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Problem

“Construct Fuchsian systems for prescribed Riemann schemes”

Fuchsian system:

(F )
dY
dx

=

 p∑
j=1

Aj

x − tj

 Y

Aj : n × n-constant matrix (1 ≤ j ≤ p)

A0 := −
p∑

j=1

Aj , t0 =∞

Assume: for each j ,

Aj is

{
diagonalizable
λ, µ : eigenvalues of Aj , λ 6= µ⇒ λ− µ 6∈ Z



Riemann scheme: the table which describes the characteristic
exponents at each singular point

(RS)



x = t0 :

m01︷ ︸︸ ︷
λ01, . . . , λ01, . . . ,

m0n0︷ ︸︸ ︷
λ0n0 , . . . , λ0n0

...

x = tj :

mj1︷ ︸︸ ︷
λj1, . . . , λj1, . . . ,

mjnj︷ ︸︸ ︷
λjnj , . . . , λjnj

...

x = tp :

mp1︷ ︸︸ ︷
λp1, . . . , λp1, . . . ,

mpnp︷ ︸︸ ︷
λpnp , . . . , λpnp


mj := (mj1, . . . , mjnj ): the spectral type of Aj



(F ) −→ (RS)

←−
Problem

Problem: Construct tuples (A0, A1, . . . , Ap) with sum zero and
with prescribed eigenvalues {λ01(m01), . . . , λpnp(mpnp)}

The Problem
I seems fundamental
I is open (far from the perfect solution)
I is deeply related to the deformation theory



Precise formulation of the problem

Aj ∼

λj1Imj1

. . .
λjnj Imjnj

 =: Cj

Oj := {A ∈ M(n × n, C) | A ∼ Cj}

We set

M =MO0,...,Op

:= {(A0, . . . , Ap) ∈ O0 × · · · × Op |
p∑

j=0

Aj = O}/ ∼,

where
(A0, . . . , Ap) ∼ (B0, . . . , Bp)

def⇔ ∃P ∈ GL(n, C), Aj = PBjP−1 (∀j)



We have a map

[(A0, . . . , Ap)]
ϕ7→ (O0, . . . ,Op)

Our problem is to describe

ϕ−1((O0, . . . ,Op)) =MO0,...,Op



Related results
1. ϕ is not surjective.
We have an obvious necessary condition

∑p
j=0 trOj = 0, which

is not sufficient.

~m := (m0, m1, . . . , mp) : the spectral type of (F )

For which ~m, does an irreducible [(A0, . . . , Ap)] exist?
(for generic values of {λjk})

Deligne-Simpson Problem
I V.P. Kostov
I W. Crawley-Boevey — in terms of Kac-Moody root systems

2. For an irreducibly realizable ~m,

dimM = (p − 1)n2 −
p∑

j=0

dim Z (Oj) + 2 =: α

A coordinate system ofM is called accessory parameters.



3. Scalar equation case.
Toshio Oshima solved the Problem for scalar equations

y (n) + p1(x)y (n−1) + · · ·+ pn(x)y = 0.

The moduli space is a smooth manifold.

However,
# of a.p. for scalar equation =

α

2
.

α parameters are necessary for the deformation, because α is
equal to the dimension of the conjugacy classes of the
monodromy representations.

4. Case ~m = (11, 11, 11, 11).
M is constructed by Saito-Inaba-Iwasaki.
⇒ Painlevé property for Painlevé VI.



Our Approach

� Do not go into the compactification (too serious)
� Consider only generic points ofM
� Find good representatives (A0, A1, . . . , Ap)

It would be good if there is a set of a.p. z = (z1, z2, . . . , zα) s.t.
∀entries of ∀Aj are rational functions in z.

We call such set of a.p. a regular coordinate.

A regular coordinate may be different from the canonical
coordinate.



How to find regular coordinates

Lemma 1. For a generic pair A, B of n × n-matrices,
∃P ∈ GL(n, C) s.t.

P−1AP = lower trianglular

P−1BP = upper trianglular

Lemma 2. Let C be a diagonalizable n × n-matrix with spectral
type (n1, n2, . . . , nq).
(i) C can be parametrized by

n2 −
q∑

i=1

ni
2

parameters besides the eigenvalues.



