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Setup and outline

This talk discusses joint work with Alexander Its on the large x
asymptotical behavior of solutions u of the second Painlevé equation (PII)

Uy = xu + 205, (1)

assuming that v is real-valued for real x. We extend the Deift-Zhou
nonlinear steepest descent method to the case of singular solutions.

Recall the following Riemann-Hilbert representation of PIl: Given
{55}, CC: sy —sy+ 53+ 5155 =0, Sk13=—5k, 51 =353, = &,

put Sc = (& 9) if k odd, S = (§ %) if k even and consider the
following Riemann-Hilbert problem (RHP) which consists in finding the
piecewise analytic 2 x 2 function W(A):
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This RHP is for any s = (s1, s2, s3) meromorphically w.r.t. x solvable
[Bolibruch, Its, Kapaev, 2004]
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This RHP is for any s = (s1, s2, s3) meromorphically w.r.t. x solvable
[Bolibruch, Its, Kapaev, 2004] and its solution determines the solution of
(1) via

u(x) = u(x;s) = 2 lim (AW(A)eGNHN7) o) ii(x) = u(X).

A—00



Theorem (Kapaev, 1992; Bolts, 2010)

As x — —o0 and |s1| > 1, the following asymptotical behavior holds for
real-valued solutions of Pll equation (1)

- V—x oy
u) =5 (Z(=x)*2 + BIn (8(—x)32) + ¢) + O((—x) 372 +0((=x)7)

1 ) 1.
6= o In(|s1] = 1), ¢ = —arg F(§ +iB) — arg s1.



Theorem (Kapaev, 1992; Bolts, 2010)

As x — —o0 and |s1| > 1, the following asymptotical behavior holds for
real-valued solutions of Pll equation (1)

J=x

u(x) = — +O((—x)7)

sin (%(fx)3/2 + Bln (8(fx)3/2) + gp) + O((—x)—3/2)

1
8= %In(|51|271), = —arg F( +/ﬂ) —arg s;.

However as x — +o00 and s, # 0, we have
u(x) = o\/§cot (\/_ 3/2 4 g In (8\/5)(3/2) + ¢) + 0(x7Y),

where

1 1 1 1
o =sgn s, V= In|sy|, ¢ = —52rg F(z+iv)— 5are (1+ sp83) +
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Sketch of the proof as x — —oc¢

The solution of the given RHP

4
V.(\) = W _(N)e INmgefNo Ner; o)) = i(§A3+xA)
N———

G(A)

YA — L A—- o
can be expressed in terms of the Cauchy-type integral

Oy =1+ [ v (w)(6(w) - 1)-

2mi Jsr, w —

R A8, (2)

so as |x| — oo a “steepest descent evaluation” for the oscillatory integral
is needed.
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We start with a scaling
A—z(\) = — V(z) = V(\(2)),
00 — t9(z),  9(z) = i(%f ), t= (0.

Then use analytic structure of G(A) and deform jump contour UST to

steepest descent contours of the exponent ¥(z):
S,

From to applying
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a Gauss LU-decomposition (since 1 — 5153 = 1 — |s1]? # 0)

1-— 5153 S1
S1 1-— 5153

(535455)71 = ( ) = 5LSDSU

1 0 1 21
— 1 —55:)%3 1—5153)
(e D=7 (0

and “opening of lenses":
SZ
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Construct model solutions/parametrices:
S, &9
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Along [z, z;] we solve the diagonal RHP applying the Plemelj
-Sokhotskii formulae: For z € C\[z_, z}]

z—z_\"" 1
wD _ —td(z)o3 - —— In(1 -
(2) <Z - z+) € Y 2mi n(1 - ss)

zZ—Z_

where arg (1 — s153) € (—m, @] and ( )" —1lasz— oo

z—zy
In the neighborhood of z;. we notice the quadratic local behavior of ¥(z):
U(z) =9(z4) +2i(z— 2z + O((z — z)%), z— z;

and make use of the parabolic cylinder function D, (¢), a solution of

d’D, 1 ¢? , 2
dc? +(”+5—%)sz07 D(¢) ~¢'e™ ™, (= too. (3)
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Skipping details, we can introduce a parametrix W"(z) near z = z;, such
that locally its jumps coincide with those of W(z) and as t — oo the
following match-up relation between W(z) and WP(z) holds

