Movable Singularities of Nonlinear ODEs

Rod Halburd

Department of Mathematics University College London

(Joint work with Galina Filipuk, Warsaw)

FASDEII — Będlewo, August 2011

・ロト ・ ア・ ・ ヨト ・ ヨト

Outline

Singularities of solutions of ODEs

- 2
- Painlevé analysis
- The Painlevé property
- The Painlevé equations
- 3 Movable branch points
 - First-order equations
 - Algebraic singularities
 - Equations of Liénard type

Fixed versus movable singularities

Cauchy's theorem guarantees that the initial value problem

$$y' = rac{1}{2(z+1)} \left(y - y^3
ight), \qquad y(0) = c,$$

has a unique solution in a neighbourhood of z = 0.
This solution is

$$y(z)=c\sqrt{\frac{1+z}{1+c^2z}}.$$

- The singularity at z = -1 is said to be *fixed*.
- The singularity at $z = -1/c^2$ is said to be *movable*.

・ロット (雪) () () () ()

Fixed versus movable singularities

Cauchy's theorem guarantees that the initial value problem

$$y' = rac{1}{2(z+1)} \left(y - y^3
ight), \qquad y(0) = c,$$

has a unique solution in a neighbourhood of z = 0.

This solution is

$$y(z)=c\sqrt{\frac{1+z}{1+c^2z}}.$$

- The singularity at z = -1 is said to be *fixed*.
- The singularity at $z = -1/c^2$ is said to be *movable*.

・ロット (雪) () () () ()

Fixed versus movable singularities

Cauchy's theorem guarantees that the initial value problem

$$y' = rac{1}{2(z+1)} \left(y - y^3
ight), \qquad y(0) = c,$$

has a unique solution in a neighbourhood of z = 0.

This solution is

$$y(z)=c\sqrt{\frac{1+z}{1+c^2z}}.$$

- The singularity at z = -1 is said to be *fixed*.
- The singularity at $z = -1/c^2$ is said to be *movable*.

・ロト ・ 同ト ・ ヨト ・ ヨト

Fixed versus movable singularities

Cauchy's theorem guarantees that the initial value problem

$$y' = rac{1}{2(z+1)} \left(y - y^3
ight), \qquad y(0) = c,$$

has a unique solution in a neighbourhood of z = 0.

This solution is

$$y(z)=c\sqrt{\frac{1+z}{1+c^2z}}.$$

- The singularity at z = -1 is said to be *fixed*.
- The singularity at $z = -1/c^2$ is said to be *movable*.

Examples of movable singularities

The general solution of

$$y^{\prime\prime}+(y^{\prime})^2=0$$

is $y(z) = \log(z - z_0)$, which has a movable logarithmic branch point at z_0 .

• The general solution of

$$(yy'' - y'^2)^2 + 4yy'^3 = 0$$

is $y(z) = c \exp\{(z - z_0)^{-1}\}$, which has a movable essential singularity at z_0 .

• The general solution of the Chazy equation

$$y^{\prime\prime\prime}=2yy^{\prime\prime}-3y^{\prime2}$$

has a movable natural barrier.

・ロト ・ 同ト ・ ヨト ・ ヨト

Examples of movable singularities

The general solution of

$$y^{\prime\prime}+(y^{\prime})^2=0$$

is $y(z) = \log(z - z_0)$, which has a movable logarithmic branch point at z_0 .

The general solution of

$$(yy'' - y'^2)^2 + 4yy'^3 = 0$$

is $y(z) = c \exp\{(z - z_0)^{-1}\}$, which has a movable essential singularity at z_0 .

• The general solution of the Chazy equation

$$y''' = 2yy'' - 3y'^2$$

has a movable natural barrier.

・ロト ・ ア・ ・ ヨト ・ ヨト

Examples of movable singularities

The general solution of

$$y^{\prime\prime}+(y^{\prime})^2=0$$

is $y(z) = \log(z - z_0)$, which has a movable logarithmic branch point at z_0 .

The general solution of

$$(yy'' - y'^2)^2 + 4yy'^3 = 0$$

is $y(z) = c \exp\{(z - z_0)^{-1}\}$, which has a movable essential singularity at z_0 .

• The general solution of the Chazy equation

$$y^{\prime\prime\prime}=2yy^{\prime\prime}-3y^{\prime2}$$

has a movable natural barrier.

・ロット (雪) (日) (日)

The subject of this talk

For certain classes of equations, one can

- find a list of some kind of series expansions (or other characterisations) of solutions in the neighbourhood of movable singularities,
- Show that these series have non-zero radii of convergence, and
- Ishow that the list obtained is complete in the sense that any singularity that can be reached by analytic continuation is of one of the types obtained in 1.

The subject of this talk

For certain classes of equations, one can

- find a list of some kind of series expansions (or other characterisations) of solutions in the neighbourhood of movable singularities,
- Show that these series have non-zero radii of convergence, and
- show that the list obtained is complete in the sense that any singularity that can be reached by analytic continuation is of one of the types obtained in 1.

The subject of this talk

For certain classes of equations, one can

- find a list of some kind of series expansions (or other characterisations) of solutions in the neighbourhood of movable singularities,
- Show that these series have non-zero radii of convergence, and
- Show that the list obtained is complete in the sense that any singularity that can be reached by analytic continuation is of one of the types obtained in 1.

The subject of this talk

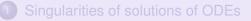
For certain classes of equations, one can

- find a list of some kind of series expansions (or other characterisations) of solutions in the neighbourhood of movable singularities,
- Show that these series have non-zero radii of convergence, and
- Show that the list obtained is complete in the sense that any singularity that can be reached by analytic continuation is of one of the types obtained in 1.

< ロ > < 同 > < 回 > < 回 >

The Painlevé property The Painlevé equations

Outline



Painlevé analysis

• The Painlevé property

- The Painlevé equations
- 3 Movable branch points
 - First-order equations
 - Algebraic singularities
 - Equations of Liénard type

The Painlevé property The Painlevé equations

The Painlevé property

Definition (the Painlevé property)

An ODE is said to possess the *Painlevé property* if all solutions are single-valued about all movable singularities.

The only equation with this property of the form

$$\frac{dy}{dz}=R(z;y),$$

where R is rational in y, is the Riccati equation

$$\frac{dy}{dz} = p(z)y^2 + q(z)y + r(z),$$

which is linearizable.

The Painlevé property The Painlevé equations

The Painlevé property

Definition (the Painlevé property)

An ODE is said to possess the *Painlevé property* if all solutions are single-valued about all movable singularities.

The only equation with this property of the form

 $\frac{dy}{dz}=R(z;y),$

where R is rational in y, is the Riccati equation

$$\frac{dy}{dz} = p(z)y^2 + q(z)y + r(z)$$

which is linearizable.

・ロト ・ 同ト ・ ヨト ・ ヨト

The Painlevé property The Painlevé equations

The Painlevé property

Definition (the Painlevé property)

An ODE is said to possess the *Painlevé property* if all solutions are single-valued about all movable singularities.

• Kowalevskaya (classical top)

Painlevé, Gambier, Fuchs (classification): y'' = F(y, y'; z)
There are six Painlevé equations. The first two are

 P_I $y'' = 6y^2 + z$ and P_{II} $y'' = 2y^3 + zy + \alpha$

• Ablowitz, Ramani and Segur conjecture:

All ODE reductions of equations solvable by the inverse scattering transform (IST) possess the Painlevé property (possibly after a transformation of variables,)=> < (() > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () > < () >

The Painlevé property The Painlevé equations

The Painlevé property

Definition (the Painlevé property)

An ODE is said to possess the *Painlevé property* if all solutions are single-valued about all movable singularities.

