell, the function p,(x)
is a measure of the stresses which can occur in the undeflected shell inde-
Pendently of external loads, for example, prior stresses built into the
shell or produced by heating the shell unevenly, the function ¢, = g,(%) -+
+¢*(x) is a measure of external forces, k¥ = (k,, k,) is the curvature of
the shell, A2 is the bi-harmonic operator, and

(0.3) L(f’ g) = f.’l‘lll'rl g(EI-Zl +f.’1322329$2232 - 2.]“1?11’291‘11‘2'
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As we have said, we allow forces to be applied to the edge of the
shell. If the boundary 02 is smooth, such edge stresses are described
by boundary conditions of the sort Fy, = h,(x), F,, = hy(x) on 02, where
subscripts % and s represent derivatives in the normal and tangential
directions, respectively.

1. Auxiliary preblem. Let the function F°(z) be a solution of the
following auxiliary problem

(1.1) A2F% = Epy(x) in Q,
(1.2) legl:rl‘f”kngzzz = ¢o(7) in 0,
(1.3) FY = hy(x), FS% = hy(xr) on 02.

This system of equations can be interpreted physically as follows:
we seek after such a stress function produced in the shell under the action
of po(2), qo(x), hy(x) and hy(x), when the shell is not allowed to deflect,
1. e., w(x) = 0. Such a case can be realized in engineering practise by
enclosing the shell in a rigid casing. Since we arc interested in a gencral
case, i. e., when the shell is allowed to deflect from its unstressed config-
uration, and this occurs only when the magnitude of the applied forces
is great enough, it will be convenient to introduce a parameter into the
problem which is a measure of the strength of these applied forces. To
this end, we think of py(x), q,(x), k. (x) and h,(x), as all depending linearly
on a real parameter Z,. The parameter 1, can be positive or negative,
this depends on the applied forces. Then the function F°(x) also depends
linearly on 4,. To emphasize the fact, we write 4, F°(x) instead of F°(x).
Finally, we define f & F—3,F° the stress function inecrement produced
when the shell is allowed to deflect. By introducing the function f(x)
into (0.1) and (0.2), we obtain the following system of equations:

D X 02 02
(1.4) TAZw = L(w, )+ 4, L(w, F)+k an: +k, aw{ + q*(x),
1 2
_ 1 1 02w 0%w
(1.5) 7 A f = — —Z—L(w, w)—k, P —k, oz .

In this form the description of all prior internal and edge stresses
is concentrated in the single function F°(z) and in the parameter i,.
On smooth sections of the edge 02 the modified stress function f(z) will
satisfy homogeneous boundary conditions, i.e., f,, =0 and f,, = 0.
These conditions are implied by the Dirichlet conditions

(1.6) f=fe =J;, =0 ondQ.
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In what follows we shall assume that the shell is clamped at its edge.
This requirement corresponds to the boundary conditions for the deflection
function w(x):

(1.7) w=w, =w, =0 ondQ.

2. Outline of the procedure. We shall be mainly concerned with the
existence and uniqueness of real-valued solutions of (0.1) and (0.2) with
boundary conditions (1.6) and (1.7). We focus our attention on the
following problems:

(a) Under what restrictions on the initial data does the boundary
value problem have a real-valued solution ?

(b) Is the solution, if it exists, unique ?

Before we give answer to these questions, we first simplify the form
of (1.4) and (1.5) by introducing new functions into these equations.
In order to eliminate unimportant parameters K, D and h from (1.4)
and (1.5), we introduce yw, Dh~'f, Dh~'F'max(P), yk; and Dyoqinstead
of w, f, F° k; and g¢*, respectively. Here y> = 2D/Eh, and

max (P)
(2 Fal V(A=) FO| 21k, [V(1—0) P )

1/2 ’ 1/2
1/ 1431

o = h(Dy)'suplq’].
2

I

max [sup ,aneSQQIA(l—C)F‘)I]

Q

After introducing the proposed quantities into (1.4) and (1.5), we
obtain

(2.1) A*w = L(w, f)+iL(w, FO)+{k, f}+0¢ 1in 2,
(2.2) Af = — L(w, w)—2{k, w} in Q,

where we use the notation {f, ¢} = f19z/z, +f292z,» 4 = Aemax(P).

