On q-asymptotics for some q-difference-differential equations with Fuchsian and irregular singularities

Alberto Lastra*[†], Stéphane Malek[†], Javier Sanz*

* Universidad de Valladolid, Spain
 † Université de Lille 1, France

Bedlewo 2011, August 8th

< A > < A > >

Introduction

A class of *q*-difference-differential equations Study of the transformed problem Back to our problem

Notations Preliminary results for PDE's by S. Malek

Notations

 $\mathbb{N} = \{0, 1, 2, ...\}$ $\mathbb{C} [[z]]$ Formal complex power series $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$

D(0,r) denotes the open disc with center 0 and radius r > 0.

Given $V \subset \mathbb{C}$ and $q \in \mathbb{C}$, we consider q-spirals

 $Vq^{\mathbb{Z}} = \{vq^h : v \in V, \ h \in \mathbb{Z}\}, \quad Vq^{\mathbb{N}} = \{vq^h : v \in V, \ h \in \mathbb{N}\}.$

-

Notations Preliminary results for PDE's by S. Malek

Cauchy problem for some PDE's, by S. Malek

S. Malek studied PDE's of the form

$$t^{2r_2}\partial_t^{r_2}(z\partial_z)^{r_1}\partial_z^S u(t,z) = F(t,z,\partial_t,\partial_z)u(t,z)$$
(1)

where $S, r_1, r_2 \in \mathbb{N}$ and F is some suitable differential operator with polynomial coefficients.

< 回 > < 三 > < 三 >

Notations Preliminary results for PDE's by S. Malek

Cauchy problem for some PDE's, by S. Malek

S. Malek studied PDE's of the form

$$t^{2r_2}\partial_t^{r_2}(z\partial_z)^{r_1}\partial_z^S u(t,z) = F(t,z,\partial_t,\partial_z)u(t,z)$$
(1)

where $S, r_1, r_2 \in \mathbb{N}$ and F is some suitable differential operator with polynomial coefficients.

For given initial data

$$(\partial_z^j \hat{u})(t,0) = \hat{u}_j(t) \in \mathbb{C}[[t]],$$
(2)

- < 同 > < 三 > < 三 >

 $0 \leq j \leq S-1,$ he constructed formal power series solutions of (1)+(2) of the form

$$\hat{u}(t,z) = \sum_{m \ge 0} \hat{u}_m(t) z^m / m!,$$

with coefficients in $\mathbb{C}[[t]]$.

Notations Preliminary results for PDE's by S. Malek

Summability for $r_1 = 0$, Gevrey expansion for $r_1 > 0$

Assume the initial conditions are 1–Borel summable with respect to t in some direction $d \in \mathbb{R}$.

イロト イポト イヨト イヨト

3

Notations Preliminary results for PDE's by S. Malek

Summability for $r_1 = 0$, Gevrey expansion for $r_1 > 0$

Assume the initial conditions are 1–Borel summable with respect to t in some direction $d \in \mathbb{R}$.

For $r_1 = 0$, it was shown in [S. Malek, J. Dyn. Control Syst. 13 (2007), no. 3, 419–449] that the formal series solution $\hat{u}(t, z)$ is 1–Borel summable with respect to t in the direction d if d is well chosen, as series with coefficients in the Banach space of holomorphic functions near the origin (in z) with the supremum norm.

Notations Preliminary results for PDE's by S. Malek

Summability for $r_1 = 0$, Gevrey expansion for $r_1 > 0$

Assume the initial conditions are 1-Borel summable with respect to t in some direction $d \in \mathbb{R}$.

For $r_1 = 0$, it was shown in [S. Malek, J. Dyn. Control Syst. 13 (2007), no. 3, 419–449] that the formal series solution $\hat{u}(t, z)$ is 1–Borel summable with respect to t in the direction d if d is well chosen, as series with coefficients in the Banach space of holomorphic functions near the origin (in z) with the supremum norm.

For $r_1 \neq 0$, in [S. Malek, J. Dyn. Control Syst. 15 (2009), no. 2, 277–305] it was shown the existence of actual holomorphic solutions u(t, z) which are Gevrey asymptotic of order larger than 1 to $\hat{u}(t, z)$ with respect to t in sectors with finite radius in well chosen directions $d \in \mathbb{R}$.

< ロ > < 同 > < 三 > < 三 >

Notations Preliminary results for PDE's by S. Malek

Summability for $r_1 = 0$, Gevrey expansion for $r_1 > 0$

Assume the initial conditions are 1-Borel summable with respect to t in some direction $d \in \mathbb{R}$.

For $r_1 = 0$, it was shown in [S. Malek, J. Dyn. Control Syst. 13 (2007), no. 3, 419–449] that the formal series solution $\hat{u}(t, z)$ is 1–Borel summable with respect to t in the direction d if d is well chosen, as series with coefficients in the Banach space of holomorphic functions near the origin (in z) with the supremum norm.

