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Fixed versus movable singularities

Cauchy’s theorem guarantees that the initial value problem

y ′ =
1

2(z + 1)

(
y − y3

)
, y(0) = c,

has a unique solution in a neighbourhood of z = 0.
This solution is

y(z) = c

√
1 + z

1 + c2z
.

The singularity at z = −1 is said to be fixed .
The singularity at z = −1/c2 is said to be movable .
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Examples of movable singularities

The general solution of

y ′′ + (y ′)2 = 0

is y(z) = log(z − z0), which has a movable logarithmic
branch point at z0.
The general solution of

(yy ′′ − y ′2)2 + 4yy ′3 = 0

is y(z) = c exp{(z − z0)−1}, which has a movable
essential singularity at z0.
The general solution of the Chazy equation

y ′′′ = 2yy ′′ − 3y ′2

has a movable natural barrier.
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The subject of this talk

For certain classes of equations, one can
1 find a list of some kind of series expansions (or other

characterisations) of solutions in the neighbourhood of
movable singularities,

2 show that these series have non-zero radii of convergence,
and

3 show that the list obtained is complete in the sense that
any singularity that can be reached by analytic continuation
is of one of the types obtained in 1.
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The Painlevé property

Definition (the Painlevé property)
An ODE is said to possess the Painlevé property if all solutions
are single-valued about all movable singularities.

The only equation with this property of the form

dy
dz

= R(z; y),

where R is rational in y , is the Riccati equation

dy
dz

= p(z)y2 + q(z)y + r(z),

which is linearizable.
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The Painlevé property

Definition (the Painlevé property)
An ODE is said to possess the Painlevé property if all solutions
are single-valued about all movable singularities.

Kowalevskaya (classical top)
Painlevé, Gambier, Fuchs (classification): y ′′ = F (y , y ′; z)
There are six Painlevé equations. The first two are

PI y ′′ = 6y2 + z and PII y ′′ = 2y3 + zy + α

Ablowitz, Ramani and Segur conjecture:
All ODE reductions of equations solvable by the inverse
scattering transform (IST) possess the Painlevé property
(possibly after a transformation of variables.)
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The Painlevé equations

Each of the Painlevé equations is the compatibility
condition for an iso-monodromy problem.
These linear problems play a similar role to that played by
the related spectral problems underlying soliton equations
such as KdV.
The Painlevé transcendents are nonlinear special
functions.
They arise in many areas, especially in describing the
asymptotics of certain PDEs and in problems in random
matrix theory.
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Painlevé analysis

For which analytic function f does

d2y
dz2 = 6y2 + f (z)

possess the Painlevé property?
Leading Order Behavior:
Look for solutions of the form

y ∼ α(z − z0)p, <(p) < 0.

LHS ∼ αp(p − 1)(z − z0)p−2,

RHS ∼ 6α2(z − z0)2p,

so p = −2 and α = 1.

Rod Halburd Movable Singularities of Nonlinear ODEs



Singularities of solutions of ODEs
Painlevé analysis

Movable branch points
Future directions

The Painlevé property
The Painlevé equations

Painlevé analysis

For which analytic function f does

d2y
dz2 = 6y2 + f (z)

possess the Painlevé property?
Leading Order Behavior:
Look for solutions of the form

y ∼ α(z − z0)p, <(p) < 0.

LHS ∼ αp(p − 1)(z − z0)p−2,

RHS ∼ 6α2(z − z0)2p,

so p = −2 and α = 1.

Rod Halburd Movable Singularities of Nonlinear ODEs



Singularities of solutions of ODEs
Painlevé analysis

Movable branch points
Future directions

The Painlevé property
The Painlevé equations

The resonance condition

We look for a series solution of the form

y(z) =
∞∑

n=0

an(z − z0)n−2, a0 = 1.

We get a1 = a2 = a3 = 0 and the recurrence relation

(n + 1)(n − 6)an = 6
n−1∑
m=1

aman−m +
1

(n − 4)!
f (n−4)(z0).