As far as my knowledge of the literature on direct methods in the
non-linear theory of elastic shallow shells is concerned only some symmetric
problems or problems without the influence of prestressing loads on the
stress state in the shell were considered (cf. [19] and [20]). In this paper
we take into account prior stresses built into the shell as well as arbitrary
shape of the region 2 bounded by a piecewise smooth curve d2. The
elastic structure can be loaded by very general external forces. Strict
assumptions on the “arbitrarniess” of the load function will be formulated
later. There are several methods to tackle the problem (2.1), (2.2), (1.6)
and (1.7), one of which is that presented in [11] and [12], which we shall
here apply in a somewhat modified version. The original classical problem
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(0.1) and (0.2) is reduced to a generalized boundary-value problem and
then imbedded into a onc-parameter family of similar boundary problems
described by an operator equation, in general non-linear, of the form

(2.3) w—vTy(u) =0, vel[0,1]

defined on a suitable Sobolev space. We shall make use of functional
analysis methods and some imbedding theorems of Sobolev as well as
of a simplified version of a fixed-point theorem of continuous mappings
which implies the existence of at least one solution of (2.3). The problem
of smoothness of the existing solution of (2.3) will also be analyzed in
view of the initial data. This leads to interdependence of generalized and
classical solutions. It should be emphasized that generalized solutions
represent, in our case, a practical value since various physical quantities
such as, for instance, the stress temsor or the deflection function are
continuous functions under very weak conditions imposed on the initial
data. However, the existence of classical solutions, i. e., strict solutions,
requires much stronger assumptions on the initial data.

Derivation of a priori estimates for certain tri-linear integral forms
constitutes the chief technical difficulty. In dealing with the terms involv-
ing F°x), we make use of a modified version of a so-called cut-off function
of Hopf [6], which was first applied in considering Navier-Stokes equa-
tions. In a previous paper [12] we have used another cut-off function,
namely, a function proposed by Ladyzhenskaya [7], but the function of
Hopf seems to be simpler and there is little difficulty to adjust it to
our requirements. As it was already said, this paper deals with the existence
and uniqueness of solutions of the problem (2.1), (2.2), (1.6) and (1.7).
The non-uniqueness problem we hope to consider in another paper.

3. Function spaces and fundamental inequalities. We shall first
introduce a number of function spaces and exhibit a few integro-differen-
gial inequalities.

(a) LP(£)is a Lebesgue space consisting of real functions « (x) efinedd
on 2 and such that [|u|?der < oo for fixed p,1<p < co. LP(Q) is

Q2

a Banach space with the norm |ju|? = [ |u[”dz.
Q2

(b) L2(£2) is a Hilbert space, complete with respect to the norm

lull = (u, u)'s, Where (u,0),q =wavdm.

(c) L2(2) = {L*(R2)}* is the cartesian double product of the space
of scalar-valued square summable functions defined in the domain 2 < E2,

(@) HY(Q) is a Sobolev space consisting of real functions «(x) having
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the property that u(x) and all its first and second generalized derivatives
are square Lebesgue inegrable on £.

(e) HP(Q) is a Hilbert space whose norm is defined by means of
the inner product

(3.1) (U, V) o = fZ,‘ZD“uD“'vdx

a=0 (a)

(f) H)(R) is the completion of %5°(£2) under the norm of H(Q).
Thus H{?) is a closed subspace of H{?(£2). Hence it can be considered as
a Hilbert space with the inner product (3.1) with I = 2.

(g) HY) = {H{H(2)}? is similarly defined as L*(2). We shall now
introduce a few integro-differential inequalities which play an important
role in the theory of function spaces. Elements of the foregoing spaces
are characterized by various types of differential properties, so that if
one space is a part of another (in the abstract set sense), the group of
properties characterizing the first space will involve properties charac-
teristic for elements of the second space. To take a familiar case, knowledge
of some inequalities valid for elements of a given space, for instance,
H{P(0Q), can lead to conclusions as regards the boundedness, continuity
or even differentiability of the function itself. ¥urther, by comparing
the same function as an element of two distinct spaces, we obtain what
is called the imbedding operation. The most important imbeddings, as
we know, are those which are completely continuous. In most cases we
shall be concerned with functions in the Hilbert space H{)(Q). Each
function belonging to H{)(£2) can be regarded as a function of compact
support defined on the whole Euclidean space E°, if we extend the function
by sectting it equal to zero outside the domain £. All inequalities given
in the sequel can be easily proved for functions of compact support and
then generalized to functions defined on the domain £, which are not
of compact support, provided only that the boundary 02 is sufficiently
smooth (see [9] and [16]). Moreover, since the smooth functions are
dense in H{,(Q), all inequalitics valid for functions in ¥(£2) remain
automatically true for any element belonging to the space H{(£2); this
i$ a consequence of continuity of the norm.

LEMMA 1. For any we HO )y, we have

1 1
(3.2) f wrde < — ||Vl < — l|dullz,

5 “1 Uy

where u, is the smallest eigenvalue of the operator — A in 2 with zero boundary
conditions.

6 — Zastos. Matem. 13.3
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The foregoing inequality i3, in general, not valid for unbounded do-
mains Q.