For $r_1 \neq 0$, in [S. Malek, J. Dyn. Control Syst. 15 (2009), no. 2, 277–305] it was shown the existence of actual holomorphic solutions u(t, z) which are Gevrey asymptotic of order larger than 1 to $\hat{u}(t, z)$ with respect to t in sectors with finite radius in well chosen directions $d \in \mathbb{R}$.

Reason: presence of small divisors introduced by the Fuchsian operator $(z\partial_z)^{r_1}$.

-

Setting of the problem Equivalent problem

Analogue for q-difference-differential equations

As a q-analogue of (1)+(2), we consider the q-difference-differential equation

$$((z\partial_z+1)^{r_1}(t\sigma_q)^{r_2}+1)\partial_z^S \hat{X}(t,z) = \sum_{k=0}^{S-1} b_k(z)(t\sigma_q)^{m_{0,k}} (\partial_z^k \hat{X})(t,zq^{-m_{1,k}})$$

with given initial conditions

$$(\partial_z^j \hat{X})(t,0) = \hat{X}_j(t) \in \mathbb{C}[[t]].$$

- (同) - (目) - (目)

Setting of the problem Equivalent problem

Analogue for q-difference-differential equations

As a q-analogue of (1)+(2), we consider the q-difference-differential equation

$$((z\partial_z+1)^{r_1}(t\sigma_q)^{r_2}+1)\partial_z^S \hat{X}(t,z) = \sum_{k=0}^{S-1} b_k(z)(t\sigma_q)^{m_{0,k}} (\partial_z^k \hat{X})(t,zq^{-m_{1,k}})$$

with given initial conditions

$$(\partial_z^j \hat{X})(t,0) = \hat{X}_j(t) \in \mathbb{C}[[t]].$$

S and $m_{0,k},m_{1,k},~0\leq k\leq S-1,$ are nonnegative integers,

 $q\in\mathbb{C}$ with |q|>1,

 σ_q is the dilation operator defined by $(\sigma_q \hat{X})(t,z) = \hat{X}(qt,z)$,

 $b_k(z) = \sum_{s \in I_k} b_{ks} z^s$ are polynomial in z, where $I_k \subset \mathbb{N}$, the map $(t, z) \mapsto (q^{m_{0,k}} t, zq^{-m_{1,k}})$ is volume shrinking, i.e., $m_{0,k} < m_{1,k}$, and $r_2 \ge 1$, while $r_1 \ge 0$.

Setting of the problem Equivalent problem

Analogue for q-difference-differential equations

As a q-analogue of (1)+(2), we consider the q-difference-differential equation

$$((z\partial_z+1)^{r_1}(t\sigma_q)^{r_2}+1)\partial_z^S \hat{X}(t,z) = \sum_{k=0}^{S-1} b_k(z)(t\sigma_q)^{m_{0,k}} (\partial_z^k \hat{X})(t,zq^{-m_{1,k}})$$

with given initial conditions

$$(\partial_z^j \hat{X})(t,0) = \hat{X}_j(t) \in \mathbb{C}[[t]].$$

S and $m_{0,k},m_{1,k},~0\leq k\leq S-1,$ are nonnegative integers,

 $q\in\mathbb{C}$ with |q|>1,

 σ_q is the dilation operator defined by $(\sigma_q \hat{X})(t, z) = \hat{X}(qt, z)$, $b_k(z) = \sum_{s \in I_k} b_{ks} z^s$ are polynomial in z, where $I_k \subset \mathbb{N}$, the map $(t, z) \mapsto (q^{m_{0,k}}t, zq^{-m_{1,k}})$ is volume shrinking, i.e., $m_{0,k} < m_{1,k}$, and $r_2 \ge 1$, while $r_1 \ge 0$.

This problem will be called (P1).

= non

(4月) イヨト イヨト

Setting of the problem Equivalent problem

Formal solution

Proposition

(P1) has a unique formal power series solution of the form

$$\hat{X}(t,z) = \sum_{h \ge 0} \hat{X}_h(t) \frac{z^h}{h!},$$

where $\hat{X}_h(t) \in \mathbb{C}[[t]]$, $h \ge 0$.

イロト イポト イヨト イヨト

Setting of the problem Equivalent problem

Formal solution

Proposition

(P1) has a unique formal power series solution of the form

$$\hat{X}(t,z) = \sum_{h>0} \hat{X}_h(t) \frac{z^h}{h!},$$

where $\hat{X}_h(t) \in \mathbb{C}[[t]], h \ge 0.$

Objective: to construct actual holomorphic solutions of this problem that are asymptotically represented by $\hat{X}(t,z)$ in a precise sense.