There is a resonance at n = 6 which gives f ′′(z0) = 0. This
is true for all z0 so

d2y
dz2 = 6y2 + Az + B,

where A and B are constants.
Rod Halburd Movable Singularities of Nonlinear ODEs



Singularities of solutions of ODEs
Painlevé analysis

Movable branch points
Future directions

The Painlevé property
The Painlevé equations

The resonance condition

We look for a series solution of the form

y(z) =
∞∑

n=0

an(z − z0)n−2, a0 = 1.

We get a1 = a2 = a3 = 0 and the recurrence relation

(n + 1)(n − 6)an = 6
n−1∑
m=1

aman−m +
1

(n − 4)!
f (n−4)(z0).

There is a resonance at n = 6 which gives f ′′(z0) = 0. This
is true for all z0 so

d2y
dz2 = 6y2 + Az + B,

where A and B are constants.
Rod Halburd Movable Singularities of Nonlinear ODEs



Singularities of solutions of ODEs
Painlevé analysis

Movable branch points
Future directions

The Painlevé property
The Painlevé equations

Painlevé’s example

Painlevé considered the equation

d2y
dz2 =

(
2y − 1
y2 + 1

)(
dy
dz

)2

.

It is elementary to find a two-parameter family of Laurent
series solutions:

y(z) =
β

z − z0
− 1

2
+ O ((z − z0)) .

The general solution is y(z) = tan log(A(z − α)), which has

poles at z = α + A−1 exp
{
−
(

n +
1
2

)
π

}
, which

accumulate at a movable branch point at z = α.
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A third-order example

The general solution of the third-order ODE

d
dz

[
(4y3 − g2y − g3)y ′

(12y2 − g2)(y ′)2 − 2(4y3 − g2y − g3)y ′′

]
=

1
4

is y(z) = ℘

(
az + b
cz + d

; g2,g3

)
, where a, b, c and d are

arbitrary constants such that ad − bc = 1.
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Poles of y(z) = ℘(−1/z); ω1 = 1, ω2 = i
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Proofs of the Painlevé property

Painlevé himself provided a proof that the first Painlevé
equation y ′′ = 6y2 + z possesses the Painlevé property.
This proof, which appears in a number of forms in the
literature (e.g., Ince and Golubev), had some gaps in it that
have been filled by several authors

Hukuhara;
Hinkkanen and Laine;
Shimomura.

There are other approaches e.g. Miwa, Fokas and Its,
Malgrange (using the isomonodromy problem), Steinmetz
(differential inequalities), Erugin, and Joshi and Kruskal.

Shimomura proved that the ODE y ′′ =
2(2k + 1)

(2k − 1)2 y2k + z

possesses the “quasi-Painlevé property.”
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Painlevé’s Lemma — first-order case

Painlevé’s lemma
Let f be an analytic function in a neighbourhood of the point
(α, η) ∈ C2. Let γ be a curve with end point α and suppose that
y is analytic on γ \ {α} and satisfies

dy
dz

= f (z, y).

Let (zn) be a sequence of points such that zn ∈ γ, zn → α and
y(zn)→ η as n→∞. Then y is analytic at α.
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First-order ODEs

Let y be a solution of
dy
dz

=
N∑

n=0

an(z)yn, N > 1, on a curve

γ \ {α}, where y is singular at the endpoint z = α of γ.
Furthermore, suppose that the an’s are analytic in a
neighbourhood of z = α and that aN(α) 6= 0.
Then Painlevé’s Lemma says that lim

γ3z→α
y(z) =∞.

Let u = 1/y . Then the ODE becomes

dz
du

=
uN−2

aN(z) + aN−1(z)u + · · ·+ a0(z)uN ,

and z → α along γ as u → 0.
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First-order ODEs — algebraic singularities

Recall that u = 1/y and

dz
du

=
uN−2

aN(z) + aN−1(z)u + · · ·+ a0(z)uN ,

where z(0) = α.
So z is analytic in u near u = 0.

Hence z = α + uN−1
∞∑

n=0

cnun, where c0 6= 0.

