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ABSTRACT. The theory of associator was introduced in a very fundamental paper of Vladimir
Drinfeld, by “universalizing” a construction coming from the monodromy of some differential
equations. Drinfeld also proves the existence of an associator over the rationals using a very in-
teresting group which has many connections with the Esquisse d’un programme of Grothendieck.

Main references are the article of Drinfel’d [Dri] and the book of Etingof-Schiffmann [ES].
See also [Bar| for a more categorical approach and [Sch] for the relationship between GT' and

Gal(Q/Q).

1. BRAIDS GROUPS
Let B, be the group generated by {o;, 1 <¢ < n — 1} and relations
oio; =0oj0; if |i — j| > 2
0304104 = 0i4+100+1
There is a canonical morphism B,, — S,, induced by
o — (4,1 +1)

The kernel of this morphism is the pure braid group PB,,. It is generated by {z;;, 1 <i < j <n}
where
Tij = (O'j_lo'j_g - O'i+1)0'1'2(0'j—10'j—2 ... O'H_l)_l

and relations

(aijk,xij) = (aijk,xik) = (aijk,xjk) =1 Where aijk = zijzikxjk (11&)
(@ij, xr) = (Ta, zjx) =1 fori<j<k<l (1.1b)
(xik,mi_jlxﬂxij) =1 fori<j<k<l (1.1c)

Remark 1.1. Bj is obviously the free group with one generator (i.e. Z). Thus, every element of
PB, is of the form 2™,

Remark 1.2. Every element of PB3 can be written as f(0?,03)(0102)%" where f(X,Y) is an
element of the free group with generators X, Y.

2. BRAIDED MONOIDAL CATEGORY

A braided monoidal category is the categorical analog of an abelian monoid, where commuta-
tivity and associativity holds only up to isomorphism. More precisely, a category C is a braided
monoidal category if there exists:

e A bifunctor ® :C xC — C
e A natural isomorphism a: (— ® =) ® — — — ® (— ® —) (the associativity constraint)
e A natural isomorphism 3: — ® — — — ®° — (the commutativity constraint)
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such that the following diagrams commute for all A, B, C € Obj(C) (Mac Lane’s coherence condi-
tion):

XA, BRC,D

(AeB)@C)® D (A (Be(C)®D A® ((B®C)® D)

aA@B,C,Di ll@a

(A® B)® (C® D) A® (B® (C® D))

QA,B,CQD

)ﬁA B®C(

®(BC BeC)®

(A9 B)® ®(C®A)

///// \\\\\

Bags,c

(A B) e C—=C® (A® B)

////”

\

Remark 2.1. Any braided monoidal category carries representation of the braid group as follow:
let Vi,...,V, be n copies of the same V € Obj(C) and set

2(C®B)—= (A2C)®

o

VO = (L (VieWh)eVs)...eV,
There is a morphism B, — Aut(V®") defined by:

01— Bvi,vs

—1
02 = Qyy v v, B v v v

Remark 2.2. If the commutativity constraint is involutive i.e. if By v = B;}J, then the cate-
gory is said to be symmetric. In this case, the preceding representation of B,, factor through a
representation of S,.

3. PRO-UNIPOTENT COMPLETION OF A GROUP OF FINITE TYPE

Let G be a group generated by {¢1,...,9,} and relations {Ry,..., R,}. Let a be the quotient
of the complete free k-Lie algebra on generators {v1,...,7,} by relations

log Ri(e™,...,e"™)=0,Vi=1...p

Denote by G(k) the Lie group of a, i.e. G(k) = exp(a) = {e%, a € a}. It is called the k-pro-
unipotent completion of G.
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4. INFINITESIMAL BRAIDS RELATIONS

4.1. Definition. Let t,(k) be the k-Lie algebra generated by {¢;;, 1 <i# j < n} and relations

tij = tj; (4.1a)
[tijstim) =0 for distincts 7, j, I, m (4.1b)
[tij tix +tjk] =0 for distincts ¢, j, k (4.1c)

They are called infinitesimal braids relations.
Set deg(t;;) = 1, and denote by t, (k) the degree completion of t, (k).

4.2. Realization. Let g be a simple Lie algebra and t € S?(g)?. Assume that t = Y. r ® y, and
set

t=3"19..020..0y9...1
It can easily be checked that the %7 satisfy the infinitesimal braids relations.

Proposition 4.1. Let i be a formal variable. There is a unique Lie algebra morphism &, —
U(g)®™[[n]] such that

tij — hti’j

5. ASSOCIATORS

Let f2(k) be the completed free k-Lie algebra in two variables, and §2(k) = exp(f2(k)). An
element ® € §2(k) will be called a A-associator if it satisfies:

®(B,A) = ®(A,B)~*

AM28(C, A)erC?® (B, 0)e*B/2B(A,B) = 1
where A+ B+ C =1, and

D(t12,to3 + toa)P(t1g + taz, taa) = P(tag, t34)P(t12 + i3, toa + taa) P(t12, t23)

in exp(ty).

Denote by M (k) the set of A-associators over k, and set M (k) = U, ¢p- Ma(k).

Associators gives a universal way for constructing braided monoidal categories. Let g be a
simple Lie algebra, t € S%(g)® and h a formal variable. If (®,)) is an associator, then elements
®(ht!2, ht23) and ™" induces a braided monoidal category structure on U (g)[[A]]-mod. (Equiv-
alently, (U(g)[[h]], Ao, ® (12, ht23), " ") is a quasitriangular quasi bialgebra.)

6. THE GROTHENDIECK-TEICHMULLER GROUP

The main question which motivates the definition of the GT group is: how to change the
associativity and commutativity constraints in a braided monoidal category in such a way that
the result is again a braided monoidal category ?