- Kowalevskaya (classical top)
- Painlevé, Gambier, Fuchs (classification): y'' = F(y, y'; z)

There are six Painlevé equations. The first two are

 $P_{I} \quad y'' = 6y^{2} + z \text{ and } P_{II} \quad y'' = 2y^{3} + zy + \alpha$

• Ablowitz, Ramani and Segur conjecture:

All ODE reductions of equations solvable by the inverse scattering transform (IST) possess the Painlevé property (possibly after a transformation of variables,)..., ..., ..., ..., ...,

The Painlevé property The Painlevé equations

The Painlevé property

Definition (the Painlevé property)

An ODE is said to possess the *Painlevé property* if all solutions are single-valued about all movable singularities.

- Kowalevskaya (classical top)
- Painlevé, Gambier, Fuchs (classification): y'' = F(y, y'; z)
- There are six Painlevé equations. The first two are

$$P_I$$
 $y'' = 6y^2 + z$ and P_{II} $y'' = 2y^3 + zy + \alpha$

• Ablowitz, Ramani and Segur conjecture:

All ODE reductions of equations solvable by the inverse scattering transform (IST) possess the Painlevé property (possibly after a transformation of variables.)

The Painlevé property The Painlevé equations

The Painlevé property

Definition (the Painlevé property)

An ODE is said to possess the *Painlevé property* if all solutions are single-valued about all movable singularities.

- Kowalevskaya (classical top)
- Painlevé, Gambier, Fuchs (classification): y'' = F(y, y'; z)
- There are six Painlevé equations. The first two are

$$P_{I} \quad y'' = 6y^{2} + z \text{ and } P_{II} \quad y'' = 2y^{3} + zy + \alpha$$

• Ablowitz, Ramani and Segur conjecture:

All ODE reductions of equations solvable by the inverse scattering transform (IST) possess the Painlevé property (possibly after a transformation of variables.)

The Painlevé property The Painlevé equations

Outline



- 2
- Painlevé analysisThe Painlevé property
- The Painlevé equations
- 3 Movable branch points
 - First-order equations
 - Algebraic singularities
 - Equations of Liénard type

イロト イ理ト イヨト イヨト

The Painlevé property The Painlevé equations

The Painlevé equations

- Each of the Painlevé equations is the compatibility condition for an iso-monodromy problem.
- These linear problems play a similar role to that played by the related spectral problems underlying soliton equations such as KdV.
- The Painlevé transcendents are nonlinear special functions.
- They arise in many areas, especially in describing the asymptotics of certain PDEs and in problems in random matrix theory.

The Painlevé property The Painlevé equations

The Painlevé equations

- Each of the Painlevé equations is the compatibility condition for an iso-monodromy problem.
- These linear problems play a similar role to that played by the related spectral problems underlying soliton equations such as KdV.
- The Painlevé transcendents are nonlinear special functions.
- They arise in many areas, especially in describing the asymptotics of certain PDEs and in problems in random matrix theory.

・ロト ・ 同ト ・ ヨト ・ ヨト

The Painlevé property The Painlevé equations

The Painlevé equations

- Each of the Painlevé equations is the compatibility condition for an iso-monodromy problem.
- These linear problems play a similar role to that played by the related spectral problems underlying soliton equations such as KdV.
- The Painlevé transcendents are nonlinear special functions.
- They arise in many areas, especially in describing the asymptotics of certain PDEs and in problems in random matrix theory.

・ロト ・ 同ト ・ ヨト ・ ヨト

The Painlevé property The Painlevé equations

The Painlevé equations

- Each of the Painlevé equations is the compatibility condition for an iso-monodromy problem.
- These linear problems play a similar role to that played by the related spectral problems underlying soliton equations such as KdV.
- The Painlevé transcendents are nonlinear special functions.
- They arise in many areas, especially in describing the asymptotics of certain PDEs and in problems in random matrix theory.

< ロ > < 同 > < 回 > < 回 >

The Painlevé property The Painlevé equations

Painlevé analysis

• For which analytic function f does

$$\frac{d^2y}{dz^2} = 6y^2 + f(z)$$

possess the Painlevé property?

 Leading Order Behavior: Look for solutions of the form

 $y \sim \alpha (z - z_0)^{p}$, $\Re(p) < 0$.

LHS ~
$$\alpha p(p-1)(z-z_0)^{p-2}$$
,
RHS ~ $6\alpha^2(z-z_0)^{2p}$,

so p = -2 and $\alpha = 1$.

イロト イポト イヨト イヨト

э

The Painlevé property The Painlevé equations

Painlevé analysis

• For which analytic function f does

$$\frac{d^2y}{dz^2} = 6y^2 + f(z)$$

possess the Painlevé property?

• Leading Order Behavior:

Look for solutions of the form

$$\mathbf{y} \sim \alpha (\mathbf{z} - \mathbf{z}_0)^{\mathbf{p}}, \quad \Re(\mathbf{p}) < \mathbf{0}.$$

so p = -2 and $\alpha = 1$.

・ロト ・ 同ト ・ ヨト ・ ヨト

The Painlevé property The Painlevé equations

The resonance condition

We look for a series solution of the form

$$y(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^{n-2}, \qquad a_0 = 1.$$

• We get $a_1 = a_2 = a_3 = 0$ and the recurrence relation

$$(n+1)(n-6)a_n = 6\sum_{m=1}^{n-1} a_m a_{n-m} + \frac{1}{(n-4)!} f^{(n-4)}(z_0).$$

There is a resonance at n = 6 which gives f''(z₀) = 0. This is true for all z₀ so

$$\frac{d^2y}{dz^2} = 6y^2 + Az + B,$$

where A and B are constants

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The Painlevé property The Painlevé equations

The resonance condition

We look for a series solution of the form

$$y(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^{n-2}, \qquad a_0 = 1.$$

• We get $a_1 = a_2 = a_3 = 0$ and the recurrence relation

$$(n+1)(n-6)a_n = 6\sum_{m=1}^{n-1} a_m a_{n-m} + \frac{1}{(n-4)!} f^{(n-4)}(z_0).$$

There is a resonance at n = 6 which gives f''(z₀) = 0. This is true for all z₀ so

$$\frac{d^2y}{dz^2} = 6y^2 + Az + B,$$

where A and B are constants.

・ロット (雪) (日) (日)

The Painlevé property The Painlevé equations

Painlevé's example

• Painlevé considered the equation

$$\frac{d^2y}{dz^2} = \left(\frac{2y-1}{y^2+1}\right) \left(\frac{dy}{dz}\right)^2.$$

• It is elementary to find a two-parameter family of Laurent series solutions:

$$y(z) = \frac{\beta}{z-z_0} - \frac{1}{2} + O((z-z_0)).$$

• The general solution is $y(z) = \tan \log(A(z - \alpha))$, which has poles at $z = \alpha + A^{-1} \exp \left\{ -\left(n + \frac{1}{2}\right)\pi \right\}$, which accumulate at a movable branch point at $z = \alpha$.

The Painlevé property The Painlevé equations

Painlevé's example

Painlevé considered the equation

$$\frac{d^2y}{dz^2} = \left(\frac{2y-1}{y^2+1}\right) \left(\frac{dy}{dz}\right)^2.$$

 It is elementary to find a two-parameter family of Laurent series solutions:

$$y(z) = \frac{\beta}{z-z_0} - \frac{1}{2} + O((z-z_0)).$$

• The general solution is $y(z) = \tan \log(A(z - \alpha))$, which has poles at $z = \alpha + A^{-1} \exp \left\{ -\left(n + \frac{1}{2}\right)\pi \right\}$, which accumulate at a movable branch point at $z = \alpha$.