(ii) Let γi be the eigenvalue of multiplicity ni . Then C can be
(generically) parametrized as follows.

C = γ1 +

(
C1
U1

) (
In−n1 P1

)
C1 : (n − n1)× (n − n1)

C1 + P1U1 = γ2 − γ1 +

(
C2
U2

) (
In−n1−n2 P2

)
C2 + P2U2 = γ3 − γ2 +

(
C3
U3

) (
In−n1−n2−n3P3

)
...

Cq−1 + Pq−1Uq−1 = γq − γq−1

parameters: Pi , Ui (1 ≤ i ≤ q − 1)

Note that
∑q

i=1 ni
2 = dim Z (C)



~m = (m0, m1, . . . , mp): given
First we assume two mi are 1n.

m0 = mp = 1n

By Lemma 1, we can take a representative (A0, A1, . . . , Ap) s.t.

A0 =

a01 O
. . .

∗ a0n

 , Ap =

ap1 ∗
. . .

O apn


Parametrize A1, . . . , Ap−1 by Lemma 2.

The number of parameters we use is

p−1∑
j=1

(
n2 − dim Z (Aj)

)
.



We can normalize the tuple (A0, . . . , Ap) by GL(1)n (with center
C×).
Since

∑p
j=0 Aj = O, we have

(∗) aoi +

p−1∑
j=1

(
(i , i)-entry of Aj

)
+ api = 0

for i = 1, . . . , n− 1, which are n− 1 relations for the parameters.
Thus

p−1∑
j=1

(
n2 − dim Z (Aj)

)
− (n − 1)− (n − 1)

= (p − 1)n2 −
p−1∑
j=1

dim Z (Aj)− n − n + 2

= α.



If we can take α parameters (z1, z2, . . . , zα) s.t. the solution of
(∗) can be written as rational functions of (z1, z2, . . . , zα), this
set of the parameters is a regular coordinate.

Note that the off-diagonal entries of A0 and Ap are determined
by

∑p
j=1 Aj = O:a01 O

. . .
∗ a0n

 + A1 + · · ·+ Ap−1 +

ap1 ∗
. . .

O apn

 = O



Next we relax the assumption by a coalescence of eigenvalues.

m0 = 1n → 2, 1n−2

A0 =


a01
∗ a01 O

a03

∗ . . .
a0n

 =


a01
0 a01 O

a03

∗ . . .
a0n


Then by GL(2)× GL(1)n−2 action, we have

Ap =


ap1 0

ap2 ∗
ap3

O
. . .

apn





m0 = 1n → 3, 1n−3; mp = 1n → 2, 1n−2

A0 =



a01 0 0
0 a01 0
0 0 a01 O

a04

∗ . . .
a0n



Ap =



ap1 0 0
0 ap1 0
0 0 ap3 ∗

ap4

O
. . .

apn


GL(2)× GL(1)n−2 action keeps these forms of A0 and Ap.



Reductions

1. Katz operations

addition: Y (x) 7→
∏p

j=1(x − tj)aj · Y (x)

middle convolution: Y (x) 7→
∫

∆
(u − x)λY (u) du

These operations are realized as operations on
(A0, A1, . . . , Ap).

Katz operations keep the number of accessory parameters,
irreducibility and the deformation equation invariant.

Theorem. If (A0, A1, . . . , Ap) has a regular coordinate, the
result of a Katz operation also has a regular coordinate.

Thus it is enough to find regular coordinates for basic ~m.



Basic spectral types.