Setting of the problem Equivalent problem

Formal q-Laplace and q-Borel transforms

Definition

The formal q-Borel transform of order 1 of a series $\hat{f}(t) = \sum_{n \ge 0} f_n t^n \in \mathbb{C}[[t]]$ is defined as

$$\hat{\mathcal{B}}_q \hat{f}(\tau) = \sum_{n \ge 0} \frac{f_n}{q^{n(n-1)/2}} \tau^n.$$

Definition

The formal $q-\text{Laplace transform of order 1 of }\hat{g}(\tau)=\sum_{n\geq 0}g_n\tau^n\in\mathbb{C}[[\tau]]$ is defined as

$$\hat{\mathcal{L}}_q \hat{g}(t) = \sum_{n \ge 0} q^{n(n-1)/2} g_n t^n.$$

(日) (同) (三) (三)

Setting of the problem Equivalent problem

Transformed problem

$$((z\partial_z+1)^{r_1}(t\sigma_q)^{r_2}+1)\partial_z^S \hat{X}(t,z) = \sum_{k=0}^{S-1} b_k(z)(t\sigma_q)^{m_{0,k}}(\partial_z^k \hat{X})(t,zq^{-m_{1,k}})$$

$$\hat{X}(t,z) = \hat{\mathcal{L}}_q(\hat{W})(\tau,z) \quad \uparrow \quad \hat{\mathcal{L}}_q(\tau\hat{W})(t) = t\hat{\mathcal{L}}_q\hat{W}(qt) = (t\sigma_q)\hat{\mathcal{L}}_q\hat{W}(t)$$

$$((z\partial_z+1)^{r_1}\tau^{r_2}+1)\partial_z^S\hat{W}(\tau,z) = \sum_{k=0}^{S-1} b_k(z)\tau^{m_{0,k}}(\partial_z^k\hat{W})(\tau,zq^{-m_{1,k}})$$
(3)

<ロ> <同> <同> < 回> < 回>

3

Setting of the problem Equivalent problem

Equivalence of the formal problems

$$\hat{X}(t,z) = \sum_{h\geq 0} \hat{X}_h(t) \frac{z^h}{h!}, \text{ where } \hat{X}_h \in \mathbb{C}[[t]] \text{ for every } h \geq 0, \text{ satisfies } (P1) \iff \hat{W}(\tau,z) = \sum_{h\geq 0} \hat{\mathcal{B}}_q \hat{X}_h(\tau) \frac{z^h}{h!} \text{ satisfies (3) with initial conditions}$$
$$\hat{W}_j(\tau) = \hat{\mathcal{B}}_q \hat{X}_j, \ 0 \leq j \leq S - 1.$$
(4)

<ロ> <同> <同> < 回> < 回>

э.

Setting of the problem Equivalent problem

Equivalence of the formal problems

$$\hat{X}(t,z) = \sum_{h\geq 0} \hat{X}_{h}(t) \frac{z^{h}}{h!}, \text{ where } \hat{X}_{h} \in \mathbb{C}[[t]] \text{ for every } h \geq 0, \text{ satisfies } (P1) \iff \\ \hat{W}(\tau,z) = \sum_{h\geq 0} \hat{\mathcal{B}}_{q} \hat{X}_{h}(\tau) \frac{z^{h}}{h!} \text{ satisfies (3) with initial conditions} \\ \hat{W}_{j}(\tau) = \hat{\mathcal{B}}_{q} \hat{X}_{j}, \ 0 \leq j \leq S-1.$$

(3)+(4) will be called (P2).

In other words:

$$\begin{split} \hat{W}(\tau,z) &= \sum_{h\geq 0} \hat{W}_h(\tau) \frac{z^h}{h!}, \text{ with } \hat{W}_h \in \mathbb{C}[[\tau]] \text{ for every } h \geq 0, \text{ satisfies } (P2) \\ \iff \hat{X}(t,z) &= \sum_{h\geq 0} \hat{\mathcal{L}}_q \hat{W}_h(t) \frac{z^h}{h!} \text{ satisfies } (P1) \text{ with } \hat{X}_j(t) = \hat{\mathcal{L}}_q \hat{W}_j(t) \text{ for } \\ 0 &\leq j \leq S-1. \end{split}$$

イロト イポト イヨト イヨト

э

Assumptions

Existence of the solution, and growth of its coefficients, in a $q-{\rm spiral}$ Estimates for the derivatives of the coefficients near the origin

Assumptions on the initial conditions

Under certain technical assumptions on q and V, we suppose the initial data W_j , $0 \le j \le S - 1$ are holomorphic in $Vq^{\mathbb{Z}}$ such that: there exists a constant $K_0 > 0$ with

$$\sup_{x \in V} |W_j(xq^l)| \le K_0 |q|^{\frac{1}{4}l^2} (\frac{1}{T_{0,j}})^l \frac{1}{1+l^2}$$

and

$$\sup_{x \in V} |W_j(xq^{-l})| \le K_0(T_{0,j})^l \frac{1}{1+l^2}$$

for all $0 \le j \le S - 1$, all $l \ge 0$.