The Painlevé property The Painlevé equations

Painlevé's example

• Painlevé considered the equation

$$\frac{d^2y}{dz^2} = \left(\frac{2y-1}{y^2+1}\right) \left(\frac{dy}{dz}\right)^2.$$

 It is elementary to find a two-parameter family of Laurent series solutions:

$$y(z) = \frac{\beta}{z-z_0} - \frac{1}{2} + O((z-z_0)).$$

• The general solution is $y(z) = \tan \log(A(z - \alpha))$, which has poles at $z = \alpha + A^{-1} \exp \left\{ -\left(n + \frac{1}{2}\right)\pi \right\}$, which accumulate at a movable branch point at $z = \alpha$.

The Painlevé property The Painlevé equations

A third-order example

The general solution of the third-order ODE

$$\frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{(4y^3 - g_2y - g_3)y'}{(12y^2 - g_2)(y')^2 - 2(4y^3 - g_2y - g_3)y''} \right] = \frac{1}{4}$$

• is $y(z) = \wp\left(\frac{az+b}{cz+d}; g_2, g_3\right)$, where *a*, *b*, *c* and *d* are arbitrary constants such that ad - bc = 1.

・ロット (雪) (日) (日)

The Painlevé property The Painlevé equations

A third-order example

The general solution of the third-order ODE

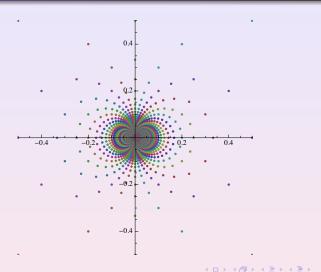
$$\frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{(4y^3 - g_2y - g_3)y'}{(12y^2 - g_2)(y')^2 - 2(4y^3 - g_2y - g_3)y''} \right] = \frac{1}{4}$$

• is $y(z) = \wp\left(\frac{az+b}{cz+d}; g_2, g_3\right)$, where *a*, *b*, *c* and *d* are arbitrary constants such that ad - bc = 1.

・ロット (雪) () () () ()

The Painlevé property The Painlevé equations

Poles of $y(z) = \wp(-1/z); \omega_1 = 1, \omega_2 = i$



э.

The Painlevé property The Painlevé equations

Proofs of the Painlevé property

- Painlevé himself provided a proof that the first Painlevé equation y'' = 6y² + z possesses the Painlevé property.
- This proof, which appears in a number of forms in the literature (e.g., Ince and Golubev), had some gaps in it that have been filled by several authors
 - Hukuhara;
 - Hinkkanen and Laine;
 - Shimomura.
- There are other approaches e.g. Miwa, Fokas and Its, Malgrange (using the isomonodromy problem), Steinmetz (differential inequalities), Erugin, and Joshi and Kruskal.
- Shimomura proved that the ODE $y'' = \frac{2(2k+1)}{(2k-1)^2}y^{2k} + z$ possesses the "quasi-Painlevé property."

The Painlevé property The Painlevé equations

Proofs of the Painlevé property

- Painlevé himself provided a proof that the first Painlevé equation y'' = 6y² + z possesses the Painlevé property.
- This proof, which appears in a number of forms in the literature (e.g., Ince and Golubev), had some gaps in it that have been filled by several authors
 - Hukuhara;
 - Hinkkanen and Laine;
 - Shimomura.
- There are other approaches e.g. Miwa, Fokas and Its, Malgrange (using the isomonodromy problem), Steinmetz (differential inequalities), Erugin, and Joshi and Kruskal.
- Shimomura proved that the ODE $y'' = \frac{2(2k+1)}{(2k-1)^2}y^{2k} + z$ possesses the "quasi-Painlevé property."

The Painlevé property The Painlevé equations

Proofs of the Painlevé property

- Painlevé himself provided a proof that the first Painlevé equation y'' = 6y² + z possesses the Painlevé property.
- This proof, which appears in a number of forms in the literature (e.g., Ince and Golubev), had some gaps in it that have been filled by several authors
 - Hukuhara;
 - Hinkkanen and Laine;
 - Shimomura.
- There are other approaches e.g. Miwa, Fokas and Its, Malgrange (using the isomonodromy problem), Steinmetz (differential inequalities), Erugin, and Joshi and Kruskal.
- Shimomura proved that the ODE $y'' = \frac{2(2k+1)}{(2k-1)^2}y^{2k} + z$ possesses the "quasi-Painlevé property."

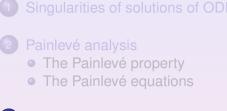
The Painlevé property The Painlevé equations

Proofs of the Painlevé property

- Painlevé himself provided a proof that the first Painlevé equation y'' = 6y² + z possesses the Painlevé property.
- This proof, which appears in a number of forms in the literature (e.g., Ince and Golubev), had some gaps in it that have been filled by several authors
 - Hukuhara;
 - Hinkkanen and Laine;
 - Shimomura.
- There are other approaches e.g. Miwa, Fokas and Its, Malgrange (using the isomonodromy problem), Steinmetz (differential inequalities), Erugin, and Joshi and Kruskal.
- Shimomura proved that the ODE $y'' = \frac{2(2k+1)}{(2k-1)^2}y^{2k} + z$ possesses the "quasi-Painlevé property."

First-order equations Algebraic singularities Equations of Liénard type

Outline



- Movable branch points
 First-order equations
 - Algebraic singularities
 - Equations of Liénard type

イロト イポト イヨト イヨト

First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma — first-order case

Painlevé's lemma

Let *f* be an analytic function in a neighbourhood of the point $(\alpha, \eta) \in \mathbb{C}^2$. Let γ be a curve with end point α and suppose that *y* is analytic on $\gamma \setminus \{\alpha\}$ and satisfies

 $\frac{\mathrm{d}y}{\mathrm{d}z}=f(z,y).$

Let (z_n) be a sequence of points such that $z_n \in \gamma$, $z_n \to \alpha$ and $y(z_n) \to \eta$ as $n \to \infty$. Then *y* is analytic at α .

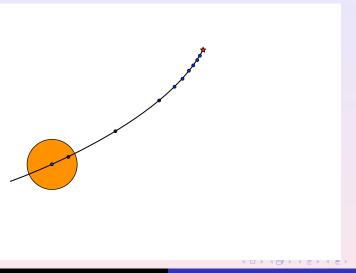
・ロット (四)・ (日)・ (日)・

First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma

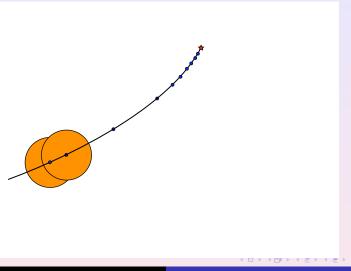
First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma



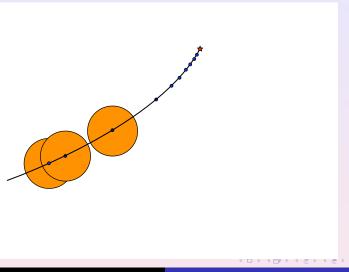
First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma



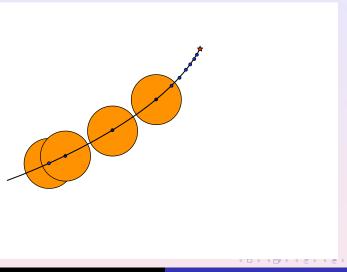
First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma



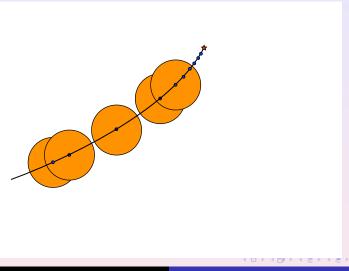
First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma



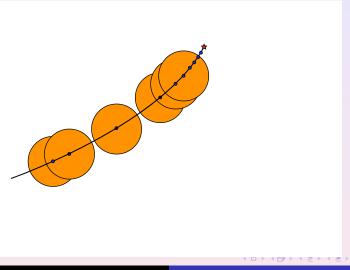
First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma



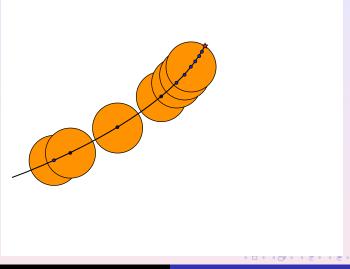
First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma



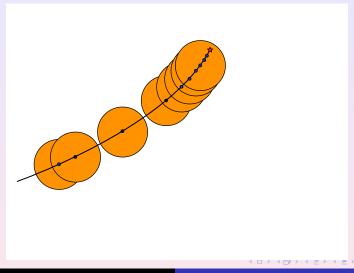
First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma



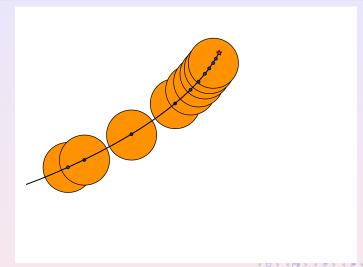
First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma



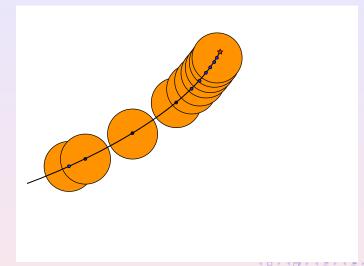
First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma



First-order equations Algebraic singularities Equations of Liénard type

Painlevé's Lemma



First-order equations Algebraic singularities Equations of Liénard type

First-order ODEs

• Let y be a solution of $\frac{dy}{dz} = \sum_{n=0}^{N} a_n(z)y^n$, N > 1, on a curve

 $\gamma \setminus \{\alpha\}$, where y is singular at the endpoint $z = \alpha$ of γ .

- Furthermore, suppose that the *a_n*'s are analytic in a neighbourhood of *z* = α and that *a_N*(α) ≠ 0.
- Then Painlevé's Lemma says that $\lim_{\gamma \ni z \to \alpha} y(z) = \infty$.
- Let u = 1/y. Then the ODE becomes

$$\frac{\mathrm{d}z}{\mathrm{d}u} = \frac{u^{N-2}}{a_N(z) + a_{N-1}(z)u + \dots + a_0(z)u^N}$$

and $z \rightarrow \alpha$ along γ as $u \rightarrow 0$.

・ロット (雪) (日) (日)

First-order equations Algebraic singularities Equations of Liénard type

First-order ODEs

• Let y be a solution of $\frac{dy}{dz} = \sum_{n=0}^{N} a_n(z)y^n$, N > 1, on a curve

 $\gamma \setminus \{\alpha\}$, where *y* is singular at the endpoint $z = \alpha$ of γ .

- Furthermore, suppose that the *a_n*'s are analytic in a neighbourhood of *z* = α and that *a_N*(α) ≠ 0.
- Then Painlevé's Lemma says that $\lim_{\gamma \ni z \to \alpha} y(z) = \infty$.
- Let u = 1/y. Then the ODE becomes

 $\frac{\mathrm{d}z}{\mathrm{d}u} = \frac{u^{N-2}}{a_N(z) + a_{N-1}(z)u + \dots + a_0(z)u^N}$

and $z \rightarrow \alpha$ along γ as $u \rightarrow 0$.

・ロット (雪) () () () ()

First-order equations Algebraic singularities Equations of Liénard type

First-order ODEs

• Let y be a solution of $\frac{dy}{dz} = \sum_{n=0}^{N} a_n(z)y^n$, N > 1, on a curve

 $\gamma \setminus \{\alpha\}$, where y is singular at the endpoint $z = \alpha$ of γ .

- Furthermore, suppose that the *a_n*'s are analytic in a neighbourhood of *z* = α and that *a_N*(α) ≠ 0.
- Then Painlevé's Lemma says that $\lim_{\gamma \ni z \to \alpha} y(z) = \infty$.
- Let u = 1/y. Then the ODE becomes

$$\frac{\mathrm{d}z}{\mathrm{d}u} = \frac{u^{N-2}}{a_N(z) + a_{N-1}(z)u + \dots + a_0(z)u^N}$$

and $z \rightarrow \alpha$ along γ as $u \rightarrow 0$.

・ロット (雪) (日) (日)

First-order equations Algebraic singularities Equations of Liénard type

First-order ODEs

• Let y be a solution of $\frac{dy}{dz} = \sum_{n=0}^{N} a_n(z)y^n$, N > 1, on a curve

 $\gamma \setminus \{\alpha\}$, where y is singular at the endpoint $z = \alpha$ of γ .

- Furthermore, suppose that the *a_n*'s are analytic in a neighbourhood of *z* = α and that *a_N*(α) ≠ 0.
- Then Painlevé's Lemma says that $\lim_{\gamma \ni z \to \alpha} y(z) = \infty$.
- Let u = 1/y. Then the ODE becomes

$$\frac{\mathrm{d}z}{\mathrm{d}u}=\frac{u^{N-2}}{a_N(z)+a_{N-1}(z)u+\cdots+a_0(z)u^N}$$

and $z \rightarrow \alpha$ along γ as $u \rightarrow 0$.

・ロット (雪) () () () ()

First-order equations Algebraic singularities Equations of Liénard type

First-order ODEs — algebraic singularities

• Recall that u = 1/y and

$$\frac{\mathrm{d}z}{\mathrm{d}u}=\frac{u^{N-2}}{a_N(z)+a_{N-1}(z)u+\cdots+a_0(z)u^N},$$

where $z(0) = \alpha$.

• So z is analytic in u near u = 0.

• Hence
$$z = \alpha + u^{N-1} \sum_{n=0}^{\infty} c_n u^n$$
, where $c_0 \neq 0$
• So $y(z) = 1/u(z) = \sum_{n=-1}^{\infty} b_n (z - \alpha)^{n/(N-1)}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

First-order equations Algebraic singularities Equations of Liénard type

First-order ODEs — algebraic singularities

• Recall that u = 1/y and

$$\frac{\mathrm{d}z}{\mathrm{d}u}=\frac{u^{N-2}}{a_N(z)+a_{N-1}(z)u+\cdots+a_0(z)u^N},$$

where $z(0) = \alpha$.

• So z is analytic in u near u = 0.