1 —¥me% B(z)
r _ . h <(2) ( -1 ) D
v (Z) (%e%ﬁl(z)L 1 I+ O(t ) v (Z),
3

¢(2)

aslongas0<n <|z—2z | <mn<1 with hy = r‘(/f_’;)ei””,

((2) = 2¢/=t9(2) + t9(z1) = " F2V2t(z — 2, ) (1 + O(z — 2))

and

2v
B(z) = <<(z)z - z> e ﬂﬂ% = O(t ™) t - .
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We make the following crucial observation (recall v = —5L In(1 — |s;[?))

6i1% = o(1),t — o0 if [s1] <1, i.e. W'(2) = (I + O(t 1)) WP(2)

however, here [s;| > 1, so v = —sLIn(|s1? = 1) =3 =1 — 1, ie.

2
Bo(2)

B¢ = (2)

= 0(1),t — o i.e. W'(2) = (E:(z) + O(t 1)) WP(2)

with

1 0 z—z \™
&)= (Z_iem g)((zz)) 1) )= (C(Z)Z Z+)

and a(z) = ===.
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Now assemble the model functions

A VP (z), |z —zy| > r;
V(z) =< V'(2), |z —zy| <
V/(z) = V' (—2)o2, |z—z_| <,

consider the ratio W(z) = x(z)¥(z) and obtain the following ratio-RHP:

x(z) is analytic on C\ C, U G; U {infinite branches} © @
X+(2) = x—(@V(2)(VP(2)) Tz e Gy
x(z) — I, z— 0

but H\I/’*’(\IJD)_1 — || - 0 as t — co. To this end employ an undressing
transformation and pass from x(z) to ®(z):



x(2)E (), lz—zy| < r;
x(2)o2E (—2)o2, |z—z_|<r;
X(Z)a |Z*Z:t| >r,



x(2)E(2), lz—z| <r
®(z) = x(2)02E(—2)o2, |z—z|<r;
X(Z)a |Z — Zj:| >r,

which satisfies a RHP with pole singularities at z, since after all
R
Er(z) = + 0(1)7 Z = Zy, (4)
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X(Z)EF(Z)7 |Z - Z+| <r,
®(z) =< x(2)o2E(—2)o2, |z—z_|<r;
x(z2), |z —z4| >,
which satisfies a RHP with pole singularities at z4, since after all
R

E()= ;=5 +0(1). z— 2.,

however all ®-jump-matrices approach the unit matrix as t — oo.

To deal with the singularities, use a final dressing transformation:

zZ—Z_

o(2) = (o + B)Y(2) (0 . )

and determine B uniquely from the residue-relations (4).
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Finally solve the Y-RHP asymptotically: Since

c
||GY - I||L20L°°(jump contour) < ? c>0
the singular integral equation
1 dw
Y_ I+ — Y_ G -1
(@) =145 [ Y-m)(Grlm) =)™
contour

and its unique solution

~—

can be solved iteratively in L2(jump contour
satisfies

” Y- — /”L2 (jump contour) < t — 00.

r~rlm



In the end use the latter estimate together with the integral
representation for Y'(z)

Y@ = gy [ e -0,
= e / Y- (w)(Gy(w) — ) dw + O(z ™)

contour



In the end use the latter estimate together with the integral
representation for Y'(z)

Y@ = gy [ e -0,
= e / Y- (w)(Gy(w) — ) dw + O(z ™)

contour

and extract the required asymptotics via

u(x) = 2¢/=x lim (z2(¥(2)et?@7),)

Z— 00

by tracing back: V(z) — x(z) — ®(z) — Y(2).
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