LEMMA 2. Let 2 be a bounded domain with boundary 02 of class €*
Then '

(3.3) lullge < C(Q) lidull 2 for every ue HP n H).

Simple proofs of these lemmas can be found in [7] and [9].
It is well known that the functions ue H®, 2 < E?, are continuous
and we have the estimate
(3.4) sup ju(z)] < O(Q) llull,@,
TeQ 2
where C'(£2) depends only on £.
In the space H{) we also make use of the norm

(3.5) |!u||§,((]2l = f[(Aul)‘Z—l—(AuzP]dx, where u = (4, %,).
= 0

To show that (3.5) actually defines a norm on H{(Q), it is enough
to show that {[(dw)2dx} is equivalent to a more conventional norm on
2

HE). Let jujl, denote {f(A4u)*dr}" and |ull, the more conventional norm,
02
namely, {f[u2+|Vu|>+ |VVu|2]}"% where Vu denotes a vector function
0
{0;u} or a tensor function {0;u;}; depending on whether u,, is a scalar

2
or a vector, |-| denotes a Euclidean length (3 |9,u[%)"* for a scalar u(z)
; =1

or (:2 10;2;]2)"* for a vector u(z). The norm |- ||, is produced by the inner
1,)=1

product (3.1). The formal differential operator V has to be understood
in a generalized sense.

By definition, jjul, < |lull, for all ue HE(2). On the other hand,
as it follows from Lemma 2, we have

(3-6) lully < C(£L2) llully

for all ue HYNH{), provided the boundary 92 has bounded first and
second derivatives. C is a constant dependent only on . Since H((,”
c HPnH{}, it follows that [ul, < C(2)]ull, for all ue HE)(L2). Hence
llly < lleliy << C(2) ully for all we H(2). But this means that the norms
are equivalent.

4. Behaviour of a function in H{’) near 2. The following lemmus
are concerned with the behaviour of a function we H{?)(2) in a neighbour-
hood of the boundary 9£2. We assume that 0% is sufficiently smooth.



Prestressed shallow shells 373

Let o () denote a boundary strip of 02 with width 4, i. e., a set of points x
whose distance from 042 is less than d; to be precise we write

(*) o(6) = {z | xe Q, dist(x, 002) < 6}.

Since the boundary 02 is smooth, there exists a é > 0 such that
26 is smaller than any of the radii of curvature at points of 02 and also
so small that all points on a normal line of length 26 originating from an
arbitrary point P of dQ are closer to P than to any other boundary point.
Then the normal vectors of length 6 sweep out a ring-like region having
a coordinate system composed of the curve coordinate of 902 and the
distance s along a normal, where 0 < s < 6. We shall now prove a lemma
which is a generalization of Leray’s theorem [8].

LEMMA 3. Let o (d) be the boundary strip defined by () and let we H {,ﬁ

Then the inequality

|
ﬁ C () IIVVUullyey
lw("l)

(4.1)
S

i Yu

holds true for an arbitrary 6,, 0 < 8, < 0.
Proof. It suffices to consider the case where uwe €°(2). We first
bound the integral

Vu 12

f—

S

ds,

where s is the usual normal distance of a point from the boundary 02Q.
Integration by parts, the fact that uwe €5 (£2), and Schwarz’s inequality

yield
[4
0 !

s

Vuf ]Vulz l" | V| |V Vul
| +f
.S $ lo

and hence
J o o
(4.2) f 'ZZ’IQ ds < 4f |V Vu|2ds
(
or

(4.3) “—V—Zﬁ” < 2| VVaulj.
$ e
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‘We now wish to bound
[Vu|?

82

dx.

w(dy)
We have immediately from (4.2)
|Vu|? _
< C(9) f |V Va2 dz.

o(6]) w(dy)

(4.4)

We shall now construct a cut-off function which equals one on 99,
vanishes outside w(d) and satisfies certain other requirements to be enu-
merated in Lemma 4.

LeMmA 4. For any prescribed ¢ > 0, there exists a real function with
the following properties:

(a) ¢ is defined in the neighbourhood o (6) of 02 and has continuous
derivatives up to the second order, which are bounded.

(b) £ =1 o0on 02 and { = 0 outside w(9).

(c) |VZ] = 0 on 02 and outside w(9).

(d) [El < efs and |V[s| < e/s throughout w(8), where s is the usual
normal distance of a point = from 0L.