• Hence
$$z = \alpha + u^{N-1} \sum_{n=0}^{\infty} c_n u^n$$
, where $c_0 \neq 0$.
• So $y(z) = 1/u(z) = \sum_{n=-1}^{\infty} b_n (z - \alpha)^{n/(N-1)}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

First-order equations Algebraic singularities Equations of Liénard type

First-order ODEs — algebraic singularities

• Recall that u = 1/y and

$$\frac{\mathrm{d}z}{\mathrm{d}u}=\frac{u^{N-2}}{a_N(z)+a_{N-1}(z)u+\cdots+a_0(z)u^N},$$

where $z(0) = \alpha$.

• So z is analytic in u near u = 0.

• Hence $z = \alpha + u^{N-1} \sum_{n=0}^{\infty} c_n u^n$, where $c_0 \neq 0$. • So $y(z) = 1/u(z) = \sum_{n=-1}^{\infty} b_n (z - \alpha)^{n/(N-1)}$.

イロト イポト イヨト イヨト

First-order equations Algebraic singularities Equations of Liénard type

First-order ODEs — algebraic singularities

• Recall that u = 1/y and

$$\frac{\mathrm{d}z}{\mathrm{d}u}=\frac{u^{N-2}}{a_N(z)+a_{N-1}(z)u+\cdots+a_0(z)u^N},$$

where $z(0) = \alpha$.

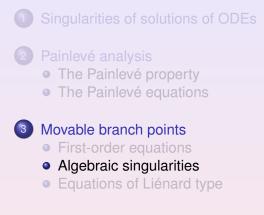
• So z is analytic in u near u = 0.

• Hence $z = \alpha + u^{N-1} \sum_{n=0}^{\infty} c_n u^n$, where $c_0 \neq 0$. • So $y(z) = 1/u(z) = \sum_{n=-1}^{\infty} b_n (z - \alpha)^{n/(N-1)}$.

・ロト ・ ア・ ・ ヨト ・ ヨト

First-order equations Algebraic singularities Equations of Liénard type

Outline



Rod Halburd Movable Singularities of Nonlinear ODEs

イロト イポト イヨト イヨト

First-order equations Algebraic singularities Equations of Liénard type

Algebraic singularities

- Let F(z; u, v) be a polynomial in u and v with coefficients that are analytic in z in some common domain. Painlevé showed that the only movable singularities of solutions of the ODE F(z; y, y') = 0 are algebraic.
- This is not true in general for higher-order equations such as

$$y''=\sum_{n=0}^{N}a_n(z)y^n.$$

• Leading order behaviour: $y \sim c_0(z - z_0)^{-2/(N-1)}$, where $c_0^{N-1} = \frac{2}{a_N(z_0)} \frac{N+1}{(N-1)^2}$. Nature depends on the parity of *N*.

・ロット (雪) (山) (山) (山)

First-order equations Algebraic singularities Equations of Liénard type

Algebraic singularities

- Let F(z; u, v) be a polynomial in u and v with coefficients that are analytic in z in some common domain. Painlevé showed that the only movable singularities of solutions of the ODE F(z; y, y') = 0 are algebraic.
- This is not true in general for higher-order equations such as

$$y''=\sum_{n=0}^N a_n(z)y^n.$$

• Leading order behaviour: $y \sim c_0(z - z_0)^{-2/(N-1)}$, where $c_0^{N-1} = \frac{2}{a_N(z_0)} \frac{N+1}{(N-1)^2}$. Nature depends on the parity of *N*.

・ロット (雪) () () () ()

First-order equations Algebraic singularities Equations of Liénard type

Algebraic singularities

- Let F(z; u, v) be a polynomial in u and v with coefficients that are analytic in z in some common domain. Painlevé showed that the only movable singularities of solutions of the ODE F(z; y, y') = 0 are algebraic.
- This is not true in general for higher-order equations such as

$$y''=\sum_{n=0}^N a_n(z)y^n.$$

• Leading order behaviour: $y \sim c_0(z - z_0)^{-2/(N-1)}$, where $c_0^{N-1} = \frac{2}{a_N(z_0)} \frac{N+1}{(N-1)^2}$. Nature depends on the parity of *N*.

・ロット (雪) (日) (日)

First-order equations Algebraic singularities Equations of Liénard type

Theorem (assumptions)

For $N \ge 2$, suppose that there is a domain $\Omega \subset \mathbb{C}$ such that a_0, \ldots, a_N are analytic and that a_N is nowhere 0 on Ω . Suppose further that for each $z_0 \in \Omega$ and for each c_0 such that

$$c_0^{N-1} = \frac{2}{a_N(z_0)} \frac{N+1}{(N-1)^2},$$
(1)

the equation $y'' = \sum_{n=0}^{N} a_n(z)y^n$ admits a formal series solution of the form

$$y(z) = \sum_{j=0}^{\infty} c_j (z - z_0)^{\frac{j-2}{N-1}}.$$
 (2)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

First-order equations Algebraic singularities Equations of Liénard type

Theorem cont'd (conclusions part 1)

- i For each c_0 satisfying (1) and for each $\beta \in \mathbb{C}$, there is a unique formal series solution of the form (2) such that $c_{2(N+1)} = \beta$.
- ii Given c_0 and $c_{2(N+1)}$ as above, the series (2) converges in a neighbourhood of z_0 .

$$c_0^{N-1} = \frac{2}{a_N(z_0)} \frac{N+1}{(N-1)^2}$$
 (1)

(2)

・ロット (雪) (日) (日)

$$\gamma(z) = \sum_{j=0}^{\infty} c_j (z - z_0)^{\frac{j-2}{N-1}}$$

First-order equations Algebraic singularities Equations of Liénard type

Theorem cont'd (conclusions part 2)

iii Now let y be a solution of equation $y'' = \sum a_n(z)y^n$ that

can be continued analytically along a curve γ up to but not including the endpoint z_0 , where the coefficients a_j are analytic in a neighbourhood of z_0 and $a_N(z_0) \neq 0$. If γ is of finite length, then y has a convergent series expansion about z_0 of the form (2).

iv If *y* cannot be represented by a series expansion about z_0 of the form (2) then γ is of infinite length but z_0 is an accumulation point of such algebraic singularities.

$$y(z) = \sum_{j=0}^{\infty} c_j (z - z_0)^{\frac{j-2}{N-1}}$$
(2)

First-order equations Algebraic singularities Equations of Liénard type

Main tool

A main tool used in the proof is the following.

Painlevé's lemma

Let f_1, \ldots, f_m be analytic functions in a neighbourhood of the point $(\alpha, \eta_1, \ldots, \eta_m)$ in \mathbb{C}^{m+1} . Let γ be a curve with end point α and suppose that y_i is analytic on $\gamma \setminus \{\alpha\}$ for $i = 1, \ldots, m$ and satisfies

$$\mathbf{y}'_i = f_i(\mathbf{z}; \mathbf{y}_1, \ldots, \mathbf{y}_m).$$

Let (z_n) be a sequence of points such that $z_n \in \gamma$, $z_n \to \alpha$ and $y_i(z_n) \to \eta_i$ as $n \to \infty$, for all i = 1, ..., n. Then each y_i is analytic at α .

Applying this to part iii of the theorem shows that y is unbounded on γ .

First-order equations Algebraic singularities Equations of Liénard type

lim vs limsup

• We write the equation
$$y'' = \sum_{n=0}^{N} a_n(z)y^n$$
 as the first-order system

$$y'_1 = y_2, \qquad y'_2 = \sum_{n=0}^N a_n(z)y_1^n.$$

Then Painlevé's Lemma gives

$$\lim_{\gamma \ni z \to z_0} \max\{|y(z)|, |y'(z)|\} = \infty$$

and

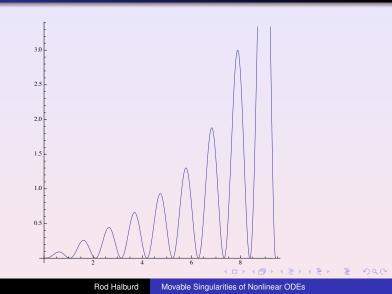
 $\limsup_{\gamma\ni z\to z_0}|y(z)|=\infty.$

イロト イポト イヨト イヨト

э.