If C is a braided monoidal category, and if V1, V5, V3 € Obj(C), then every b € Bz induces an
isomorphism

(V1@ Ve) @ Vs — (V1) ® Vo(2)) @ Vs
where o is the image of b by the canonical projection By — S3. Thus, every ¢ € PBjs induces an
automorphism ¢ of (Vi1 ® Va) ® V3, and then induces an isomorphism

aod: (Vi) eV — Ve (Va2 V)

In the same way, every element of PBs defines a new commutativity constraint. Then, this action
reads:

ﬁ N B2m+1

ar— af(6a” (1@ %)) (Ba (1@ B)a)*™
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Mac Lane’s coherence conditions impose that n = 0 and relations which are equivalent to:
X Y) = f(v, x)™ (6.1)
f( X3, X1) X5" (X2, X3) X3" f( X1, Xo) X{" =1
for X7 X2X3 =1, and a relation on ¢ which can be expressed using the generators of PBy:

f(212, T23224) f (213223, T34) = f(@23, T34) f (212213, T2a34) f (212, T23) (6.3)

The set GT of all pairs (A = 2m+1, f) satisfying these relations has a natural semi-group structure.
Unfortunaly, GT is almost trivial. But if C is k[[A]]-linear, these relations make sense even if A € k*
and f belongs to the k-pro-unipotent completion §2 (k) of the free group, and it’s easily seen that an
element (f,\) is invertible iff A # 0, which leads to the definition of the Grothendieck-Teichmiiller
group GT'(k).

7. GT(k)-TORSOR STRUCTURE OF M (k)

It follows from the above section that GT'(k) acts on the set of Lie associator by
(£, A) - (2(A, B), ) = (f(P(A, B)e" ®(4, B) ™", ")@(A, B), p)) (7.1)

Theorem 7.1. For each Lie associator (®,)\) € M(k), the map oy, : Bn(k) — exp(t,) x S,
mapping o; to

<I>(t” G il tii+1)71(i i+ 1)e>\t”+1/2q>(t1¢ T t”“)
is a group isomorphism.

Proof. This formula is analog to the formula defining a representation of the braid group from a
braided monoidal category, and thus «,, is a group morphism.
Thus, «, induces a morphism PB,, (k) — exp(t,) and therefore a Lie algebra morphism

o : Lie(PB,(k)) — t,

The Lie algebra Lie(PB,,(k)) is generated by &;;, 1 <i < j < n and relations obtained from (1.1)
by setting x;; = €. Denote by grLie(PB,(k)) the associated graded of Lie(PB,(k)) and by
x — [z] the canonical projection Lie(PB,(k)) — gryLie(PB,(k)). The presentation of PB,
and t, implies that there is a morphism u, : t, — grLie(PB,(k)) defined by t;; — [£;], which
is surjective as grLie(PBy,(k)) is generated in degree 1. The morphism o} takes &;; to At;; +
{higher degree terms}, and thus the associated graded morphism

gra) : grlie(PBy(k)) — t,

is such that gra; o u, is bijective.
It follows that u,, is bijective, and then that so is gra;. As both Lie algebras are complete and
separated, o is an isomorphism. O

Theorem 7.2. The action of GT'(k) on M (k) is free and transitive.

Proof. Let (®1, 1), (®a, p2) € M(E). As the action of Fy x k* on M(k) is free and transitive,
there exists a unique f such that (f,A) - (®1,u1) = (Po, o) with A = po/py. Thus, it’s enough
to prove that (f,\) € GT(k). It can be done by applying the above morphism to each relation,
and it’s easily shown that the fact that both sides have the same image follows from the fact that
®,, Py are associators. O

8. EXISTENCE OF RATIONALS ASSOCIATORS

Let GTy(k) = {(1, f) € GT(k)} and M;(k) be the set of 1-associators. By identifying GT; (k)
(resp. M;(k)) with the quotient of GT(k) (resp. M (k)) by the natural action of k*, one see that
the action of GTj(k) on M;(k) is free and transitive. There is also an action of GT'(k) on M (k)
which is free but not transitive. If M (k) # (), there is a morphism v : GT'(k) — k* mapping
(A, f) to A, which is obviously surjective.
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Thus, in this case, the following sequence makes sense and is exact
1 GTy(k) — GT(k) L k* — 1
Let gt(k) be the Lie algebra of GT'(k). If My (k) # 0}, one has an exact sequence
0 — gt (k) — gt(k) 2> k — 0
Theorem 8.1. If the map v* : gt, — k is surjective, then M (k) # 0.

Proof. Every element ® in M (k) induces a morphism g : k* — GT(k) where 6g(k*) is the
stabilizer of the equivalence classe of ® in M;(k) = M (k)/k*. Thus, every (f,\) in 0¢(k*) verifies

Write f = exp(e(In X,InY")) and A = 1 + es, thus (¢, s) € gt(k). We are looking for an element
of the form (¢, 1) € gt(k), as the existence of such an element is equivalent to the surjectivity of
v*. In this case, one has:

B((1+€)A, (14 €)B) = exp(eyp(In(®(A, B)e*®(A, B)™!),Ine?))®(4, B)
By linearizing with respect to € and setting t = 1 + ¢, one get
d

E@(tA,tB) = (®(A, B)A®(A, B)"', B) (8.1)

Conversly, suppose now given an element (1, 1), it exists a unique ® € Fg such that (8.1) is
satisfied. By working degree by degree, it can be shown that ® is a 1-associator.

O
Corollary 8.2. If M(C) # 0, then M(k) # 0 for all k C C.
Proof. If M(C) # 0, then one has the short exact sequence of Lie algebra
0 — gt;(C) — gt(C) HC — 0
which proves that v* : gt(Q) — Q is surjective, and thus that M;(Q) # 0. O
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