α = 2:

(11, 11, 11, 11); (111, 111, 111), (22, 14, 14), (33, 23, 16)

α = 4:

(11, 11, 11, 11, 11);

(21, 21, 13, 13), (31, 22, 22, 14), (22, 22, 22, 211);

(211, 14, 14), (221, 221, 15), (32, 15, 15), (23, 23, 2211),

(33, 2211, 16), (44, 24, 22211), (44, 332, 18), (55, 3331, 25),

(66, 43, 2511)



Example. (33, 222, 16) (α = 2)

A=



a1 0
0 a1 O

a2 0
0 a2

∗ a3 0
0 a3

 , B=



b1 0
0 b2 ∗

b3 0
0 b4

O b5 0
0 b6


C = c1 +

(
C1
U1

) (
I3 P1

)
, C1 + P1U1 = c2 − c1

Normalization by GL(1)6 gives

U1 =

1 ∗ ∗
1 ∗ ∗
1 1 1





P1 =

p11 p12 p13
p21 p22 p23
p31 p32 p33


Parameters we use: 4 + 9 = 13
Relations: 4 + 4 + 4− 1 = 11
Thus we have

13− 11 = 2 = α.

We find we can take a regular coordinate (p11, p21).



2. Good reductions

We consider a coalescence of eigenvalues which sends ~m to
~m′.
For example, for ~m = (m0, m1, . . . , mp) with m0 = mp = 1n, we
consider the coalescence

m0 = 1n 7→ 21n−2 =: m′
0.

A0 =


a01 0
f a02 O

a03

∗ . . .
a0n

, Ap =


ap1 g
0 ap2 ∗

ap3

O
. . .

apn





Assume that the tuple (A0, A1, . . . , Ap), in particular f and g, are
written rationally by a regular coordinate z = (z1, . . . , zα).

The coalescence a02 → a01 yields two equations

f = 0, g = 0.

If this system is linear in two entries zi , zj of the regular
coordinate z, we can solve the system to get a regular
coordinate z ′ := (z1, . . . , ẑi , . . . , ẑj , . . . , zα) for ~m′.

We call such reduction ~m→ ~m′ a good reduction.



Example.
(11, 11, 11, 11, 11)→ (11, 11, 11, 11, 2) = (11, 11, 11, 11)

A0 =

(
a01 0
f a02

)
, A4 =

(
a41 g
0 a42

)
Aj =

(
aj2 − ujpj (aj2 − aj1 − ujpj)pj

uj aj1 + ujpj

)
(j = 1, 2, 3)

Normalization: p1 = 1
Relation: a01 +

∑3
j=1(aj2 − ujpj) + a41 = 0

We have a regular coordinate (u2, p2, u3, p3).
f = −(u1 + u2 + u3)

g = −
3∑

j=1

(aj2 − aj1 − ujpj)pj



Coalescence: a41, a42 → (a41 + a42)/2

⇒


u1 + u2 + u3 = 0

3∑
j=1

(aj2 − aj1 − ujpj)pj = 0

This system is linear in u2, u3, and then they can be written
rationally in p2, p3.
Thus we obtain a regular coordinate (p2, p3) after the
coalescence.

This is a good reduction, and gives a reduction from Garnier
system to Painlevé VI.



Isomonodromic deformation

The isomonodromic deformation of the Fuchsian system

(F )
dY
dx

=

 p∑
j=1

Aj

x − tj

 Y

is described by the Schlesinger system

(S)
∂Ai

∂ti
= −

∑
k 6=i

[Ai , Ak ]

ti − tk
,

∂Aj

∂Ai
=

[Ai , Aj ]

ti − tj
(i 6= j)

under the condition

(J) Aj ∼ Cj (0 ≤ j ≤ p).



The unknowns of (S) are the entries of A1, . . . , Ap: pn2

unknowns, while the rank of (S)+(J) is α.
Thus we must reduce the unknowns of (S) to get a slim
deformation equation.

If we have a regular coordinate for (A0, A1, . . . , Ap), we obtain,
as isomonodromic deformation equations, algebraic differential
equations for the regular coordinate.

If, moreover, we have a good reduction, we get an explicit
reduction formula for the deformation equations such as
Garnier to Painlevé.



Questions

Q1. Does a regular coordinate exist for any basic spectral type
~m? If it does not so, describe the condition.

Q2. Are there any general procedures to find a regular
coordinate?

Q3. Can we obtain a regular coordinate for any basic spectral
type from a regular coordinate for (1n, 1n, . . . , 1n) by a finite
iteration of good reductions?

Q4. For which pair of spectral types does a good reduction
exist? Give the condition in terms of Kac-Moody root systems.

Q5. Irregular singular case?


