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Abstract. The theory of associator was introduced in a very fundamental paper of Vladimir
Drinfeld, by “universalizing” a construction coming from the monodromy of some differential

equations. Drinfeld also proves the existence of an associator over the rationals using a very in-

teresting group which has many connections with the Esquisse d’un programme of Grothendieck.

Main references are the article of Drinfel’d [Dri] and the book of Etingof-Schiffmann [ES].
See also [Bar] for a more categorical approach and [Sch] for the relationship between GT and
Gal(Q̄/Q).

1. Braids groups

Let Bn be the group generated by {σi, 1 ≤ i ≤ n− 1} and relations

σiσj = σjσi if |i− j| ≥ 2
σiσi+1σi = σi+1σiσi+1

There is a canonical morphism Bn → Sn induced by

σi 7−→ (i, i+ 1)

The kernel of this morphism is the pure braid group PBn. It is generated by {xij , 1 ≤ i < j ≤ n}
where

xij = (σj−1σj−2 . . . σi+1)σ2
i (σj−1σj−2 . . . σi+1)−1

and relations

(aijk, xij) = (aijk, xik) = (aijk, xjk) = 1 where aijk = xijxikxjk (1.1a)

(xij , xkl) = (xil, xjk) = 1 for i < j < k < l (1.1b)

(xik, x−1
ij xjlxij) = 1 for i < j < k < l (1.1c)

Remark 1.1. B2 is obviously the free group with one generator (i.e. Z). Thus, every element of
PB2 is of the form σ2m

1 .

Remark 1.2. Every element of PB3 can be written as f(σ2
1 , σ

2
2)(σ1σ2)3n where f(X,Y ) is an

element of the free group with generators X,Y .

2. Braided monoidal category

A braided monoidal category is the categorical analog of an abelian monoid, where commuta-
tivity and associativity holds only up to isomorphism. More precisely, a category C is a braided
monoidal category if there exists:

• A bifunctor ⊗ : C × C −→ C
• A natural isomorphism α : (−⊗−)⊗− −→ −⊗ (−⊗−) (the associativity constraint)
• A natural isomorphism β : −⊗− −→ −⊗op − (the commutativity constraint)
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such that the following diagrams commute for all A,B,C ∈ Obj(C) (Mac Lane’s coherence condi-
tion):

((A⊗B)⊗ C)⊗D

αA⊗B,C,D

��

α⊗1 // (A⊗ (B ⊗ C))⊗D
αA,B⊗C,D // A⊗ ((B ⊗ C)⊗D)

1⊗α
��

(A⊗B)⊗ (C ⊗D)
αA,B,C⊗D

// A⊗ (B ⊗ (C ⊗D))

A⊗ (B ⊗ C)
βA,B⊗C// (B ⊗ C)⊗A

α

((PPPPPPPPPPPP

(A⊗B)⊗ C

α

66nnnnnnnnnnnn

β⊗1 ((PPPPPPPPPPPP
B ⊗ (C ⊗A)

(B ⊗A)⊗ C
α

// B ⊗ (A⊗ C)
1⊗β

66nnnnnnnnnnnn

(A⊗B)⊗ C
βA⊗B,C// C ⊗ (A⊗B)

α−1

((PPPPPPPPPPPP

A⊗ (B ⊗ C)

α−1
66nnnnnnnnnnnn

1⊗β ((PPPPPPPPPPPP
(C ⊗A)⊗B

A⊗ (C ⊗B)
α−1

// (A⊗ C)⊗B
β⊗1

66nnnnnnnnnnnn

Remark 2.1. Any braided monoidal category carries representation of the braid group as follow:
let V1, . . . , Vn be n copies of the same V ∈ Obj(C) and set

V ⊗n = (. . . ((V1 ⊗ V2)⊗ V3) . . .⊗ Vn

There is a morphism Bn −→ Aut(V ⊗n) defined by:

σ1 7−→ βV1,V2

σ2 7−→ α−1
V1,V3,V2

βV2,V3αV1,V2,V3

...
...

...

Remark 2.2. If the commutativity constraint is involutive i.e. if βU,V = β−1
V,U , then the cate-

gory is said to be symmetric. In this case, the preceding representation of Bn factor through a
representation of Sn.