First-order equations Algebraic singularities Equations of Liénard type

lim vs limsup



First-order equations Algebraic singularities Equations of Liénard type

Outline of proof of iii.

- Show that, WLOG, $A := \liminf_{\gamma \ni z \to z_0} |y(z)| > 0$ (Shimomura, Hukuhara)
- $\bullet\,$ Show that there is a bounded function on γ of the form

$$W(z) := y'(z)^2 + \left(\sum_{k=1}^{N-1} \frac{b_k(z)}{y^k(z)}\right) y'(z) - 2\sum_{k=1}^{N+1} \frac{a_{k-1}(z)}{k} y^k(z).$$

- If A < ∞ then y and y' are both bounded on a sequence with limit z₀. Now apply Painlevé's lemma.
- If $A = \infty$ then solve for y': $y' = \sum Y_n(z, y) W^n$.

• Define v by $y' = Y_0(z, y) + Y_1(z, y)v$, set y = 1/u or $y = 1/u^2$ and write down a pair of ODEs for z and v as functions of u that are regular for $z(0) = z_0$ and any $v(0) = z_0$

First-order equations Algebraic singularities Equations of Liénard type

Outline of proof of iii.

- Show that, WLOG, $A := \liminf_{\gamma \ni z \to z_0} |y(z)| > 0$
 - (Shimomura, Hukuhara)
- $\bullet\,$ Show that there is a bounded function on γ of the form

$$W(z) := y'(z)^2 + \left(\sum_{k=1}^{N-1} \frac{b_k(z)}{y^k(z)}\right) y'(z) - 2\sum_{k=1}^{N+1} \frac{a_{k-1}(z)}{k} y^k(z).$$

- If A < ∞ then y and y' are both bounded on a sequence with limit z₀. Now apply Painlevé's lemma.
- If $A = \infty$ then solve for y': $y' = \sum Y_n(z, y) W^n$.
- Define v by $y' = Y_0(z, y) + Y_1(z, y)v$, set y = 1/u or $y = 1/u^2$ and write down a pair of ODEs for z and v as functions of u that are regular for $z(0) = z_0$ and any v(0).

First-order equations Algebraic singularities Equations of Liénard type

Outline of proof of iii.

• Show that, WLOG, $\mathbf{A} := \liminf_{\gamma \ni z \to z_0} |\mathbf{y}(z)| > 0$

(Shimomura, Hukuhara)

 $\bullet\,$ Show that there is a bounded function on γ of the form

$$W(z) := y'(z)^2 + \left(\sum_{k=1}^{N-1} \frac{b_k(z)}{y^k(z)}\right) y'(z) - 2\sum_{k=1}^{N+1} \frac{a_{k-1}(z)}{k} y^k(z).$$

- If A < ∞ then y and y' are both bounded on a sequence with limit z₀. Now apply Painlevé's lemma.
- If $A = \infty$ then solve for y': $y' = \sum Y_n(z, y) W^n$.

• Define v by $y' = Y_0(z, y) + Y_1(z, y)v$, set y = 1/u or $y = 1/u^2$ and write down a pair of ODEs for z and v as functions of u that are regular for $z(0) = z_0$ and any $v(0) = y_0$

First-order equations Algebraic singularities Equations of Liénard type

Outline of proof of iii.

• Show that, WLOG, $A := \liminf_{\gamma \ni z \to z_0} |y(z)| > 0$

(Shimomura, Hukuhara)

 $\bullet\,$ Show that there is a bounded function on γ of the form

$$W(z) := y'(z)^2 + \left(\sum_{k=1}^{N-1} \frac{b_k(z)}{y^k(z)}\right) y'(z) - 2\sum_{k=1}^{N+1} \frac{a_{k-1}(z)}{k} y^k(z).$$

- If A < ∞ then y and y' are both bounded on a sequence with limit z₀. Now apply Painlevé's lemma.
- If $A = \infty$ then solve for y': $y' = \sum_{n=1}^{\infty} Y_n(z, y) W^n$.

• Define v by $y' = Y_0(z, y) + Y_1(z, y)v$, set y = 1/u or $y = 1/u^2$ and write down a pair of ODEs for z and v as functions of u that are regular for $z(0) = z_0$, and any V(0).

First-order equations Algebraic singularities Equations of Liénard type

Outline of proof of iii.

• Show that, WLOG, $A := \liminf_{\gamma \ni z \to z_0} |y(z)| > 0$

(Shimomura, Hukuhara)

 $\bullet\,$ Show that there is a bounded function on γ of the form

$$W(z) := y'(z)^2 + \left(\sum_{k=1}^{N-1} \frac{b_k(z)}{y^k(z)}\right) y'(z) - 2\sum_{k=1}^{N+1} \frac{a_{k-1}(z)}{k} y^k(z).$$

- If A < ∞ then y and y' are both bounded on a sequence with limit z₀. Now apply Painlevé's lemma.
- If $A = \infty$ then solve for y': $y' = \sum_{n=1}^{\infty} Y_n(z, y) W^n$.
- Define v by $y' = Y_0(z, y) + Y_1(z, y)v$, set y = 1/u or $y = 1/u^2$ and write down a pair of ODEs for z and v as functions of u that are regular for $z(0) = z_0$ and any v(0).

First-order equations Algebraic singularities Equations of Liénard type

The bounded function W

Recall that

$$W(z) := y'(z)^2 + \left(\sum_{k=1}^{N-1} \frac{b_k(z)}{y^k(z)}\right) y'(z) - 2\sum_{k=1}^{N+1} \frac{a_{k-1}(z)}{k} y^k(z),$$

and we will use the normalised form of the equation $y'' = \sum_{n=0}^{N-2} a_n(z)y^n + 2\frac{N+1}{(N-1)^2}y^N.$

Then

W' + P(z, 1/y)W = Q(z, 1/y)y' + R(z, 1/y) + S(z, y),

where F, Q, R, S are polynomials in their 2nd arguments.

• If $S \equiv 0$ and Q has no term prop to 1/y then W is bided.

イロン 不良 とくほう 不良 とうほ

First-order equations Algebraic singularities Equations of Liénard type

The bounded function W

Recall that

$$W(z) := y'(z)^2 + \left(\sum_{k=1}^{N-1} \frac{b_k(z)}{y^k(z)}\right) y'(z) - 2\sum_{k=1}^{N+1} \frac{a_{k-1}(z)}{k} y^k(z),$$

and we will use the normalised form of the equation $y'' = \sum_{n=0}^{N-2} a_n(z)y^n + 2\frac{N+1}{(N-1)^2}y^N.$

Then

W' + P(z, 1/y)W = Q(z, 1/y)y' + R(z, 1/y) + S(z, y), where *P*, *Q*, *R*, *S* are polynomials in their 2nd arguments.

• If $S \equiv 0$ and Q has no term prop to 1/y then W is bnded.