So y(z) = 1/u(z) =
∞∑

n=−1

bn(z − α)n/(N−1).
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Algebraic singularities

Let F (z; u, v) be a polynomial in u and v with coefficients
that are analytic in z in some common domain. Painlevé
showed that the only movable singularities of solutions of
the ODE F (z; y , y ′) = 0 are algebraic.
This is not true in general for higher-order equations such
as

y ′′ =
N∑

n=0

an(z)yn.

Leading order behaviour: y ∼ c0(z − z0)−2/(N−1), where
cN−1

0 = 2
aN(z0)

N+1
(N−1)2 . Nature depends on the parity of N.
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Theorem (assumptions)
For N ≥ 2, suppose that there is a domain Ω ⊂ C such that
a0, . . . ,aN are analytic and that aN is nowhere 0 on Ω. Suppose
further that for each z0 ∈ Ω and for each c0 such that

cN−1
0 =

2
aN(z0)

N + 1
(N − 1)2 , (1)

the equation y ′′ =
∑N

n=0 an(z)yn admits a formal series solution
of the form

y(z) =
∞∑

j=0

cj(z − z0)
j−2
N−1 . (2)
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Theorem cont’d (conclusions part 1)
i For each c0 satisfying (1) and for each β ∈ C, there is a

unique formal series solution of the form (2) such that
c2(N+1) = β.

ii Given c0 and c2(N+1) as above, the series (2) converges in
a neighbourhood of z0.

cN−1
0 =

2
aN(z0)

N + 1
(N − 1)2 (1)

y(z) =
∞∑

j=0

cj(z − z0)
j−2
N−1 (2)
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Theorem cont’d (conclusions part 2)

iii Now let y be a solution of equation y ′′ =
N∑

n=0

an(z)yn that

can be continued analytically along a curve γ up to but not
including the endpoint z0, where the coefficients aj are
analytic in a neighbourhood of z0 and aN(z0) 6= 0.
If γ is of finite length, then y has a convergent series
expansion about z0 of the form (2).

iv If y cannot be represented by a series expansion about z0
of the form (2) then γ is of infinite length but z0 is an
accumulation point of such algebraic singularities.

y(z) =
∞∑

j=0

cj(z − z0)
j−2
N−1 (2)
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Main tool

A main tool used in the proof is the following.

Painlevé’s lemma
Let f1, . . . , fm be analytic functions in a neighbourhood of the
point (α, η1, . . . , ηm) in Cm+1. Let γ be a curve with end point α
and suppose that yi is analytic on γ \ {α} for i = 1, . . . ,m and
satisfies

y ′i = fi(z; y1, . . . , ym).

Let (zn) be a sequence of points such that zn ∈ γ, zn → α and
yi(zn)→ ηi as n→∞ , for all i = 1, . . . ,n. Then each yi is
analytic at α.

Applying this to part iii of the theorem shows that y is
unbounded on γ.
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lim vs limsup

We write the equation y ′′ =
N∑

n=0

an(z)yn as the first-order

system

y ′1 = y2, y ′2 =
N∑

n=0

an(z)yn
1 .

Then Painlevé’s Lemma gives

lim
γ3z→z0

max{|y(z)|, |y ′(z)|} =∞

and
lim sup
γ3z→z0

|y(z)| =∞.
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lim vs limsup
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Outline of proof of iii.

Show that, WLOG, A := lim inf
γ3z→z0

|y(z)| > 0

(Shimomura, Hukuhara)
Show that there is a bounded function on γ of the form

W (z) := y ′(z)2 +

(
N−1∑
k=1

bk (z)

yk (z)

)
y ′(z)−2

N+1∑
k=1

ak−1(z)

k
yk (z).

If A <∞ then y and y ′ are both bounded on a sequence
with limit z0. Now apply Painlevé’s lemma.

If A =∞ then solve for y ′: y ′ =
∞∑

n=0

Yn(z, y)W n.

Define v by y ′ = Y0(z, y) + Y1(z, y)v , set y = 1/u or
y = 1/u2 and write down a pair of ODEs for z and v as
functions of u that are regular for z(0) = z0 and any v(0).
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The bounded function W

Recall that

W (z) := y ′(z)2 +

(
N−1∑
k=1

bk (z)

yk (z)

)
y ′(z)−2

N+1∑
k=1

ak−1(z)

k
yk (z),

and we will use the normalised form of the equation

y ′′ =
N−2∑
n=0

an(z)yn + 2
N + 1

(N − 1)2 yN .