Proof. We define the function £(s) by

11 8

bf—t_w(_t—)dt 1 . 1 s

(4.5) @) = — ~ Tnp? fT'p( )dt’
fta 1

h

where
1 for s <0,

822
p(s) = [1—(3)] for 0 < s <9,

0 for s > 4,

and b, 0 < b <1, is a certain constant yet to be determined. It is not
difficult to notice that |y| < 1 for an arbitrary s, and (4.5) yields [{] < 1.
We also have »(0) =1, '(0) = »"'(0) =0 and £(0) =1, {'(0) = {"'(0)
= 0. The definition of y(s) yields { = 0 and {’ = 0 outside w(d). Condition
(d) 1s proved as follows:

First we make the substitution ¥ = s/t in (4.5) to obtain

8/b

1
1 1 8 1 dy
(e = f Y.
Inp-? f i "’(t) mot) YW

b s

C(x) =
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By using the fact that y(y) is a continuous function and ¥~ is mono-
tonic, we arrive at the following equality:

8/b & 8/b
[ Teway = 2 [E [vwar+ [ pwa
lnb‘ls y’P(’J y—lnb_l sswyy 86#’?/ y'
Hence
]
1 1+b
<= dy .
2] Slnb_lflw(y)ly

0

Differentiation of { with respect to s yields

8/b

1
0L 1 1 8 1 1
o _ o (S)a = = f dy
9s 1nb-1ft2”’(t) sp T ) YW

b s

and hence

If we now choose correspondingly the constant b, and this is possible
since 0 < 1/Inb < oo for 0 < b < 1, then we obtain |{| < &/s and |0/0s|
< g/s. The.gradient of { satisfies the relation V{-s = 9(/ds, where s is
a unit vector in the s-direction. Hence we obtain | V| < ¢/s. This completes
the proof of Lemma 4.

Now we give the statement and proof of the major lemma which
provides effective bounds of the non-linear forms that appear in our
problem.

LEMMA 5. For any &> 0 and any we HP)(Q), we have the estimate
|Ly(ty, %y, CF)|
= ll f [(CFO)xl(“lxlxzulxg—ul:cl”lxle)—f—
(e}
_ \ + (Clﬁﬂ)m (1) Un zy — iy, Yy ] da!{
< e|i|]u .
< e|A]]] |IH(()2:)2

Proof. By clementary inequalities we obtain

| Lo (%y, %y, CF®)| << 412 j | Au| | Vu||V (CF%)|dx.
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Since |V((F®)| vanishes outside o(d), we have, using Lemma 4,
Schwarz’s inequality, and (4.4),

f[Aul (V| |V(CF°) | dx = f [Aw||Vu| |V (CF°)| dx
ol

w(d)

£ 1/2 | Vae|2 1/2
< [ L0+ 9P | Vul | duide < o0, [ 14up2da) ( : dm)
S

w(5) w(d) o(d)

2

1/2 1/2
<o, ( [1aurda)” (0, [14uran)” < eotmi? g <
ot ' 00) 0,2

2

l[eell” (o
g

€
4

letting ¢ = 4¢C. Hence

| Lo(uy,y uy, CF) < €A Hu”i]}f&(m
for any ¢ > 0 and any ue Hgfg(!?). This completes the proof of Lemma 5.

In order to obtain cffective estimates of solutions, we have to modify
the original problem. This modification is achived by introducing a new
function, to be defined below, and the use of the foregoing cut-off function
. To use a vector notation we write the modified solutions as w(x) = wu, ()
and g(x) = u,(x), where g¢(x) gF(w)-i-}'.o(l—C)F“(m). If we take into
account the previously derived properties of the cut-off function ¢, we
can eagsily show that g(x) = dg/0x = 0 on 092. The modified Airy’s stress
function g(z) = u,(x) belongs to the Hilbert space HE)(RQ).

5. Formulation of the generalized problem. Suppose the vector
function w = (u,, u,) is sufficiently smooth and satisfies the system of
equations

(5.1)  A%uy = [ — L(uy, u,) —2{k, u,} + 42((1 - ) F)],

(5.2)  A%u; = v[L(uy, uy)+ Ay Luy, CF°) -+ {k, uy} — {k, (1 —{) F°} + oq]

in £, where 0 <»<1. For » =1, we obtain equations describing the
stress state and deflection of a prestressed shallow shell, i. e., (1.8) and

(1.9) with the function g(z) instead of f(x).
The following boundary conditions are assumed:

(5.3) u(r) = Vu(z) =0 on 02.
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Let n = (5, no) € €5°. Multiplying (5.1) and (5.2) by 7, and 7, respec-
tively, and integrating over the domain 2, we obtain ‘

(5.4) [ dude = v[fnlL(ul, wy)do + o [ 9y Ly, CF)da +
0 [#} 2
+ [ mib wydo—iy [ally, =0 F}deto [nda,
(55) [ madluyde =v[—gfngL(ul,u2)dm—2gfnz{k, u,) dw +-
02
+2o [ 1 4201 0) F*1da.