イロン 不良 とくほう 不良 とうほ

First-order equations Algebraic singularities Equations of Liénard type

The bounded function W

Recall that

$$W(z) := y'(z)^2 + \left(\sum_{k=1}^{N-1} \frac{b_k(z)}{y^k(z)}\right) y'(z) - 2\sum_{k=1}^{N+1} \frac{a_{k-1}(z)}{k} y^k(z),$$

and we will use the normalised form of the equation $y'' = \sum_{n=0}^{N-2} a_n(z)y^n + 2\frac{N+1}{(N-1)^2}y^N.$

Then

W' + P(z, 1/y)W = Q(z, 1/y)y' + R(z, 1/y) + S(z, y),

where P, Q, R, S are polynomials in their 2nd arguments.

• If $S \equiv 0$ and Q has no term prop to 1/y then W is bnded.

イロト イポト イヨト イヨト 三日

First-order equations Algebraic singularities Equations of Liénard type

Resonance condition

If the resonance condition is not satisfied for solutions of

$$y'' = \sum_{n=0}^{N} a_n(z) y^n$$

of the form $y(z) \sim c_0(z - z_0)^{-2/(N-1)}$, then the Laurent series expansion in fractional powers of $z - z_0$ must be modified to a series of the form

$$y(z) = \sum_{n=0}^{\infty} a_n (\log(z-z_0))(z-z_0)^{(n-2)/(N-1)}$$

where the a_n 's are polynomials.

• New methods are needed to determine whether analytic continuation up to a singular point along a finite length curve always leads to such a singularity.

First-order equations Algebraic singularities Equations of Liénard type

Resonance condition

• If the resonance condition is not satisfied for solutions of

$$y'' = \sum_{n=0}^{N} a_n(z) y^n$$

of the form $y(z) \sim c_0(z - z_0)^{-2/(N-1)}$, then the Laurent series expansion in fractional powers of $z - z_0$ must be modified to a series of the form

$$y(z) = \sum_{n=0}^{\infty} a_n (\log(z-z_0))(z-z_0)^{(n-2)/(N-1)}$$

where the a_n 's are polynomials.

• New methods are needed to determine whether analytic continuation up to a singular point along a finite length curve always leads to such a singularity.

First-order equations Algebraic singularities Equations of Liénard type

Accumulation of "finite type" branch points

- By "accumulation point" in part iv of the theorem we mean that given any ε > 0 there exists a straight line segment *I* in the disk of radius ε centred at z₀ with endpoints z₁ ∈ γ and z₂ such that analytic continuation of y along γ up to z₁ and then along *I* ends in an algebraic singularity at z₂.
- This accumulation is much more complicated than the accumulation of poles in Painlevé's example.
- A possible accumulation of poles does not have to be considered separately in the standard proofs of the Painlevé property.
- The fact that *P*₁ and *P*₁₁ have the Painlevé property is a corollary of the theorem.

・ロット (雪) (日) (日)

First-order equations Algebraic singularities Equations of Liénard type

Accumulation of "finite type" branch points

- By "accumulation point" in part iv of the theorem we mean that given any ε > 0 there exists a straight line segment *I* in the disk of radius ε centred at z₀ with endpoints z₁ ∈ γ and z₂ such that analytic continuation of y along γ up to z₁ and then along *I* ends in an algebraic singularity at z₂.
- This accumulation is much more complicated than the accumulation of poles in Painlevé's example.
- A possible accumulation of poles does not have to be considered separately in the standard proofs of the Painlevé property.
- The fact that *P*₁ and *P*₁₁ have the Painlevé property is a corollary of the theorem.

・ロット (雪) (日) (日)

First-order equations Algebraic singularities Equations of Liénard type

Accumulation of "finite type" branch points

- By "accumulation point" in part iv of the theorem we mean that given any ε > 0 there exists a straight line segment *I* in the disk of radius ε centred at z₀ with endpoints z₁ ∈ γ and z₂ such that analytic continuation of y along γ up to z₁ and then along *I* ends in an algebraic singularity at z₂.
- This accumulation is much more complicated than the accumulation of poles in Painlevé's example.
- A possible accumulation of poles does not have to be considered separately in the standard proofs of the Painlevé property.
- The fact that *P*₁ and *P*₁₁ have the Painlevé property is a corollary of the theorem.

・ロト ・同ト ・ヨト ・ヨト

First-order equations Algebraic singularities Equations of Liénard type

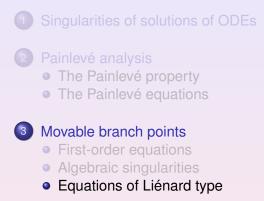
Accumulation of "finite type" branch points

- By "accumulation point" in part iv of the theorem we mean that given any ε > 0 there exists a straight line segment *I* in the disk of radius ε centred at z₀ with endpoints z₁ ∈ γ and z₂ such that analytic continuation of y along γ up to z₁ and then along *I* ends in an algebraic singularity at z₂.
- This accumulation is much more complicated than the accumulation of poles in Painlevé's example.
- A possible accumulation of poles does not have to be considered separately in the standard proofs of the Painlevé property.
- The fact that *P_I* and *P_{II}* have the Painlevé property is a corollary of the theorem.

ヘロト ヘアト ヘヨト ヘヨト

First-order equations Algebraic singularities Equations of Liénard type

Outline



イロト イ理ト イヨト イヨト

First-order equations Algebraic singularities Equations of Liénard type

Equations of Liénard type

We have proved the analogous result for

y'' = P(z, y)y' + Q(z, y),

where P and Q are polynomials in y and $\deg_y P \ge \deg_y Q - 1$

- The constant coefficient case with degP ≥ degQ + 1 was done by Smith in 1953.
- Smith also showed that the equation

$$y^{\prime\prime}+4y^3y^\prime+y=0$$

has a solution with algebraic branch points that accumulate along a curve of infinite length in the finite plane.

First-order equations Algebraic singularities Equations of Liénard type

Equations of Liénard type

We have proved the analogous result for

y'' = P(z, y)y' + Q(z, y),

where *P* and *Q* are polynomials in *y* and $\deg_y P \ge \deg_y Q - 1$

- The constant coefficient case with degP ≥ degQ + 1 was done by Smith in 1953.
- Smith also showed that the equation

$$y''+4y^3y'+y=0$$

has a solution with algebraic branch points that accumulate along a curve of infinite length in the finite plane.

First-order equations Algebraic singularities Equations of Liénard type

Equations of Liénard type

We have proved the analogous result for

y'' = P(z, y)y' + Q(z, y),

where *P* and *Q* are polynomials in *y* and $\deg_y P \ge \deg_y Q - 1$

- The constant coefficient case with degP ≥ degQ + 1 was done by Smith in 1953.
- Smith also showed that the equation

$$y^{\prime\prime}+4y^3y^\prime+y=0$$

has a solution with algebraic branch points that accumulate along a curve of infinite length in the finite plane.

First-order equations Algebraic singularities Equations of Liénard type

The maximum balance case of Liénard's equation

• If $\deg_y Q = 2\deg_y P + 1$, then all three terms in Liénard's equation

$$y'' = P(z, y)y' + Q(z, y)$$

contribute at leading order.

• Consider the constant coefficient case

 $\mathbf{y}'' = \mu \mathbf{y}^n \mathbf{y}' + \nu \mathbf{y}^{2n+1},$

which has the first integral

$$I = (y' - \alpha y^{n+1})^{\frac{\alpha}{\alpha - \beta}} (y' - \beta y^{n+1})^{\frac{\beta}{\beta - \alpha}}.$$

where α and β are the (distinct) roots of $\nu + \mu x - (n+1)x^2$.

