INTRODUCTION TO DRINFELD'S ASSOCIATOR THEORY

ADRIEN BROCHIER

WORKSHOP: KONTSEVICH FORMALITY THEOREM AND DUFLO ISOMORPHISM, WARSAW, APRIL 2009

ABSTRACT. The theory of associator was introduced in a very fundamental paper of Vladimir Drinfeld, by "universalizing" a construction coming from the monodromy of some differential equations. Drinfeld also proves the existence of an associator over the rationals using a very interesting group which has many connections with the $Esquisse \ d'un \ programme$ of Grothendieck.

Main references are the article of Drinfel'd [Dri] and the book of Etingof-Schiffmann [ES]. See also [Bar] for a more categorical approach and [Sch] for the relationship between GT and $Gal(\overline{\mathbb{Q}}/\mathbb{Q}).$

1. Braids groups

Let B_n be the group generated by $\{\sigma_i, 1 \leq i \leq n-1\}$ and relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i - j| \ge 2$$

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

There is a canonical morphism $B_n \to S_n$ induced by

$$\sigma_i \longmapsto (i, i+1)$$

The kernel of this morphism is the pure braid group PB_n . It is generated by $\{x_{ij}, 1 \le i < j \le n\}$ where

$$x_{ij} = (\sigma_{j-1}\sigma_{j-2}\dots\sigma_{i+1})\sigma_i^2(\sigma_{j-1}\sigma_{j-2}\dots\sigma_{i+1})^{-1}$$

and relations

$$(a_{ijk}, x_{ij}) = (a_{ijk}, x_{ik}) = (a_{ijk}, x_{jk}) = 1 \qquad \text{where } a_{ijk} = x_{ij} x_{ik} x_{jk} \tag{1.1a}$$

 $(x_{ij}, x_{kl}) = (x_{il}, x_{jk}) = 1$ for i < j < k < l(1.1b)

$$(x_{ik}, x_{ij}^{-1} x_{jl} x_{ij}) = 1 \qquad \text{for } i < j < k < l \qquad (1.1c)$$

Remark 1.1. B_2 is obviously the free group with one generator (i.e. \mathbb{Z}). Thus, every element of PB_2 is of the form σ_1^{2m} .

Remark 1.2. Every element of PB_3 can be written as $f(\sigma_1^2, \sigma_2^2)(\sigma_1\sigma_2)^{3n}$ where f(X, Y) is an element of the free group with generators X, Y.

2. Braided monoidal category

A braided monoidal category is the categorical analog of an abelian monoid, where commutativity and associativity holds only up to isomorphism. More precisely, a category \mathcal{C} is a braided monoidal category if there exists:

- A bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$
- A natural isomorphism α : (- ⊗ -) ⊗ → ⊗ (- ⊗ -) (the associativity constraint)
 A natural isomorphism β : ⊗ → ⊗^{op} (the commutativity constraint)

such that the following diagrams commute for all $A, B, C \in Obj(\mathcal{C})$ (Mac Lane's coherence condition):

Remark 2.1. Any braided monoidal category carries representation of the braid group as follow: let V_1, \ldots, V_n be *n* copies of the same $V \in Obj(\mathcal{C})$ and set

$$V^{\otimes n} = (\dots ((V_1 \otimes V_2) \otimes V_3) \dots \otimes V_n)$$

There is a morphism $B_n \longrightarrow Aut(V^{\otimes n})$ defined by:

$$\sigma_{1} \longmapsto \beta_{V_{1},V_{2}}$$

$$\sigma_{2} \longmapsto \alpha_{V_{1},V_{3},V_{2}}^{-1} \beta_{V_{2},V_{3}} \alpha_{V_{1},V_{2},V_{3}}$$

$$\vdots \qquad \vdots \qquad \vdots$$

Remark 2.2. If the commutativity constraint is involutive i.e. if $\beta_{U,V} = \beta_{V,U}^{-1}$, then the category is said to be *symmetric*. In this case, the preceding representation of B_n factor through a representation of S_n .

3. PRO-UNIPOTENT COMPLETION OF A GROUP OF FINITE TYPE

Let G be a group generated by $\{g_1, \ldots, g_n\}$ and relations $\{R_1, \ldots, R_p\}$. Let \mathfrak{a} be the quotient of the complete free k-Lie algebra on generators $\{\gamma_1, \ldots, \gamma_n\}$ by relations

$$\log R_i(e^{\gamma_1},\ldots,e^{\gamma_n})=0, \ \forall i=1\ldots p$$

Denote by G(k) the Lie group of \mathfrak{a} , i.e. $G(k) = \exp(\mathfrak{a}) = \{e^a, a \in \mathfrak{a}\}$. It is called the *k*-prounipotent completion of G.