Since 7 is of class €5°, (5.4) and (5.5) can be reduced, integrating them
by parts twice, to the form

(5.6) Ly(n1, 1) = [Lz("h; Uy, Wg) + Ao La(n1y 1y CFO)+
+ 0Ly (91, Q) + Ls (1, Ky te) — oLy ("71? ky (1— C)Fo)];
(8.7) Ly (2 us) = ”[—Lz(’h’ Uy, ) —2 Lg(n2y by ) +

+ AL, ("727 (11— C)Fo)]y
where

Li(f,9) = [Af4gda,
2
Ly(fy 9, %) = Ly(f, g, sy ko) = [(Rafe 9o, + Ko 92,) 0o,
Q2

Ly(f, 9) = [ feda.

Definition. Let 2 be a bounded domain and let » = 1. Then the
vector function w = (u,, u,) is called a generalized solution of the problem
(5.1), (5.2) and (5.3) if the following conditions are fulfilled:

(a) we HE(Q);

(b) u = (u,, u,) satisfies the integral identities (5.6) and (5.7) for
an arbitrary test function # = (71, 72)- '

In connection with the generalized boundary-value problem we
consider the behaviour of elements ue H.‘f; on the boundary 9Q. If the
boundary 99 is sufficiently smooth and we H{®), then u together with
its first derivatives tends to zero in the L*(0Q)-norm as we approach
the boundary. To make this more precise, let wue H®(Q). Then we can

define for such u its trace tr(u) on the boundary 0Q. For ue ¢*(Q), tr(u)
is simply the restriction of » on 9£. In this case we have

(4) ([ tr(pdl)” < Clul
02

a{@),
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where the constant C is independent of u (x). Hence, « — tr(u) is a bounded
linear transformation from %* into L*(0R). Since ¥* is dense in HY (Q),
we can extend the transformation in a unique manner by continuity
to the whole of HY(Q). This defines the trace on the boundary of a
function ue HY as an element of L*(0%2). Since HY) = HY), inequality
(A) holds true for any « in H(‘f; But we know that the test functions
are dense in H{?), therefore, any element ue H{¥} can be approximated
by functions ¢e €5’ (£2). Let {p,} be a sequence of test functions such
that |lfpn—u]|ﬂ(2) — 0, n — oo. Then we have
0,2

1/2
(B) (6 / tr () 21)"* < Clpn = ul > 0-

Hence tr(u) =0 on 02 as an element-of L2%(9Q2). The argument
holds true for first derivatives of u as well. Shortly speaking, 4 and Vu
belonging to Hé"?, vanish at the boundary 0€ in the trace sense, i. e.,
almost everywhere on 00.

Definition. A vector function u = (u,, u,) is called a classical
solution if

(a) we €*(2)NE*(Q),

(b) u satisfies (5.1) and (5.2) for v = 1 pointwise in 0,

(¢) uw and Vu vanish pointwise at the boundary 9%.

THEOREM 1. Norms of all possible modified generalized solutions u
are uniformly bounded, and the estimate

(5.8) ey < 7O (D) (A+0)

holds true.

Proof. To prove (5.8), let us multiply (5.1) by u,, (5.2) by u,, integ-
rate over 2, use Lemma 4 and, finally, add them side by side. We obtain

[ 1412030 < » 200 @) [ (1402-+ 1w o+
82

Q2

k k
+sup (2L, - 2')]([Au112+mu2|2)dx+
Q My By ] g

EJIVA—=C0)F°  |ky|IV(Q—=0)F°
—I—Cl(-Q)I?»ol[Sllp(] il (1/2 {) l’ LAL (1/2 £) I)+
2 ) I

1

—i—sEP(IA(l—é’)FOIl/mesQ)](f(mul,z_.r lduzlz)dw)llz_l_

+00,(@) ([ (140 ) ).
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Letting ¢ = 1/4]44|Co(R), sup(|kyl/uyy 1kal/p1) < 1/4 and taking into
o

account that 1/2 <1—»/2, we have
( | |Au,zdw)“’2< »(Aomax (P) 4 ¢)C(2)
Q2

or
ol ) < 7C(2) (A4 0).
0,2
It is well known from Sobolev’s theorem [16] that the fumctions u
in HY are continuous functions of # if the dimension of the space Q is
not greater than 3; moreover, the functions u obey the inequality

(5.9) ul < 0(2) el o) -

sup ju(z)| < C(2)(A+0).
Q

Let us introduce the following inner product in the Hilbert space
H):
daf
(C) (w, ) S [(duy Any+ du, Any)de.
2

One can easily check that definition (C) is correct; all exioms of
an inner product are satisfied.