3. pro-unipotent completion of a group of finite type

Let G be a group generated by {g1, . . . , gn} and relations {R1, . . . , Rp}. Let a be the quotient
of the complete free k-Lie algebra on generators {γ1, . . . , γn} by relations

logRi(eγ1 , . . . , eγn) = 0, ∀i = 1 . . . p

Denote by G(k) the Lie group of a, i.e. G(k) = exp(a) = {ea, a ∈ a}. It is called the k-pro-
unipotent completion of G.
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4. Infinitesimal braids relations

4.1. Definition. Let tn(k) be the k-Lie algebra generated by {tij , 1 ≤ i 6= j ≤ n} and relations

tij = tji (4.1a)

[tij , tl,m] = 0 for distincts i, j, l,m (4.1b)

[tij , tik + tjk] = 0 for distincts i, j, k (4.1c)

They are called infinitesimal braids relations.
Set deg(tij) = 1, and denote by t̂n(k) the degree completion of tn(k).

4.2. Realization. Let g be a simple Lie algebra and t ∈ S2(g)g. Assume that t =
∑
x ⊗ y, and

set

ti,j =
∑

1⊗ . . .⊗ x⊗ . . .⊗ y ⊗ . . . 1

It can easily be checked that the ti,j satisfy the infinitesimal braids relations.

Proposition 4.1. Let ~ be a formal variable. There is a unique Lie algebra morphism t̂n →
U(g)⊗n[[~]] such that

tij 7−→ ~ti,j

5. Associators

Let f̂2(k) be the completed free k-Lie algebra in two variables, and F̂2(k) = exp(̂f2(k)). An
element Φ ∈ F̂2(k) will be called a λ-associator if it satisfies:

Φ(B,A) = Φ(A,B)−1

eλA/2Φ(C,A)eλC/2Φ(B,C)eλB/2Φ(A,B) = 1
where A+B + C = 1, and

Φ(t12, t23 + t24)Φ(t13 + t23, t34) = Φ(t23, t34)Φ(t12 + t13, t24 + t34)Φ(t12, t23)

in exp(̂t4).
Denote by Mλ(k) the set of λ-associators over k, and set M(k) =

⋃
λ∈k∗Mλ(k).

Associators gives a universal way for constructing braided monoidal categories. Let g be a
simple Lie algebra, t ∈ S2(g)g and ~ a formal variable. If (Φ, λ) is an associator, then elements
Φ(~t1,2, ~t2,3) and e~λt1,2 induces a braided monoidal category structure on U(g)[[~]]-mod. (Equiv-
alently, (U(g)[[~]],∆0,Φ(~t1,2, ~t2,3), e~λt1,2) is a quasitriangular quasi bialgebra.)

6. The Grothendieck-Teichmüller group

The main question which motivates the definition of the GT group is: how to change the
associativity and commutativity constraints in a braided monoidal category in such a way that
the result is again a braided monoidal category ?

If C is a braided monoidal category, and if V1, V2, V3 ∈ Obj(C), then every b ∈ B3 induces an
isomorphism

(V1 ⊗ V2)⊗ V3 −→ (Vσ(1) ⊗ Vσ(2))⊗ Vσ(3)

where σ is the image of b by the canonical projection B3 → S3. Thus, every φ ∈ PB3 induces an
automorphism φ̃ of (V1 ⊗ V2)⊗ V3, and then induces an isomorphism

α ◦ φ̃ : (V1 ⊗ V2)⊗ V3 −→ V1 ⊗ (V2 ⊗ V3)

In the same way, every element of PB2 defines a new commutativity constraint. Then, this action
reads:

β 7−→ β2m+1

α 7−→ αf(β2, α−1(1⊗ β2)α)(βα−1(1⊗ β)α)3n
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Mac Lane’s coherence conditions impose that n = 0 and relations which are equivalent to:

f(X,Y ) = f(Y,X)−1 (6.1)

f(X3, X1)Xm
3 f(X2, X3)Xm

2 f(X1, X2)Xm
1 = 1 (6.2)

for X1X2X3 = 1, and a relation on φ which can be expressed using the generators of PB4:

f(x12, x23x24)f(x13x23, x34) = f(x23, x34)f(x12x13, x24x34)f(x12, x23) (6.3)

The set GT of all pairs (λ = 2m+1, f) satisfying these relations has a natural semi-group structure.
Unfortunaly, GT is almost trivial. But if C is k[[~]]-linear, these relations make sense even if λ ∈ k∗
and f belongs to the k-pro-unipotent completion F2(k) of the free group, and it’s easily seen that an
element (f, λ) is invertible iff λ 6= 0, which leads to the definition of the Grothendieck-Teichmüller
group GT (k).