4. INFINITESIMAL BRAIDS RELATIONS

4.1. **Definition.** Let $\mathfrak{t}_n(k)$ be the k-Lie algebra generated by $\{t_{ij}, 1 \leq i \neq j \leq n\}$ and relations

$$t_{ij} = t_{ji}$$

$$[t_{ij}, t_{lm}] = 0$$
for distincts i, j, l, m

$$(4.1a)$$

$$(4.1b)$$

$$\begin{bmatrix} t_{ij}, t_{ik} + t_{jk} \end{bmatrix} = 0 \qquad \qquad \text{for distincts } i, j, k \qquad (4.1c)$$

They are called *infinitesimal braids relations*.

Set $deg(t_{ij}) = 1$, and denote by $\hat{\mathfrak{t}}_n(k)$ the degree completion of $\mathfrak{t}_n(k)$.

4.2. **Realization.** Let \mathfrak{g} be a simple Lie algebra and $t \in S^2(\mathfrak{g})^{\mathfrak{g}}$. Assume that $t = \sum x \otimes y$, and set

$$t^{i,j} = \sum 1 \otimes \ldots \otimes x \otimes \ldots \otimes y \otimes \ldots 1$$

It can easily be checked that the $t^{i,j}$ satisfy the infinitesimal braids relations.

Proposition 4.1. Let \hbar be a formal variable. There is a unique Lie algebra morphism $\hat{\mathfrak{t}}_n \to U(\mathfrak{g})^{\otimes n}[[\hbar]]$ such that

$$t_{ij} \longmapsto \hbar t^{i,j}$$

5. Associators

Let $\hat{\mathfrak{f}}_2(k)$ be the completed free k-Lie algebra in two variables, and $\hat{\mathfrak{F}}_2(k) = \exp(\hat{\mathfrak{f}}_2(k))$. An element $\Phi \in \hat{\mathfrak{F}}_2(k)$ will be called a λ -associator if it satisfies:

$$\Phi(B, A) = \Phi(A, B)^{-1}$$
$$e^{\lambda A/2} \Phi(C, A) e^{\lambda C/2} \Phi(B, C) e^{\lambda B/2} \Phi(A, B) = 1$$

where A + B + C = 1, and

$$\Phi(t_{12}, t_{23} + t_{24})\Phi(t_{13} + t_{23}, t_{34}) = \Phi(t_{23}, t_{34})\Phi(t_{12} + t_{13}, t_{24} + t_{34})\Phi(t_{12}, t_{23})$$

in $\exp(\hat{\mathfrak{t}}_4)$.

Denote by $M_{\lambda}(k)$ the set of λ -associators over k, and set $M(k) = \bigcup_{\lambda \in k^*} M_{\lambda}(k)$.

Associators gives a universal way for constructing braided monoidal categories. Let \mathfrak{g} be a simple Lie algebra, $t \in S^2(\mathfrak{g})^{\mathfrak{g}}$ and \hbar a formal variable. If (Φ, λ) is an associator, then elements $\Phi(\hbar t^{1,2}, \hbar t^{2,3})$ and $e^{\hbar \lambda t^{1,2}}$ induces a braided monoidal category structure on $U(\mathfrak{g})[[\hbar]]$ -mod. (Equivalently, $(U(\mathfrak{g})[[\hbar]], \Delta_0, \Phi(\hbar t^{1,2}, \hbar t^{2,3}), e^{\hbar \lambda t^{1,2}})$ is a quasitriangular quasi bialgebra.)

6. The Grothendieck-Teichmüller group

The main question which motivates the definition of the GT group is: how to change the associativity and commutativity constraints in a braided monoidal category in such a way that the result is again a braided monoidal category ?

If C is a braided monoidal category, and if $V_1, V_2, V_3 \in Obj(C)$, then every $b \in B_3$ induces an isomorphism

$$(V_1 \otimes V_2) \otimes V_3 \longrightarrow (V_{\sigma(1)} \otimes V_{\sigma(2)}) \otimes V_{\sigma(3)}$$

where σ is the image of b by the canonical projection $B_3 \to S_3$. Thus, every $\phi \in PB_3$ induces an automorphism $\tilde{\phi}$ of $(V_1 \otimes V_2) \otimes V_3$, and then induces an isomorphism

$$\alpha \circ \tilde{\phi} : (V_1 \otimes V_2) \otimes V_3 \longrightarrow V_1 \otimes (V_2 \otimes V_3)$$