Then
W ′ + P(z,1/y)W = Q(z,1/y)y ′ + R(z,1/y) + S(z, y),
where P, Q, R, S are polynomials in their 2nd arguments.
If S ≡ 0 and Q has no term prop to 1/y then W is bnded.
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Resonance condition

If the resonance condition is not satisfied for solutions of

y ′′ =
N∑

n=0

an(z)yn

of the form y(z) ∼ c0(z − z0)−2/(N−1), then the Laurent
series expansion in fractional powers of z − z0 must be
modified to a series of the form

y(z) =
∞∑

n=0

an(log(z − z0))(z − z0)(n−2)/(N−1),

where the an’s are polynomials.
New methods are needed to determine whether analytic
continuation up to a singular point along a finite length
curve always leads to such a singularity.
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Accumulation of “finite type” branch points

By “accumulation point” in part iv of the theorem we mean
that given any ε > 0 there exists a straight line segment l in
the disk of radius ε centred at z0 with endpoints z1 ∈ γ and
z2 such that analytic continuation of y along γ up to z1 and
then along l ends in an algebraic singularity at z2.
This accumulation is much more complicated than the
accumulation of poles in Painlevé’s example.
A possible accumulation of poles does not have to be
considered separately in the standard proofs of the
Painlevé property.
The fact that PI and PII have the Painlevé property is a
corollary of the theorem.
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corollary of the theorem.
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Equations of Liénard type

We have proved the analogous result for

y ′′ = P(z, y)y ′ + Q(z, y),

where P and Q are polynomials in y and
degyP ≥ degyQ − 1
The constant coefficient case with degP ≥ degQ + 1 was
done by Smith in 1953.
Smith also showed that the equation

y ′′ + 4y3y ′ + y = 0

has a solution with algebraic branch points that
accumulate along a curve of infinite length in the finite
plane.
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The maximum balance case of Liénard’s equation

If degyQ = 2degyP + 1, then all three terms in Liénard’s
equation

y ′′ = P(z, y)y ′ + Q(z, y)

contribute at leading order.
Consider the constant coefficient case

y ′′ = µyny ′ + νy2n+1,

which has the first integral

I = (y ′ − αyn+1)
α

α−β (y ′ − βyn+1)
β

β−α .

where α and β are the (distinct) roots of ν+µx − (n + 1)x2.
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Parametric representation

The simplest max balance case of Liénard’s equation is

y ′′ = µyny ′ + νy2n+1,

which has the first integral

(y ′ − αyn+1)
α

α−β (y ′ − βyn+1)
β

β−α .

where α and β are the (distinct) roots of ν+µx − (n + 1)x2.
This gives the (generic) parametric representation

y(z) = κ(t − α)γ(t − β)γ ,

z = z0 +
1
κn

∫
(t − α)−na(t − β)−nb dt ,

where a =
1

n + 1
α

α− β
and b =

1
n + 1

β

β − α
.
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Other generalisations

d2y
dz2 = E(z, y)

(
dy
dz

)2

+ F (z, y)
dy
dz

+ G(z, y).

Assume all “obvious” formal series expansions are
algebraic.

E(z, y) =
∞∑
µ=1

kµ
y − aµ(z)

, kµ half-integers, F has simple

poles.
Class general enough to include all Painlevé equations.
More subcases are being studied by my PhD student
Thomas Kecker.
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Future directions

There are many formal methods for finding representations
of some singularities of solutions of ODEs (e.g., Painlevé
analysis).
How do we know when we have a complete list of possible
kinds of singularities for a given equation?
The main goal of this research is to make some first steps
towards a “general theory” of movable singularities of
solutions of ODEs.
Such a theory for movable algebraic singularities of a class
of ODEs would show that the Painlevé test is a necessary
and sufficient condition for the Painlevé property within that
class.
These results should help us to understand the behaviour
of generic (in particular, non-integrable) equations.
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