Assumptions

Existence of the solution, and growth of its coefficients, in a $q-{\rm spiral}$ Estimates for the derivatives of the coefficients near the origin

イロト イポト イヨト イヨト

Assumptions on the initial conditions

Under certain technical assumptions on q and V, we suppose the initial data W_j , $0 \le j \le S - 1$ are holomorphic in $Vq^{\mathbb{Z}}$ such that: there exists a constant $K_0 > 0$ with

$$\sup_{x \in V} |W_j(xq^l)| \le K_0 |q|^{\frac{1}{4}l^2} (\frac{1}{T_{0,j}})^l \frac{1}{1+l^2}$$

and

$$\sup_{x \in V} |W_j(xq^{-l})| \le K_0(T_{0,j})^l \frac{1}{1+l^2}$$

for all $0 \leq j \leq S - 1$, all $l \geq 0$.

The first inequalities express the property of W_j being of q-exponential growth on $Vq^{\mathbb{N}}$ (with order 2).

Assumptions Existence of the solution, and growth of its coefficients, in a q-spiral

Estimates for the derivatives of the coefficients near the origin

(日) (同) (三) (三)

q-growth of the coefficients in $Vq^{\mathbb{N}}$

Theorem

There exists a unique solution of (P2)

$$(\tau, z) \mapsto W(\tau, z) = \sum_{h \ge 0} W_h(\tau) \frac{z^h}{h!}$$

which is holomorphic on $Vq^{\mathbb{Z}} \times \mathbb{C}$.

Moreover, for all $\rho > 0$, there exist C, T > 0 (depending on the data) such that

$$\sup_{x \in V, z \in D(0,\rho)} |W(xq^l, z)| \le CK_0 |q|^{\frac{1}{2}l^2} (\frac{1}{T})^l,$$

and

$$\sup_{z \in V, z \in D(0,\rho)} |W(xq^{-l}, z)| \le CK_0 T^l$$

for all $l \geq 0$.

- 4 回 ト - 4 三 ト - 4 三 ト

Assumptions

In the Cauchy problem (P2) we consider initial conditions W_j which are holomorphic functions respectively defined in open sets containing the closed disc

$$\overline{D}_j = \{\tau : |\tau| \le 1/(2(j+1)^{r_1/r_2})\}$$

for $0 \le j \le S-1$ (for the sake of brevity, we say that W_j is holomorphic in \overline{D}_j).

イロト イポト イラト イラト

Assumptions

In the Cauchy problem (P2) we consider initial conditions W_j which are holomorphic functions respectively defined in open sets containing the closed disc

$$\overline{D}_j = \{\tau : |\tau| \le 1/(2(j+1)^{r_1/r_2})\}$$

for $0 \le j \le S-1$ (for the sake of brevity, we say that W_j is holomorphic in \overline{D}_j).

Cauchy's integral formula for the derivatives allows us to obtain constants $A_j>0$ such that for every $n\geq 0$ we have

$$\max_{\tau\in\overline{D}_j}|\partial^n W_j(\tau)| \le A_j^n n!.$$

Assumptions Existence of the solution, and growth of its coefficients, in a $q-{\rm spiral}$ Estimates for the derivatives of the coefficients near the origin

イロト 不得 とくほと くほう

Result

Theorem

Suppose $W_j(\tau)$, $0 \le j \le S - 1$, are holomorphic functions in \overline{D}_j such that there exist $T_{0,j} > 0$ and a constant K > 0 such that

$$\max_{\tau \in \overline{D}_j} |\partial^n W_j(\tau)| \le K \left(\frac{1}{T_{0,j}}\right)^n \frac{n!}{1+n^2}, \quad n \ge 0, \ j = 0, 1, ..., S - 1.$$

Alberto Lastra^{*†}, Stéphane Malek[†], Javier Sanz^{*} q-asymptotics for some q-difference-differential equations

Assumptions Existence of the solution, and growth of its coefficients, in a $q-{\rm spiral}$ Estimates for the derivatives of the coefficients near the origin

A (1) > A (1) > A

Result

Theorem

Suppose $W_j(\tau)$, $0 \le j \le S - 1$, are holomorphic functions in \overline{D}_j such that there exist $T_{0,j} > 0$ and a constant K > 0 such that

$$\max_{\tau \in \overline{D}_j} |\partial^n W_j(\tau)| \le K \Big(\frac{1}{T_{0,j}}\Big)^n \frac{n!}{1+n^2}, \quad n \ge 0, \ j = 0, 1, ..., S-1.$$

Then there exists a unique formal solution of (P2), $W(\tau, z) = \sum_{h\geq 0} W_h(\tau) \frac{z^n}{h!}$, where W_h is a holomorphic function in $\overline{D}_h = \{\tau : |\tau| \leq 1/(2(h+1)^{r_1/r_2})\}$, $h \geq S$.