In the same way, every element of PB_2 defines a new commutativity constraint. Then, this action reads:

$$\beta \longmapsto \beta^{2m+1}$$
$$\alpha \longmapsto \alpha f(\beta^2, \alpha^{-1}(1 \otimes \beta^2)\alpha)(\beta \alpha^{-1}(1 \otimes \beta)\alpha)^{3n}$$

ADRIEN BROCHIER WORKSHOP: KONTSEVICH FORMALITY THEOREM AND DUFLO ISOMORPHISM, WARSAW, APRIL 2009

Mac Lane's coherence conditions impose that n = 0 and relations which are equivalent to:

$$f(X,Y) = f(Y,X)^{-1}$$
(6.1)

$$f(X_3, X_1)X_3^m f(X_2, X_3)X_2^m f(X_1, X_2)X_1^m = 1$$
(6.2)

for $X_1X_2X_3 = 1$, and a relation on ϕ which can be expressed using the generators of PB_4 :

$$f(x_{12}, x_{23}x_{24})f(x_{13}x_{23}, x_{34}) = f(x_{23}, x_{34})f(x_{12}x_{13}, x_{24}x_{34})f(x_{12}, x_{23})$$
(6.3)

The set <u>*GT*</u> of all pairs ($\lambda = 2m+1, f$) satisfying these relations has a natural semi-group structure. Unfortunaly, <u>*GT*</u> is almost trivial. But if C is $k[[\hbar]]$ -linear, these relations make sense even if $\lambda \in k^*$ and f belongs to the k-pro-unipotent completion $\mathfrak{F}_2(k)$ of the free group, and it's easily seen that an element (f, λ) is invertible iff $\lambda \neq 0$, which leads to the definition of the Grothendieck-Teichmüller group GT(k).

7. GT(k)-torsor structure of M(k)

It follows from the above section that GT(k) acts on the set of Lie associator by

$$(f,\lambda) \cdot (\Phi(A,B),\mu) = (f(\Phi(A,B)e^{A}\Phi(A,B)^{-1},e^{B})\Phi(A,B),\mu\lambda)$$
(7.1)

Theorem 7.1. For each Lie associator $(\Phi, \lambda) \in M(k)$, the map $\alpha_n : B_n(k) \to \exp(\hat{\mathfrak{t}}_n) \rtimes S_n$ mapping σ_i to

$$\Phi(t^{1i} + \dots + t^{i-1i}, t^{ii+1})^{-1}(i, i+1)e^{\lambda t^{ii+1}/2}\Phi(t^{1i} + \dots + t^{i-1i}, t^{ii+1})$$

is a group isomorphism.

Proof. This formula is analog to the formula defining a representation of the braid group from a braided monoidal category, and thus α_n is a group morphism.

Thus, α_n induces a morphism $PB_n(k) \to \exp(\hat{\mathfrak{t}}_n)$ and therefore a Lie algebra morphism

$$\alpha_n^* : \operatorname{Lie}(PB_n(k)) \longrightarrow \hat{\mathfrak{t}}_n$$

The Lie algebra $\text{Lie}(PB_n(k))$ is generated by ξ_{ij} , $1 \leq i < j \leq n$ and relations obtained from (1.1) by setting $x_{ij} = e^{\xi_{ij}}$. Denote by $\text{grLie}(PB_n(k))$ the associated graded of $\text{Lie}(PB_n(k))$ and by $x \to [x]$ the canonical projection $\text{Lie}(PB_n(k)) \to \text{gr}_1 \text{Lie}(PB_n(k))$. The presentation of PB_n and \mathfrak{t}_n implies that there is a morphism $\mu_n : \mathfrak{t}_n \to \text{grLie}(PB_n(k))$ defined by $t_{ij} \mapsto [\xi_{ij}]$, which is surjective as $\text{grLie}(PB_n(k))$ is generated in degree 1. The morphism α_n^* takes ξ_{ij} to $\lambda t_{ij} + \{\text{higher degree terms}\}$, and thus the associated graded morphism

$$\operatorname{gr} \alpha_n^* : \operatorname{grLie}(PB_n(k)) \to \mathfrak{t}_n$$

is such that $\operatorname{gr} \alpha_n^* \circ \mu_n$ is bijective.

It follows that μ_n is bijective, and then that so is $\operatorname{gr} \alpha_n^*$. As both Lie algebras are complete and separated, α_n^* is an isomorphism.

Theorem 7.2. The action of GT(k) on M(k) is free and transitive.