We shall now show that every integral appearing in equations (5.6)
and (5.7) defines a continuous linear functional on the space H{)(Q).
By the fact that second order generalized derivatives of u are in L*(Q),
and the same is true with the test functions », we obtain

l f [771 (ulzlxl u2x212 + 'u’l:r:z:cz u2:clzl - 2“111.’52 umlxz)] dx
Q

< Sli)p Inll f |/ulz1171 Qt2fl‘21‘2 + 1"11212 ulea:l - 2ulxlx2 u2xlx2l dw
Q2

1/2
< sup | ([ ttazyay |2+ 11y |2+ 2 s P ) ™
n ~N

X S Ttz 12+ Wty 2 2 Pt 1) ) ™,
Q
where we have used Holder’s inequality. Hence, it immediately follows
the inequality

! _ .
| f771L(“1’ uz)dwl < SUp [ ffveali 102l -
2 : Q 0,2 0,2
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Making use of relation (5.9), we can write

(5.10) l!’?lL(“n uz)d‘”i < 0(9Q) ”771“3((3|W1”H((f)2”uzﬂﬂg)2’

where the constant C is not necessary the same in the foregoing inequali-
ties. However, it is independent of the elements of the space H{)(Q).
Likewise we can show the following inequality:

(5.11) lgf oD (s, 1)z < C(9) bl gl

Combining inequalities (5.10) and (5.11) together, we obtain

(5.12) ) =] [ (1212, w) = 1 Lt we))dal

< C(9) ”'I”Hﬂ”u”iﬂz;
» o’

for arbitrary n and w in H{)(Q).
Inequality (5.12) shows that the integral

f("?zL('“n Uy) — 1 Li(uy, ’U/z))d-’v

is a continuous linear functional with respect to #, defined on the Hilbert
space H{?), for fixed but otherwise arbitrary w in H{®) (). By a well-known
Riesz-Fischer Representation Theorem there exists an operator T',: Hf,"'g —
— H{), in general non-linear, such that

(5.13) (Totty 1) = — [ (n2L(tg, ug) —my L(uy, wp))dav.
Q2
In a simple way one can estimate the integrals
Iy = Ly(nyy %y CF°)+ Ly(nyy by uy)  and Iy = —2Lg(ne, k, uy)
to obtain

11, < O(L (o]l and I3 < C(2)lInll el
2 ( )”'IHH((% IH(()z)2 al (2) ’IIH(()?; H‘gz:?zr

where the constants C, in general distinct for each inequality, depend
on the domain £, the function F°(z), the curvature % and the cut-off
function but not on the elements w in H{)(£2). Thus we again obtained
the fact that I, as well as I; are continuous linear functionals with respect
to n in H{)(RQ). Hence, there exists an operator T,: H{}) -~ H{) such
that .

(5.14) (Tyu, 1) = L+ 1.
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Finally, there exists an element Qe IIQ(.Q such that
5.153) (Q, m) =L1("127(1—§)F0) L ("71’ ky (1—0) F0)+L (171,9)

for qe L?(£2) and an arbitrary # in Héfg(Q). However, there is no need

to require that ge L2(£2) as far as the existence of solutions is concerned.

The element ¢ need not be of class L2({2) in order that f qn,dx be a contin-
0

uous linear functional. It can also be a so-called generalized function,

e. g., Dirac’s delta function concentrated on some smooth curve lying in Q.

For such ¢, the integral [gn,dz actually defines a linear functional on
2

H{(9Q), due to inequality (A).

6. Compactness of operators T'; and T, and equivalence of equations.
We now prove that the operators 7, and T, are completely continuous,
and (5.1) and (5.2) are equivalent to one operator equation to be derived
in this section.

LEMMA 6. The operators T, and T, are completely continuous, 1. e.,
compact on the Hilbert space HP)(2).

Proof. Since they are continuous as proved before, it remains to
show that they map every bounded set {u} = H{}) into a compact set.
But, by a theorem of Rothe [14], every Sobolev space H{" () is reflexive,
thus the closed ball [u|| <y, y > 0, is weakly compact, and hence, by
a theorem of Tsitlanadze [17], strong continuity implies complete con-
tinuity. Since the space H{) (L) is Hilbert, the converse is also true. It ig,
therefore, necessary and sufficient to prove that, for any given sequence
{u,} = H{)(Q) convergent weakly to u,, the sequence T,u, also converges
strongly to T;u, for 1 = 1,2 as n — oo.

Suppose u, —u, weakly in H{)(Q). Thus {u,} is bounded. From
(5.13) and (5.14) we have

I(Tiu'rn ")l C”’l” ) |un“H(z)7 @ - l, 2.