イロン 不良 とくほう 不良 とうほ

First-order equations Algebraic singularities Equations of Liénard type

The maximum balance case of Liénard's equation

• If $\deg_y Q = 2\deg_y P + 1$, then all three terms in Liénard's equation

$$y'' = P(z, y)y' + Q(z, y)$$

contribute at leading order.

Consider the constant coefficient case

$$\mathbf{y}'' = \mu \mathbf{y}^n \mathbf{y}' + \nu \mathbf{y}^{2n+1},$$

which has the first integral

$$I = (y' - \alpha y^{n+1})^{\frac{\alpha}{\alpha-\beta}} (y' - \beta y^{n+1})^{\frac{\beta}{\beta-\alpha}}.$$

where α and β are the (distinct) roots of $\nu + \mu x - (n+1)x^2$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

First-order equations Algebraic singularities Equations of Liénard type

Parametric representation

The simplest max balance case of Liénard's equation is

$$\mathbf{y}'' = \mu \mathbf{y}^n \mathbf{y}' + \nu \mathbf{y}^{2n+1},$$

which has the first integral

$$(y'-\alpha y^{n+1})^{\frac{\alpha}{\alpha-\beta}}(y'-\beta y^{n+1})^{\frac{\beta}{\beta-\alpha}}.$$

where α and β are the (distinct) roots of $\nu + \mu x - (n+1)x^2$. • This gives the (generic) parametric representation

$$y(z) = \kappa (t-\alpha)^{\gamma} (t-\beta)^{\gamma},$$

$$z = z_0 + \frac{1}{\kappa^n} \int (t-\alpha)^{-na} (t-\beta)^{-nb} dt,$$

where
$$a = \frac{1}{n+1} \frac{\alpha}{\alpha - \beta}$$
 and $b = \frac{1}{n+1} \frac{\beta}{\beta - \alpha}$.

First-order equations Algebraic singularities Equations of Liénard type

Parametric representation

The simplest max balance case of Liénard's equation is

$$\mathbf{y}'' = \mu \mathbf{y}^n \mathbf{y}' + \nu \mathbf{y}^{2n+1},$$

which has the first integral

$$(y'-\alpha y^{n+1})^{\frac{\alpha}{\alpha-\beta}}(y'-\beta y^{n+1})^{\frac{\beta}{\beta-\alpha}}.$$

where α and β are the (distinct) roots of $\nu + \mu x - (n+1)x^2$. • This gives the (generic) parametric representation

$$y(z) = \kappa (t-\alpha)^{\gamma} (t-\beta)^{\gamma},$$

$$z = z_0 + \frac{1}{\kappa^n} \int (t-\alpha)^{-na} (t-\beta)^{-nb} dt,$$

where $a = \frac{1}{n+1} \frac{\alpha}{\alpha - \beta}$ and $b = \frac{1}{n+1} \frac{\beta}{\beta - \alpha}$.

Other generalisations

$$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} = E(z,y) \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + F(z,y)\frac{\mathrm{d}y}{\mathrm{d}z} + G(z,y).$$

- Assume all "obvious" formal series expansions are algebraic.
- $E(z, y) = \sum_{\mu=1}^{\infty} \frac{k_{\mu}}{y a_{\mu}(z)}$, k_{μ} half-integers, F has simple poles.
- Class general enough to include all Painlevé equations.
- More subcases are being studied by my PhD student Thomas Kecker.

・ロット (雪) (日) (日)

Other generalisations

$$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} = E(z,y) \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + F(z,y)\frac{\mathrm{d}y}{\mathrm{d}z} + G(z,y).$$

 Assume all "obvious" formal series expansions are algebraic.

• $E(z, y) = \sum_{\mu=1}^{\infty} \frac{k_{\mu}}{y - a_{\mu}(z)}$, k_{μ} half-integers, F has simple poles.

- Class general enough to include all Painlevé equations.
- More subcases are being studied by my PhD student Thomas Kecker.

・ロット (雪) (日) (日)

Other generalisations

$$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} = E(z,y) \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + F(z,y)\frac{\mathrm{d}y}{\mathrm{d}z} + G(z,y).$$

 Assume all "obvious" formal series expansions are algebraic.

• $E(z, y) = \sum_{\mu=1}^{\infty} \frac{k_{\mu}}{y - a_{\mu}(z)}$, k_{μ} half-integers, F has simple poles.

• Class general enough to include all Painlevé equations.

 More subcases are being studied by my PhD student Thomas Kecker.

・ロット (雪) (目) (日) (日)

Other generalisations

$$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} = E(z,y) \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)^2 + F(z,y)\frac{\mathrm{d}y}{\mathrm{d}z} + G(z,y).$$

 Assume all "obvious" formal series expansions are algebraic.

• $E(z, y) = \sum_{\mu=1}^{\infty} \frac{k_{\mu}}{y - a_{\mu}(z)}$, k_{μ} half-integers, F has simple poles.

Class general enough to include all Painlevé equations.

 More subcases are being studied by my PhD student Thomas Kecker.

・ロット (雪) (目) (日) (日)

- There are many formal methods for finding representations of some singularities of solutions of ODEs (e.g., Painlevé analysis).
- How do we know when we have a complete list of possible kinds of singularities for a given equation?
- The main goal of this research is to make some first steps towards a "general theory" of movable singularities of solutions of ODEs.
- Such a theory for movable algebraic singularities of a class of ODEs would show that the Painlevé test is a necessary and sufficient condition for the Painlevé property within that class.
- These results should help us to understand the behaviour of generic (in particular, non-integrable) equations.

- There are many formal methods for finding representations of some singularities of solutions of ODEs (e.g., Painlevé analysis).
- How do we know when we have a complete list of possible kinds of singularities for a given equation?
- The main goal of this research is to make some first steps towards a "general theory" of movable singularities of solutions of ODEs.
- Such a theory for movable algebraic singularities of a class of ODEs would show that the Painlevé test is a necessary and sufficient condition for the Painlevé property within that class.
- These results should help us to understand the behaviour of generic (in particular, non-integrable) equations.

- There are many formal methods for finding representations of some singularities of solutions of ODEs (e.g., Painlevé analysis).
- How do we know when we have a complete list of possible kinds of singularities for a given equation?
- The main goal of this research is to make some first steps towards a "general theory" of movable singularities of solutions of ODEs.
- Such a theory for movable algebraic singularities of a class of ODEs would show that the Painlevé test is a necessary and sufficient condition for the Painlevé property within that class.
- These results should help us to understand the behaviour of generic (in particular, non-integrable) equations.

- There are many formal methods for finding representations of some singularities of solutions of ODEs (e.g., Painlevé analysis).
- How do we know when we have a complete list of possible kinds of singularities for a given equation?
- The main goal of this research is to make some first steps towards a "general theory" of movable singularities of solutions of ODEs.
- Such a theory for movable algebraic singularities of a class of ODEs would show that the Painlevé test is a necessary and sufficient condition for the Painlevé property within that class.
- These results should help us to understand the behaviour of generic (in particular, non-integrable) equations.

- There are many formal methods for finding representations of some singularities of solutions of ODEs (e.g., Painlevé analysis).
- How do we know when we have a complete list of possible kinds of singularities for a given equation?
- The main goal of this research is to make some first steps towards a "general theory" of movable singularities of solutions of ODEs.
- Such a theory for movable algebraic singularities of a class of ODEs would show that the Painlevé test is a necessary and sufficient condition for the Painlevé property within that class.
- These results should help us to understand the behaviour of generic (in particular, non-integrable) equations.