On the Malgrange isomonodromic deformations of non-resonant meromorphic connections

Yu.P. Bibilo, R.R. Gontsov

HSE, IITP RAS

FASDE 2011

Meromorphic system

Consider a system

$$\frac{dy}{dz} = B(z)y, \qquad B(z) = \sum_{i=1}^{n} \sum_{j=1}^{r_i+1} \frac{B_{ij}^0}{(z - a_i^0)^j}, \tag{1}$$

- $y(z) \in \mathbb{C}^p$,
- B_{ii}^0 are $(p \times p)$ -matrices;
- $a_1^0, ..., a_m^0$ are irregular non-resonant sing points;

An irregular sing, point a_i^0 is non-resonant if the eigenvalues of B_{i,r_i+1}^0 are pairwise distinct.

• $a_{m+1}^0, ..., a_n^0$ are Fuchsian sing. points.

Fuchsian case

A Fuchsian system

$$\frac{dy}{dz} = \sum_{i=1}^{n} \frac{B_i^0}{z - a_i^0} y$$

can be included into the Schlesinger isomonodromic family

$$\frac{dy}{dz} = \sum_{i=1}^n \frac{B_i(a)}{z - a_i} y, \quad B_i(a^0) = B_i^0,$$

$$dB_i(a) = -\sum_{i=1, i\neq i}^n \frac{[B_i(a), B_j(a)]}{a_i - a_j} d(a_i - a_j).$$

Yu.P. Bibilo, R.R. Gontsov (HSE, HTP RA On the Malgrange isomondromic def.

Fuchsian case

According to the Malgrange theorem,

the matrix functions $B_i(a)$ holomorphic in a neighbourhood of the point a^0 , can be meromorphically extended to the universal cover \widetilde{Z}^n of the space

$$Z^n = \mathbb{C}^n \setminus \bigcup_{i \neq j} \{a_i = a_j\}.$$

Bolibrukh's theorem on Schlesinger (2×2) -families:

If the monodromy of the (2×2) -family is irreducible, then the pole orders of the matrices $B_i(a)$ do not exceed 2.

4 □ ▶ ←

Holomorphic bundle and connection on it

There is a correspondence

$$\frac{dy}{dz} = B(z)y \quad \Longrightarrow \quad (E^0, \nabla^0)$$

- E^0 is a holomorphically trivial vector bundle of rank p over $\overline{\mathbb{C}}$,
- ∇^0 is a meromorphic connection on E^0 .

As known.

$$B(z)dz \stackrel{formally}{\sim} \omega_{\Lambda_i^0} = \sum_{i=1}^{r_i+1} \frac{\Lambda_{ij}^0}{(z-a_i^0)^j} dz,$$

 Λ_{ii}^{0} are diagonal matrices.

Normal form and the set of parameters

The deformation parameter $t \in \mathcal{D}$ contains:

- a₁,..., a_m (irregular singularities);
- $\Lambda_1, ..., \Lambda_m$, where $\Lambda_i = \{\Lambda_{i2}, ..., \Lambda_{i,r_i+1}\}$ coming from the formal normal form

$$\omega_{\Lambda_i} = \sum_{j=2}^{r_i+1} \frac{\Lambda_{ij}}{(z-a_i)^j} dz + \frac{\Lambda_{i1}^0}{z-a_i} dz;$$

• $a_{m+1}, ..., a_n$ (Fuchsian singularities).

The initial parameter value is

$$t^0 = (a_1^0, ..., a_n^0, \Lambda_1^0, ..., \Lambda_m^0)$$

Malgrange isomonodromic deformations

There is a holomorphic vector bundle E of rank p over $\overline{\mathbb{C}} \times \mathcal{D}$ with a meromorphic connection ∇ such that

- ullet $(E, \nabla)|_{\overline{\mathbb{C}} \times \{t^0\}} \cong (E^0, \nabla^0);$
- $\bullet \ \nabla|_{\overline{\mathbb{C}} \times \{t\}} \stackrel{formally}{\sim} \nabla_{\Lambda_i(t)} \ \mathsf{near} \ z = a_i(t);$

$$\nabla_{\Lambda_i(t)} = d - \omega_{\Lambda_i(t)} = d - \sum_{j=1}^{r_i+1} \frac{\Lambda_{ij}(t)}{(z - a_i(t))^j} dz,$$

• the Stokes' matrices of $\nabla|_{\overline{\mathbb{C}}\times\{t\}}$ do not depend on t.

This pair (E, ∇) is called the Malgrange isomonodromic deformation of the initial pair (E^0, ∇^0) .

40 40 40 40 40 000

Malgrange isomonodromic deformations

So, there is an isomonodromic family

$$\frac{dy}{dz} = B(z,t) y, \qquad B(z,t) = \sum_{i=1}^{n} \sum_{j=1}^{r_i+1} \frac{B_{ij}(t)}{(z - a_i(t))^j},$$

t varies in some small disk, $t \in D(t^0)$.

Malgrange Θ -divisor

Malgrange Θ-divisor

$$\Theta = \{ t \in \mathcal{D} \mid E|_{\overline{\mathbb{C}} \times \{t\}} \text{ is non-trivial } \}.$$

- Θ-divisor can be locally described in terms of auxillary meromorphic system with one additional Fuchsian singularity.
- In particular case Θ-divisor structure can be described in more details.
 We will consider a system with
 - 2×2 coefficient matrix;
 - two irregular points a_1^0 , a_2^0 of Poincare ranks $r_1 = r_2 = 1$;
 - n-2 Fuchsian points.

Meromorphic 2×2 -connections

Consider a system

$$\frac{dy}{dz} = \left(\frac{B_{12}^0}{(z - a_1^0)^2} + \frac{B_{22}^0}{(z - a_2^0)^2} + \sum_{i=1}^n \frac{B_{i1}^0}{z - a_i^0}\right) y.$$

Let

- (E, ∇) be its Malgrange isomonodromic deformation;
- the monodromy be irreducible;
- $t^* \in \Theta$ such that $E|_{\overline{\mathbb{C}} \times \{t^*\}} \cong \mathcal{O}(1) \oplus \mathcal{O}(-1)$.

Then

- in a neighbourhood $D(t^*)$ of t^* the Θ -divisor is given as a zero set of an irreducible holomorphic function τ ;
- the matrix functions $B_{ij}(t)$ have poles of at most second order along $D(t^*) \cap \Theta$.

Global au-function: Fuchsian case

Miwa's theorem on Schlesinger deformations

Malgrange Θ -divisor is the zero set of au-function, holomorphic on

$$\widetilde{Z^n}, \quad Z^n = \mathbb{C}^n \backslash \bigcup_{i \neq j} \{a_i = a_j\},$$

and

$$d \log \tau(a) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1, i \neq i}^{n} \frac{tr(B_i(a)B_j(a))}{a_i - a_j} d(a_i - a_j).$$

Global au-function: Irregular case

 Θ -divisor is the zero set of τ -function, holomorphic on \mathcal{D} ,

$$d_{a} \log \tau(t) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{tr(B_{i1}(t)B_{j1}(t))}{a_{i} - a_{j}} d(a_{i} - a_{j}) +$$

$$\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \sum_{s=1}^{r_{i}+1} \sum_{k=s+1}^{r_{j}+1} (k, s-1) \frac{tr(B_{is}(t)B_{jk}(t))}{(a_{i} - a_{j})^{s+k-1}} d(a_{i} - a_{j}),$$

$$(\alpha,\beta)=\prod_{m=1}^{\beta}\frac{\alpha-m+1}{m}.$$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ りへで