Hence, for y = T,u,, we obtain

|(Tiun7 Tzun)l < OHT"un”HO@g”u”“;Ié%)’ i = 1, 2,

17w, (2) llunll’ (2), 1t =1,2,

implying {T,u,} is likewise bounded. Since the closed ball ] ') S <y,

y > 0, is weakly compact in H{®, every bounded set is weakly bompact
Henee {T;u,} is weakly compact in Hé@(.{)). By Sobolev’s imbedding
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theorem [16], the imbedding of Héf’%(!)) in ¢+ & {€(£2)}* is completely

continuous. Therefore, {T;u,} is compact in ¢*(2). Thus any sequence

{uw,} ¢ H¥) with uniformly bounded norms has a subsequence which

is strongly convergent in ¢*. Now we show that the operators 7', and

T, are completely continuous. As it is easily seen the integral [fL(g, h)
2

is symmetric, linear and continuous in f, g, h if they are smooth. By
continuity this assertion can be extended to the entire space H{). By
definition,

(Tyu, ) = — f[’hL(“n Uy) —n L(uy, u,)]de
Q

= —f[ulL(nz, wy) — Uy L(ny, up)]da.
Hence ’
(T'yu,—T,u,, n)
= — (gf [ Ly s Un ) — N1 Lty 5 tng) — M2 Lty g ) + 1y L(%g , g,)]dix

= — Ly(Ngy Uy Up)) + Lia(71, Uy 5 Uy,) + Ly (2 oy o) — Lz (11, Ug y Ug,)
= — Ly(n2y )y Un,) + La (N1 U s Up,) + Lo (125 Uy Uny) — Lig (02 Uy 5 Uy,) +
+ Ly(n2q o5 %o,) — Lo (my; o, 5 g,) — L (125 Ug, 5 Uo,) + Lia (125 U, 5 %o,)
= Lty y My — N1y Up,) + Lo (Upy — 10y Uy 5 12) +
+ Ly (o, 5 Mo — M1y Ugy) + Lig (g, — Ug, 5 Mgy Uy,) -

Finally, we obtain
Ty, — Tru,y, )]
< Ot el o= 7l Tty Tty = e 171+
o T, e 75— 711 oy ot — gl o )
< Cl!ﬂ!lu((’?%llun—uollg.llun-—uollﬂg?_’ for some C > 0.
Putting » = T,u,, —T,u,, we obtain
|75, — Tz“ollﬁ(()z)2 < C(Q) lw, — Uyl o) — 0

as » — oo. Thus the sequence {T,u,} is strongly convergent in H((f%, and
hence T, is completely continuous on H&(Q). It can be proved likewise
that
T, — Tl“()”"@) < C(Q)|lu, —uyllgo)— 0
0,2
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as n — oo. Thus we have proved that both operators T, and T, are comple-
tely continuous, and hence T = T,+ T, is also completely continuous.
A characteristic feature of generalized solutions is the fact that they are
often expressible as solutions of an operator equation in a suitable Hilbert
space.

LEMMA 7. Equations (5.1), (5.2) and (5.3) are equivalent to one operator
equation of the form

(6.1) u—vTu =0,

where w = (u,, u;) 18 a generalized solution, and T is completely continuous
on HE)(RQ).

The operator T is, in general, non-linear. -

Proof. As we have alrecady shown, all integrals appearing in the
integral identities defining generalized solutions are continuous linear
functionals and can be written in the form

(6.2) (w, 1) = [ (duy Any+ Au, As) da
2

(6.3) —v(Tuy, ) = L1+ 1+ 1y

and

(6.4) v(Q, 1) = L.

Combining (6.2), (6.3) and (6.4) together, and taking into account
the integral identities (5.6) and (5.7), we obtain

(6.5) (u—rvT'u+vQ,n) =0

for any element ge 5°(£2). Since the set €5 is dense in H(f’zg, the existence
of gencralized solutions u(x) is reduced to the problem of existence of
solutions of the operator equation

(6.6) u—v(fu—Q) =0, 0<r<1,
in the space H{)(Q).

The operator T is completely continuous on Ilg), therefore, the op-
erator T, & T-+QI, where I is the identity operator, which assigns the
function Tu+Q to each clement u, is also completely continuous. Equation
(6.6) assumes the form

(6.7) u—vlfou =0, 0<rv<1.

To investigate the solvability of equation (6.7), we can apply a sim-
plified version of the fixed-point theorem of continuous mappings given
by Schaecfer (ef. [15] and [4]). That theorem guaranties the existence
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of at least one solution of equation (6.7) if the operator T is completely
continuous and all norms of possible solutions w of (6.7) are bounded.
But these properties of Ty and u have been already proved.

7. Uniqueness of solution. The Schaefer theorem is particularly
remarkable in that it can even be used to investigate problems for whosc
solutions there is no uniquencss theorem.