Proof. Let $(\Phi_1, \mu_1), (\Phi_2, \mu_2) \in M(k)$. As the action of $\hat{F}_2 \times k^*$ on M(k) is free and transitive, there exists a unique f such that $(f, \lambda) \cdot (\Phi_1, \mu_1) = (\Phi_2, \mu_2)$ with $\lambda = \mu_2/\mu_1$. Thus, it's enough to prove that $(f, \lambda) \in GT(k)$. It can be done by applying the above morphism to each relation, and it's easily shown that the fact that both sides have the same image follows from the fact that Φ_2, Φ_2 are associators.

8. EXISTENCE OF RATIONALS ASSOCIATORS

Let $GT_1(k) = \{(1, f) \in GT(k)\}$ and $M_1(k)$ be the set of 1-associators. By identifying $GT_1(k)$ (resp. $M_1(k)$) with the quotient of GT(k) (resp. M(k)) by the natural action of k^* , one see that the action of $GT_1(k)$ on $M_1(k)$ is free and transitive. There is also an action of GT(k) on $M_1(k)$ which is free but not transitive. If $M(k) \neq \emptyset$, there is a morphism $\nu : GT(k) \longrightarrow k^*$ mapping (λ, f) to λ , which is obviously surjective. Thus, in this case, the following sequence makes sense and is exact

$$1 \to GT_1(k) \to GT(k) \xrightarrow{\nu} k^* \to 1$$

Let $\mathfrak{gt}(k)$ be the Lie algebra of GT(k). If $M_1(k) \neq \emptyset$, one has an exact sequence

$$0 \to \mathfrak{gl}_1(k) \to \mathfrak{gl}(k) \xrightarrow{\nu^*} k \to 0$$

Theorem 8.1. If the map $\nu^* : \mathfrak{gl}_k \to k$ is surjective, then $M(k) \neq \emptyset$.

Proof. Every element Φ in $M_1(k)$ induces a morphism $\theta_{\Phi} : k^* \to GT(k)$ where $\theta_{\Phi}(k^*)$ is the stabilizer of the equivalence classe of Φ in $M_1(k) = M(k)/k^*$. Thus, every (f, λ) in $\theta_{\Phi}(k^*)$ verifies

$$(f,\lambda) \cdot \Phi(A,B) = \Phi(\lambda A,\lambda B)$$

Write $f = \exp(\epsilon \psi(\ln X, \ln Y))$ and $\lambda = 1 + \epsilon s$, thus $(\psi, s) \in \mathfrak{gt}(k)$. We are looking for an element of the form $(\psi, 1) \in \mathfrak{gt}(k)$, as the existence of such an element is equivalent to the surjectivity of ν^* . In this case, one has:

$$\Phi((1+\epsilon)A, (1+\epsilon)B) = \exp(\epsilon\psi(\ln(\Phi(A, B)e^A\Phi(A, B)^{-1}), \ln e^B))\Phi(A, B)$$

By linearizing with respect to ϵ and setting $t = 1 + \epsilon$, one get

$$\left. \frac{d}{dt} \Phi(tA, tB) \right|_{t=1} = \psi(\Phi(A, B)A\Phi(A, B)^{-1}, B)$$
(8.1)

Conversely, suppose now given an element $(\psi, 1)$, it exists a unique $\Phi \in \hat{F}_2$ such that (8.1) is satisfied. By working degree by degree, it can be shown that Φ is a 1-associator.

Corollary 8.2. If $M(\mathbb{C}) \neq \emptyset$, then $M(k) \neq \emptyset$ for all $k \subset \mathbb{C}$.

Proof. If $M(\mathbb{C}) \neq \emptyset$, then one has the short exact sequence of Lie algebra

$$0 \to \mathfrak{gl}_1(\mathbb{C}) \to \mathfrak{gl}(\mathbb{C}) \xrightarrow{\nu} \mathbb{C} \to 0$$

which proves that $\nu^* : \mathfrak{gl}(\mathbb{Q}) \to \mathbb{Q}$ is surjective, and thus that $M_1(\mathbb{Q}) \neq \emptyset$.

References

- [Bar] D. BAR-NATAN. On associators and the Grothendieck-Teichmuller group. I. Selecta Math. (N.S.) (1998). 4(2):183–212.
- [Dri] V. G. DRINFELD. On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q). Leningrad Math. J. (1990). 2(4):829–860.
- [ES] P. ETINGOF, O. SCHIFFMANN. *Lectures on quantum groups*. Lectures in Mathematical Physics (International Press, Boston, MA, **1998**).
- [Sch] L. SCHNEPS. The Grothendieck-Teichmüller group GT: a survey. In Geometric Galois actions, 1, vol. 242 of London Math. Soc. Lecture Note Ser., pp. 183–203 (Cambridge Univ. Press, Cambridge, 1997).

Adrien Brochier, IRMA Strasbourg, France, brochier@math.u-strasbg.fr