C. Bodenstein¹, B. Knoke¹, S. Schuster¹

¹ Dept. of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany

²Current address: Institute of Biochemical Engineering, University of Stuttgart, Germany

e-mail: {christian.bodenstein,stefan.schu}@uni-jena.de

M. Marhl³, M. Perc³

³ Dept. of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia

Protein activation by calcium oscillations and Jensen's Inequality

Oscillating concentrations of cellular Ca²⁺-ions are of great importance for the signalling in the cell. It is widely believed that the information of extracellular stimuli is encoded into an oscillating Ca²⁺ pattern, which subsequently is decoded by the activation of Ca²⁺-sensitive proteins. Besides this advantage of an oscillating Ca²⁺ signal, we here show that oscillations additionally lead to a better activation of the target proteins compared to a constant signal. In two asymptotic cases we can analytically prove this for arbitrary oscillation shapes and a very general decoding model, which comprises most previous models of Ca²⁺-sensitive proteins. For this we use Jensen's inequality that relates the value of a convex function of an average to the average of the convex function. Moreover, numerical simulations indicate that oscillations lead to a better activation not only in the two asymptotic cases. The results underline the importance of the cooperativity of the binding of Ca^{2+} and of zero-order ultrasensitivity, which are two properties that are often observed in experiments on the activation of Ca²⁺-sensitive target proteins. We compare our theoretical predictions with data from experimental studies investigating the activation of NFAT and Ras by oscillatory and constant signals.

References

- Dolmetsch et al., Calcium oscillations increase the efficiency and specificity of gene expression Nature 392 933–936, 1998.
- [2] Kupzig et al., The frequencies of calcium oscillations are optimized for efficient calciummediated activation of Ras and the ERK/MAPK cascade Proc Natl Acad Sci USA 102 7577– 7582, 2005.