In our problem we can investigate the finer question of how many
solutions can exist globally but only for small data.

TIEOREM 2. If 4, 6 and £2 are such that
(7.1) C(2)(A+0) < 3/8,

then there exists exactly one generalized solution to the problem (5.1), (5.2)
and (5.3).

Proof. Suppose that, on the contrary, there were two generalized
solutions w = (u,, #,) and v = (v,, v,). Then the difference w = u—v
would belong to the space 11322 and w, = v;+w,, 4, = vV,+w, would
satisfy the identities

(7.2) A%y +w;) = L(v;+ Wy, 05+ W,) 4- AL(vy +wy, FO) + (K, 03+ w,) + ¢,
(7.3) A% (vy+w,) = — L(vy+ 1wy, v, +w,) —2{k, v, +w,}.
Sinece

L(f+g,k+1) = L(f, k)+ L(f, k)+ L(g, k) + L(g, k),

SO
(7.4) A*w; = L(wy, w,) + L(vy, wp) + L(vy, wq) + {k, w5},
(7.3) A*w, = — L(wy, wy) — 2 L(wy, ;) —2{k, wy}.

Multiplying identity (7.4) by w,, and (7.5) by w,, adding side by
side and integrating over 2, we obtain

[ (14w,2 + | 4w, |?) da

Q

= fsz(wl, w,) — fvlL(wl, w,)dr — f —wy{k, w,}dz,
Q

(1.6) | [ (14w, ]2+ 4w, %) da
Q

< sup gl [ 1L (wy, wy)|dw+sup oy [ |L(wy, wy)lde+ [ lwy] [{k, w,}ide
Q 2 2 o Q

< (sup |og! + sup oy + sup k1) [ (140,124 | dw,|?) d
L (9]

Q Q
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since

flL(’wu w2)|dw<(f [Awlizdx))m(fIszlzdw)llz
2 Q @
and

1
[ et i < - [ (140,124 4wyl da.

2 Q2

If 4,0 and £ are such that condition (7.1) is fulfilled, then (7.6)
implies that w vanishes, i.e., w and v coincide. Thus, for small data,
the existing solution is unique in £.

Let us emphasize once more that the operator equation (6.7) has
been derived for ¢ in L2(2). And the uniqueness theorem holds for such gq.
However, as we already mentioned before, the problem of existence
can be solved for other q as well. An answer to this is given in the theorem
that follows:

THEOREM 3. If q is such that the integral [qu,dx defines a linear func-
2

tional, then the problem (5.1), (5.2) and (5.3) has at least one generalized
solution.

For such arbitrary ¢, in general, there does not exist a classical solu-
tion. However, generalized solutions are often more smooth than it is
assumed in their definition. In the problem considered herc one can show
that the generalized solutions u(z) actually are of the class H{Y(2). The
result is based on the theory developed for L?(Q)-functions (see [1]-[3]).
The application of the L?(2) approach to a non-linear problem in elasticity
1s given in [12].
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0 ISTNIENIU ROZWIAZAN DLA POWLOK 0 MALEJ WYNIOSLOSCI

Z UWZGLEDNIENIEM NAPREZEN POCZATKOWYCH

STRESZCZENIE

W pracy zajeto si¢ konkretnym zagadnienicm, wystepujacym w teorii cienkich

powlok sprezystych o malej wyniosto$ei, z uwzglednicniem naprezein poczatkowych
i brzegowych. Matematycznie jest to zagadnicnic brzegowe dla ukladu dwéch réwnan
rozniczkowych czgstkowych nieliniowych rzedu czwartego z nicjednorodnymi warun-
kami brzegowymi. Praca dotyczy przede wszystkim zagadnicnia istnienia i jednoznaez-
nosci rozwigzan uogélnionych, w zaleznosei od gladkosei danych poczatkowych.
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Wyijsciowe zagadnienie sprowadza sie¢ do problemu uogdlnionego, a nastepnie
zanurza w jednoparametrowej rodzinie podobnych zagadnienn brzegowych, opisanych
nieliniowym réwnaniem operatorowym postaci (2.3), okreslonym na odpowiedniej
przestrzeni Hilberta. Korzysta sie z twierdzenia Schaefera o stalym punkecie prze-
ksztalcenn cigglych i pokazuje, Ze réwnanie (2.3) ma co najmniej jedno rozwiazanie
o danej przestrzeni Hilberta. Z ré6wnowaznosci réwnania (2.3) i ukladu réwnan uogél-
nionych wynika, Ze istnieje rozwiazanie uogélnione. Pokazano, ze dla malych danych
poczatkowych rozwigzanie to jest jedyme.

7T — Zastos. Matem. 13.3