Assumptions Existence of the solution, and growth of its coefficients, in a $q-{\rm spiral}$ Estimates for the derivatives of the coefficients near the origin

(過) (三) (三)

Result

Theorem

Suppose $W_j(\tau)$, $0 \le j \le S - 1$, are holomorphic functions in \overline{D}_j such that there exist $T_{0,j} > 0$ and a constant K > 0 such that

$$\max_{\tau \in \overline{D}_j} |\partial^n W_j(\tau)| \le K \Big(\frac{1}{T_{0,j}}\Big)^n \frac{n!}{1+n^2}, \quad n \ge 0, \ j = 0, 1, ..., S-1.$$

Then there exists a unique formal solution of (P2), $W(\tau, z) = \sum_{h\geq 0} W_h(\tau) \frac{z^h}{h!}$, where W_h is a holomorphic function in $\overline{D}_h = \{\tau : |\tau| \leq 1/(2(h+1)^{r_1/r_2})\}$, $h \geq S$.

Moreover, there exist $T_1, X_1 > 0$ such that

$$\sup_{\tau\in\overline{D}_h} |\partial^n W_h(\tau)| \le C_1 \Big(\frac{1}{T_1}\Big)^n \Big(\frac{1}{X_1}\Big)^h n! h! (h+1)^{r_1 n/r_2} |q|^{-h^2/2},$$

for every $n, h \ge 0$, where C_1 is a positive constant (depending on $S,q,b_k(z),m_{1,k}$, for $0 \le k \le S-1$ and $T_{0,j}$, for $0 \le j \le S-1$).

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

- 4 回 5 - 4 三 5 - 4 三 5

What we know about (P2)

Let W_h be the initial data in the Cauchy problem (P2), and suppose they are subject to the hypotheses in the previous Theorems. Then, we have a sequence of functions $\{W_h\}_{h\geq 0}$, holomorphic in $Vq^{\mathbb{Z}} \cup D_h$ for each $h \geq 0$, and such that the series

$$W(\tau, z) = \sum_{h \ge 0} W_h(\tau) \frac{z^h}{h!}$$

defines a holomorphic function on $Vq^{\mathbb{Z}}\times \mathbb{C}$ which solves the Cauchy problem.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

イロト イポト イラト イラト

What we know about (P2)

Let W_h be the initial data in the Cauchy problem (P2), and suppose they are subject to the hypotheses in the previous Theorems. Then, we have a sequence of functions $\{W_h\}_{h\geq 0}$, holomorphic in $Vq^{\mathbb{Z}} \cup D_h$ for each $h \geq 0$, and such that the series

$$W(\tau, z) = \sum_{h \ge 0} W_h(\tau) \frac{z^h}{h!}$$

defines a holomorphic function on $Vq^{\mathbb{Z}} \times \mathbb{C}$ which solves the Cauchy problem.

Moreover, we know that

$$\sup_{x \in V} |W_h(xq^l)| \le K_0 C' |q|^{\frac{l^2}{2}} |q|^{\frac{-h^2}{4}} h! (\frac{1}{T})^l (\frac{1}{X})^h$$

for all $l, h \ge 0$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

・ロト ・同ト ・ヨト ・ヨト

-

q-Laplace transform for functions of q-exponential growth I

Let $q \in \mathbb{C}$ such that |q| > 1.

Let V be an open and bounded set in \mathbb{C}^* and $D(0, \rho_0)$ a disc such that $V \cap D(0, \rho_0) \neq \emptyset$.

Let $\phi: Vq^{\mathbb{N}} \cup D(0, \rho_0) \to \mathbb{C}$ be a holomorphic function which satisfies the following estimates: there exist C, M > 0 such that

$$|\phi(xq^m)| \le M|q|^{m^2/2}C^m$$

for all $m \ge 0$, all $x \in V$.

 ϕ is said to have q-exponential growth of order 1 in $Vq^{\mathbb{N}}$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

q-Laplace transform for functions of q-exponential growth I

Let $q \in \mathbb{C}$ such that |q| > 1.

Let V be an open and bounded set in \mathbb{C}^* and $D(0, \rho_0)$ a disc such that $V \cap D(0, \rho_0) \neq \emptyset$.

Let $\phi: Vq^{\mathbb{N}} \cup D(0, \rho_0) \to \mathbb{C}$ be a holomorphic function which satisfies the following estimates: there exist C, M > 0 such that

$$|\phi(xq^m)| \le M|q|^{m^2/2}C^m$$

for all $m \ge 0$, all $x \in V$.

 ϕ is said to have q-exponential growth of order 1 in $Vq^{\mathbb{N}}$.

