Wojciech Bartoszek⁽¹⁾ and Małgorzata Pułka⁽²⁾ DEPARTMENT OF MATHEMATICS, GDAŃSK UNIVERSITY OF TECHNOLOGY, UL. NARUTOWICZA 11/12, 80-233 GDAŃSK, POLAND e-mail: bartowk@mifgate.mif.pg.gda.pl⁽¹⁾ e-mail: mpulka@mif.pg.gda.pl⁽²⁾

On dynamics of quadratic stochastic processes and their applications in biology

A quadratic stochastic operator $\mathbf{Q} : \mathfrak{X} \to \mathfrak{X}$ is defined by a cubic (finite or infinite) array of nonnegative real numbers $[q_{ij,k}]_{i,j,k\geq 1}$ which satisfy

(1) $0 \le q_{ij,k} = q_{ji,k} \le 1$ for all $i, j, k \ge 1$,

(2) $\sum_{k=1} q_{ij,k} = 1$ for any pair (i, j),

where \mathfrak{X} is ℓ^1 or ℓ^1_d equipped with a standard norm. The family of all quadratic stochastic operators is denoted by \mathfrak{Q} . Any quadratic stochastic operator (process) \mathbf{Q} may be viewed as a bilinear mapping $\mathbf{Q} : \mathfrak{X} \times \mathfrak{X} \to \mathfrak{X}$ if we set $\mathbf{Q}(\underline{x}, \underline{y})(k) = \sum_{i=1,j=1}^{n} x_i y_j q_{ij,k}$. Clearly \mathbf{Q} is monotone (i.e. $\mathbf{Q}(\underline{x}, \underline{y}) \ge \mathbf{Q}(\underline{u}, \underline{w})$ whenever $\underline{x} \ge \underline{u} \ge 0$ and $\underline{y} \ge \underline{w} \ge 0$) and is bounded as $\sup_{\|\underline{x}\|_1, \|\underline{y}\|_1 \le 1} \|\mathbf{Q}(\underline{x}, \underline{y})\|_1 = 1$. It follows that \mathbf{Q} may also be viewed as a mapping $\mathbf{Q} : \mathcal{D} \times \mathcal{D} \to \mathcal{D}$, where \mathcal{D} stands for the simplex of probability vectors. In population genetics a special attention is paid to a nonlinear mapping $\mathcal{D} \ni \underline{p} \to \mathbb{Q}(\underline{p}) = \mathbf{Q}(\underline{p}, \underline{p})$. Here $\mathbb{Q} : \mathcal{D} \to \mathcal{D}$. Roughly speaking $\mathbb{Q}(\underline{p})$ represents a distribution of genes in the next generation if parent's gens have a distribution \underline{p} . In this simplified model the iterates $\mathbb{Q}^k(\underline{p})$, where $k = 0, 1, \ldots$, describe the evolution of a genom. Given an initial distribution $\underline{p} \in \mathcal{D}$ one may ask about asymptotic behaviour of the trajectory (i.e. the sequence $(\mathbb{Q}^n(\underline{p}))_{n\geq 0}$). Because of nonlinearity, the trajectories enjoy several unexpected features (as it was conjectured by S. Ulam). In this talk we discuss some generic properties in the set \mathfrak{Q} . We also present conditions for asymptotic stability of $\mathbf{Q} \in \mathfrak{Q}$.