7. GT (k)-torsor structure of M(k)

It follows from the above section that GT (k) acts on the set of Lie associator by

(f, λ) · (Φ(A,B), µ) = (f(Φ(A,B)eAΦ(A,B)−1, eB)Φ(A,B), µλ) (7.1)

Theorem 7.1. For each Lie associator (Φ, λ) ∈ M(k), the map αn : Bn(k) → exp(̂tn) o Sn
mapping σi to

Φ(t1i + · · ·+ ti−1i, tii+1)−1(i, i+ 1)eλt
ii+1/2Φ(t1i + · · ·+ ti−1i, tii+1)

is a group isomorphism.

Proof. This formula is analog to the formula defining a representation of the braid group from a
braided monoidal category, and thus αn is a group morphism.

Thus, αn induces a morphism PBn(k)→ exp(̂tn) and therefore a Lie algebra morphism

α∗n : Lie(PBn(k)) −→ t̂n

The Lie algebra Lie(PBn(k)) is generated by ξij , 1 ≤ i < j ≤ n and relations obtained from (1.1)
by setting xij = eξij . Denote by grLie(PBn(k)) the associated graded of Lie(PBn(k)) and by
x → [x] the canonical projection Lie(PBn(k)) → gr1 Lie(PBn(k)). The presentation of PBn
and tn implies that there is a morphism µn : tn → gr Lie(PBn(k)) defined by tij 7→ [ξij ], which
is surjective as grLie(PBn(k)) is generated in degree 1. The morphism α∗n takes ξij to λtij +
{higher degree terms}, and thus the associated graded morphism

grα∗n : grLie(PBn(k))→ tn

is such that grα∗n ◦ µn is bijective.
It follows that µn is bijective, and then that so is grα∗n. As both Lie algebras are complete and

separated, α∗n is an isomorphism. �

Theorem 7.2. The action of GT (k) on M(k) is free and transitive.

Proof. Let (Φ1, µ1), (Φ2, µ2) ∈ M(k). As the action of F̂2 × k∗ on M(k) is free and transitive,
there exists a unique f such that (f, λ) · (Φ1, µ1) = (Φ2, µ2) with λ = µ2/µ1. Thus, it’s enough
to prove that (f, λ) ∈ GT (k). It can be done by applying the above morphism to each relation,
and it’s easily shown that the fact that both sides have the same image follows from the fact that
Φ2,Φ2 are associators. �

8. Existence of rationals associators

Let GT1(k) = {(1, f) ∈ GT (k)} and M1(k) be the set of 1-associators. By identifying GT1(k)
(resp. M1(k)) with the quotient of GT (k) (resp. M(k)) by the natural action of k∗, one see that
the action of GT1(k) on M1(k) is free and transitive. There is also an action of GT (k) on M1(k)
which is free but not transitive. If M(k) 6= ∅, there is a morphism ν : GT (k) −→ k∗ mapping
(λ, f) to λ, which is obviously surjective.
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Thus, in this case, the following sequence makes sense and is exact

1→ GT1(k)→ GT (k) ν−→ k∗ → 1
Let gt(k) be the Lie algebra of GT (k). If M1(k) 6= ∅, one has an exact sequence

0→ gt1(k)→ gt(k) ν∗−→ k → 0

Theorem 8.1. If the map ν∗ : gtk → k is surjective, then M(k) 6= ∅.

Proof. Every element Φ in M1(k) induces a morphism θΦ : k∗ → GT (k) where θΦ(k∗) is the
stabilizer of the equivalence classe of Φ in M1(k) = M(k)/k∗. Thus, every (f, λ) in θΦ(k∗) verifies

(f, λ) · Φ(A,B) = Φ(λA, λB)
Write f = exp(εψ(lnX, lnY )) and λ = 1 + εs, thus (ψ, s) ∈ gt(k). We are looking for an element
of the form (ψ, 1) ∈ gt(k), as the existence of such an element is equivalent to the surjectivity of
ν∗. In this case, one has:

Φ((1 + ε)A, (1 + ε)B) = exp(εψ(ln(Φ(A,B)eAΦ(A,B)−1), ln eB))Φ(A,B)
By linearizing with respect to ε and setting t = 1 + ε, one get

d

dt
Φ(tA, tB)

∣∣∣∣
t=1

= ψ(Φ(A,B)AΦ(A,B)−1, B) (8.1)

Conversly, suppose now given an element (ψ, 1), it exists a unique Φ ∈ F̂2 such that (8.1) is
satisfied. By working degree by degree, it can be shown that Φ is a 1-associator.

�

Corollary 8.2. If M(C) 6= ∅, then M(k) 6= ∅ for all k ⊂ C.

Proof. If M(C) 6= ∅, then one has the short exact sequence of Lie algebra

0→ gt1(C)→ gt(C) ν−→ C→ 0
which proves that ν∗ : gt(Q)→ Q is surjective, and thus that M1(Q) 6= ∅. �
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