Let Θ be the Theta Jacobi function defined in \mathbb{C}^* by

$$\Theta(x) = \sum_{n \in \mathbb{Z}} q^{-n(n-1)/2} x^n.$$

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

- < 同 > < 三 > < 三 >

q-Laplace transform for functions of q-exponential growth II

Let $\delta > 0$ and $\lambda \in V \cap D(0, \rho_0)$. We denote by

$$\mathcal{R}_{\lambda,q,\delta} = \{ t \in \mathbb{C}^* / | 1 + \frac{\lambda}{tq^k} | > \delta, \forall k \in \mathbb{Z} \}, \quad \mathcal{T}_{\lambda,q,\delta,r_1} = \mathcal{R}_{\lambda,q,\delta} \cap D(0,r_1).$$

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

(人間) システン イラン

q-Laplace transform for functions of q-exponential growth II

Let $\delta > 0$ and $\lambda \in V \cap D(0, \rho_0)$. We denote by

$$\mathcal{R}_{\lambda,q,\delta} = \{ t \in \mathbb{C}^* / | 1 + \frac{\lambda}{tq^k} | > \delta, \forall k \in \mathbb{Z} \}, \quad \mathcal{T}_{\lambda,q,\delta,r_1} = \mathcal{R}_{\lambda,q,\delta} \cap D(0,r_1).$$

The q-Laplace transform of ϕ in the direction $\lambda q^{\mathbb{Z}}$ is defined by

$$\mathcal{L}_q^{\lambda}(\phi)(t) := \sum_{m \in \mathbb{Z}} \phi(q^m \lambda) / \Theta(\frac{q^m \lambda}{t})$$

for all $t \in \mathcal{T}_{\lambda,q,\delta,r_1}$, if $r_1 < |\lambda q^{1/2}|/C$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

q-Laplace transform for functions of q-exponential growth II

Let $\delta > 0$ and $\lambda \in V \cap D(0, \rho_0)$. We denote by

$$\mathcal{R}_{\lambda,q,\delta} = \{ t \in \mathbb{C}^* / | 1 + \frac{\lambda}{tq^k} | > \delta, \forall k \in \mathbb{Z} \}, \quad \mathcal{T}_{\lambda,q,\delta,r_1} = \mathcal{R}_{\lambda,q,\delta} \cap D(0,r_1).$$

The q-Laplace transform of ϕ in the direction $\lambda q^{\mathbb{Z}}$ is defined by

$$\mathcal{L}_q^{\lambda}(\phi)(t) := \sum_{m \in \mathbb{Z}} \phi(q^m \lambda) / \Theta(\frac{q^m \lambda}{t})$$

for all $t \in \mathcal{T}_{\lambda,q,\delta,r_1}$, if $r_1 < |\lambda q^{1/2}|/C$.

 $\mathcal{L}_{q}^{\lambda}(\phi)(t)$ defines a bounded holomorphic function on $\mathcal{T}_{\lambda,q,\delta,r_{1}}$ whenever $r_{1} < |\lambda q^{1/2}|/C$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

イロト イポト イラト イラト

q-Laplace transform for functions of q-exponential growth III

Assume that the function ϕ has the following Taylor expansion

$$\phi(\tau) = \sum_{n \ge 0} \frac{f_n}{q^{n(n-1)/2}} \tau^n$$

on $D(0, \rho_0)$, where $f_n \in \mathbb{C}$, $n \ge 0$.

Then, there exist two constants D, B > 0 such that

$$|\mathcal{L}_{q}^{\lambda}(\phi)(t) - \sum_{m=0}^{n-1} f_{m}t^{m}| \le DB^{n}|q|^{n(n-1)/2}|t|^{n}$$

for all $n \ge 1$, for all $t \in \mathcal{T}_{\lambda,q,\delta,r_1}$.

 $\mathcal{L}^\lambda_q(\phi)$ admits the series $\sum_{m=0}^\infty f_m t^m$ as q-Gevrey asymptotic expansion of order 1.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

イロト イポト イヨト イヨト

-

q-Laplace transform for the coefficients of our solution

Every W_h verifies suitable estimates so as to admit q-Laplace transform.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

イロト イポト イヨト イヨト

-

q-Laplace transform for the coefficients of our solution

Every W_h verifies suitable estimates so as to admit q-Laplace transform.

Choose an integer n(h) in such a way that $\lambda q^{n(h)} \in D_h$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

< ロ > < 同 > < 三 > < 三 >

-

q-Laplace transform for the coefficients of our solution

Every W_h verifies suitable estimates so as to admit q-Laplace transform.

Choose an integer n(h) in such a way that $\lambda q^{n(h)} \in D_h$.

The q-Laplace transform of W_h in the direction $\lambda q^{n(h)}q^{\mathbb{Z}} \equiv \lambda q^{\mathbb{Z}}$ is given by

$$\mathcal{L}_{q}^{\lambda q^{n(h)}}(W_{h})(t) = \sum_{m \in \mathbb{Z}} \frac{W_{h}(q^{m}\lambda q^{n(h)})}{\Theta(\frac{q^{m}\lambda q^{n(h)}}{t})} = \sum_{m \in \mathbb{Z}} \frac{W_{h}(q^{m}\lambda)}{\Theta(\frac{q^{m}\lambda}{t})},$$

so that it deserves to be denoted by $\mathcal{L}_q^{\lambda}(W_h)(t)$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

イロト イポト イラト イラト

-

q-Laplace transform for the coefficients of our solution

Every W_h verifies suitable estimates so as to admit q-Laplace transform.

Choose an integer n(h) in such a way that $\lambda q^{n(h)} \in D_h$.

The q-Laplace transform of W_h in the direction $\lambda q^{n(h)}q^{\mathbb{Z}}\equiv\lambda q^{\mathbb{Z}}$ is given by

$$\mathcal{L}_q^{\lambda q^{n(h)}}(W_h)(t) = \sum_{m \in \mathbb{Z}} \frac{W_h(q^m \lambda q^{n(h)})}{\Theta(\frac{q^m \lambda q^{n(h)}}{t})} = \sum_{m \in \mathbb{Z}} \frac{W_h(q^m \lambda)}{\Theta(\frac{q^m \lambda}{t})},$$

so that it deserves to be denoted by $\mathcal{L}_q^{\lambda}(W_h)(t)$.

This function is well defined and holomorphic in the set $\mathcal{T}_{\lambda q^{n(h)},q,\delta,r(h)} \equiv \mathcal{T}_{\lambda,q,\delta,r(h)}$, whenever $r(h) < |\lambda q^{n(h)}q^{1/2}|T$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

イロト イポト イヨト イヨト 一日

q-Laplace transform for the coefficients of our solution

Every W_h verifies suitable estimates so as to admit q-Laplace transform.

Choose an integer n(h) in such a way that $\lambda q^{n(h)} \in D_h$.

The q-Laplace transform of W_h in the direction $\lambda q^{n(h)}q^{\mathbb{Z}}\equiv\lambda q^{\mathbb{Z}}$ is given by

$$\mathcal{L}_{q}^{\lambda q^{n(h)}}(W_{h})(t) = \sum_{m \in \mathbb{Z}} \frac{W_{h}(q^{m}\lambda q^{n(h)})}{\Theta(\frac{q^{m}\lambda q^{n(h)}}{t})} = \sum_{m \in \mathbb{Z}} \frac{W_{h}(q^{m}\lambda)}{\Theta(\frac{q^{m}\lambda}{t})},$$

so that it deserves to be denoted by $\mathcal{L}_q^{\lambda}(W_h)(t)$.

This function is well defined and holomorphic in the set $\mathcal{T}_{\lambda q^{n(h)},q,\delta,r(h)} \equiv \mathcal{T}_{\lambda,q,\delta,r(h)}$, whenever $r(h) < |\lambda q^{n(h)}q^{1/2}|T$.

Objective: Show that these radii r(h) can be taken independent of h, equal to $r_0 = |\lambda q^{1/2}|T/|q| = |\lambda q^{-1/2}|T$ for every $h \ge 0$, and obtain precise estimates for the corresponding q-asymptotic expansions.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

(日) (同) (三) (三)

Uniform q-asymptotic expansion for the coefficients

Let us assume that the function W_h has the following Taylor expansion at 0,

$$W_h(\tau) = \sum_{n \ge 0} \frac{f_{n,h}}{q^{n(n-1)/2}} \tau^n,$$
(5)

where $f_{n,h} \in \mathbb{C}$, $n,h \ge 0$, and $\tau \in \overline{D}_h$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

(日) (同) (三) (三)

Uniform q-asymptotic expansion for the coefficients

Let us assume that the function W_h has the following Taylor expansion at 0,

$$W_h(\tau) = \sum_{n \ge 0} \frac{f_{n,h}}{q^{n(n-1)/2}} \tau^n,$$
(5)

where $f_{n,h} \in \mathbb{C}$, $n,h \ge 0$, and $\tau \in \overline{D}_h$.

Proposition

There exist constants B(h), D(h) > 0 such that

$$|\mathcal{L}_{q}^{\lambda}(W_{h})(t) - \sum_{m=0}^{n-1} f_{m,h}t^{m}| \le D(h)B(h)^{n}|q|^{n(n-1)/2}|t|^{n}$$
(6)

for all $n \geq 1$, for all $t \in \mathcal{T}_{\lambda,q,\delta,r_0}$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

・ロン ・四 ・ ・ ヨン ・ ヨン

Uniform q-asymptotic expansion for the coefficients

Let us assume that the function W_h has the following Taylor expansion at 0,

$$W_h(\tau) = \sum_{n \ge 0} \frac{f_{n,h}}{q^{n(n-1)/2}} \tau^n,$$
(5)

where $f_{n,h} \in \mathbb{C}$, $n,h \ge 0$, and $\tau \in \overline{D}_h$.

Proposition

There exist constants B(h), D(h) > 0 such that

$$|\mathcal{L}_{q}^{\lambda}(W_{h})(t) - \sum_{m=0}^{n-1} f_{m,h}t^{m}| \le D(h)B(h)^{n}|q|^{n(n-1)/2}|t|^{n}$$
(6)

for all $n \geq 1$, for all $t \in \mathcal{T}_{\lambda,q,\delta,r_0}$.

 $B(h) = A_1(h+1)^{r_1/r_2}, \qquad D(h) = A_2(h+1)^{r_1/r_2} h! A_3^h |q|^{-h^2/4}$

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

- < 同 > < 三 > < 三 >

Conditions for our main result

Suppose $\hat{X}_j(t) = \sum_{m \ge 0} f_{m,j}t^m \in \mathbb{C}[[t]]$, $0 \le j \le S - 1$, are given initial conditions for the Cauchy problem (P1), and let

$$\hat{X}(t,z) = \sum_{h \ge 0} \hat{X}_h(t) \frac{z^h}{h!} = \sum_{h \ge 0} \sum_{m \ge 0} f_{m,h} t^m \frac{z^h}{h!}$$

be the only formal series solution of the problem.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

- 4 回 5 - 4 三 5 - 4 三 5

Conditions for our main result

Suppose $\hat{X}_j(t) = \sum_{m \ge 0} f_{m,j}t^m \in \mathbb{C}[[t]]$, $0 \le j \le S - 1$, are given initial conditions for the Cauchy problem (P1), and let

$$\hat{X}(t,z) = \sum_{h \ge 0} \hat{X}_h(t) \frac{z^h}{h!} = \sum_{h \ge 0} \sum_{m \ge 0} f_{m,h} t^m \frac{z^h}{h!}$$

be the only formal series solution of the problem.

Suppose $\hat{X}_j(t)$, $0 \le j \le S - 1$, are q-Gevrey of order 1, and that their formal q-Borel transforms of order 1, $W_j(\tau) = \hat{\mathcal{B}}_q \hat{X}_j(\tau)$, which are holomorphic functions around 0, satisfy the assumptions of the Theorems for (P2).

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

イロン 不同 とくほう イヨン

Conditions for our main result

Suppose $\hat{X}_j(t) = \sum_{m \ge 0} f_{m,j} t^m \in \mathbb{C}[[t]]$, $0 \le j \le S - 1$, are given initial conditions for the Cauchy problem (P1), and let

$$\hat{X}(t,z) = \sum_{h \ge 0} \hat{X}_h(t) \frac{z^h}{h!} = \sum_{h \ge 0} \sum_{m \ge 0} f_{m,h} t^m \frac{z^h}{h!}$$

be the only formal series solution of the problem.

Suppose $\hat{X}_j(t)$, $0 \le j \le S - 1$, are q-Gevrey of order 1, and that their formal q-Borel transforms of order 1, $W_j(\tau) = \hat{\mathcal{B}}_q \hat{X}_j(\tau)$, which are holomorphic functions around 0, satisfy the assumptions of the Theorems for (P2).

Let

$$W(\tau, z) = \sum_{h \ge 0} W_h(\tau) \frac{z^h}{h!}$$

be the solution of the Cauchy problem (P2), corresponding to the initial conditions W_i , $0 \le j \le S - 1$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

<ロ> <同> <同> < 回> < 回>

э

Main result

Theorem

1) The function
$$X(t,z) = \sum_{h \ge 0} \mathcal{L}_q^{\lambda}(W_h)(t) \frac{z^h}{h!}$$
 is holomorphic in $\mathcal{T}_{\lambda,q,\delta,r_0} \times \mathbb{C}$.

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

<ロ> <同> <同> < 回> < 回>

э

Main result

Theorem

1) The function
$$X(t,z) = \sum_{h\geq 0} \mathcal{L}_q^{\lambda}(W_h)(t) \frac{z^h}{h!}$$
 is holomorphic in $\mathcal{T}_{\lambda,q,\delta,r_0} \times \mathbb{C}$.

2) The function X(t,z) solves the Cauchy problem (P1).

 $q-{\sf Laplace}$ transform for functions of $q-{\sf exponential}$ growth $q-{\sf Laplace}$ transform for the coefficients Main result

<ロ> <同> <同> < 回> < 回>

3

Main result

Theorem

1) The function
$$X(t,z) = \sum_{h\geq 0} \mathcal{L}_q^{\lambda}(W_h)(t) \frac{z^h}{h!}$$
 is holomorphic in $\mathcal{T}_{\lambda,q,\delta,r_0} \times \mathbb{C}$.
2) The function $X(t,z)$ solves the Cauchy problem $(P1)$.
3) If $r_1 \geq 1$, given $R > 0$ there exist constants $\tilde{C} > 0$, $\tilde{D} > 0$ such that for every $n \in \mathbb{N}$, $n \geq 1$, one has

$$\left|X(t,z) - \sum_{h\geq 0}\sum_{m=0}^{n-1} f_{m,h}t^m \frac{z^h}{h!}\right| \leq \tilde{C}\tilde{D}^n \Gamma(\frac{r_1}{r_2}(n+1))|q|^{n(n-1)/2}|t|^n$$
(7)

for every $t \in \mathcal{T}_{\lambda,q,\delta,r_0}$, $z \in D(0,R)$.

A class of <i>q</i> -difference-differential equations Study of the transformed problem Back to our problem	$q-{\rm Laplace}$ transform for functions of $q-{\rm exponential}$ growth $q-{\rm Laplace}$ transform for the coefficients Main result
---	--