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Orthogonal polynomials

Orthogonal polynomials on the real line

∫ ∞

−∞
Pn(x)x

kw(x) dx = 0, k = 0, 1, . . . , n − 1

OP satisfy three term recurrence

xPn(x) = Pn+1(x) + anPn(x) + bnPn−1(x)

What about polynomials satisfying a longer recurrence
(but finite) ?

xQn(x) = Qn+1(x) + an,0Qn(x) + an,1Qn−1(x)+

+ an,2Qn−2(x) + · · ·+ an,rQn−r (x)



Multiple orthogonal polynomials

Multiple orthogonal polynomial (MOP) is a monic
polynomial of degree n1 + n2

Pn1,n2(x) = xn1+n2 + · · ·

characterized by

∫ ∞

−∞
Pn1,n2(x)x

kw1(x) dx = 0, k = 0, 1, . . . , n1 − 1,

∫ ∞

−∞
Pn1,n2(x)x

kw2(x) dx = 0, k = 0, 1, . . . , n2 − 1.

w1, w2 are two given weight functions.

(n1, n2) ∈ N
2 is a multi-index.

Immediate extension to r weights w1, . . . ,wr and
(n1, . . . , nr ) ∈ N

r .



Short recurrence

Given MOPs Pn1,n2 with two weight functions.

The polynomials Qn defined by

Q2k = Pk,k , Q2k+1 = Pk+1,k

have a four term recurrence

xQn(x) = Qn+1(x) + anQn(x) + bnQn−1(x) + cnQn−2(x)

MOPs with r weight functions and near-diagonal
multi-indices satisfy an r + 2-term recurrence.



2. MOP in random matrix theory

MOPs appeared first in Hermite’s proof of the
transcendence of the number e.

MOPs were later used in analytic number theory, and
approximation theory (simultaneous rational
approximation).

MOPs appear in random matrix theory and related
stochastic processes

(a) Random matrices with external source

(b) Non-intersecting Brownian motions

(c) Non-intersecting squared Bessel paths

(d) Coupled random matrices (two matrix model)



Non-intersecting squared Bessel paths

Squared Bessel process is a Markov process on [0,∞)
depending on a parameter α > −1, with transition
probabilities

pαt (x , y) =
1

2t

(y

x

)α/2
e−(x+y)/(2t)Iα

(√
xy

t

)

, x , y > 0,

where Iα is the modified Bessel function

Assume n independent squared Bessel paths conditioned
so that

(a) the paths start at time t = 0 at a > 0
(b) the paths end at time t = 1 at 0
(c) the paths do not intersect



Simulation of 50 non-intersecting paths
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Average polynomial

Random positions x1(t) < x2(t) < · · · < xn(t) at time
t ∈ (0, 1) give rise to random polynomial

n
∏

j=1

(x − xj(t))

Average polynomial

Pn(x) = E





n
∏

j=1

(x − xj(t))





is MOP on [0,∞) with (n1, n2) = (⌈n/2⌉, ⌊n/2⌋) and

w1(x) = xα/2e
− x

2t(1−t) Iα

(√
ax

t

)

w2(x) = x (α+1)/2e
− x

2t(1−t) Iα+1

(√
ax

t

)

K-Mart́ınez Finkelshtein-Wielonsky (2009)



Recurrences

Recurrence relation (four term) and differential equation
(third order) for MOPs were found earlier

Coussement-Van Assche (2003)
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Asymptotic analysis of
MOPs leads to the
limiting domain filled by
the squared Bessel
paths

Local correlations at
the critical time when
the paths come to the
wall at 0

K-Mart́ınez Finkelshtein-Wielonsky (2009 + to appear)



3. Normal matrix model

Probability measure on n × n complex matrices

1

Zn

e
− n

t0
Tr(MM∗−V (M)−V (M∗))

dM, t0 > 0,

where

V (M) =
∞
∑

k=1

tk

k
Mk .

Model depends on parameters

t0 > 0, t1, t2, . . . , tk , . . . .

For t1 = t2 = · · · = 0 this is the Ginibre ensemble.
Ginibre (1965)



Ginibre ensemble

Eigenvalues in the Ginibre ensemble have a limiting
distribution as n → ∞ that is uniform in a disk around 0
with radius

√
t0.
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Laplacian growth

For general t1, t2, . . ., the eigenvalues of M fill out a
two-dimensional domain

Ω = Ω(t0, t1, . . .)

provided t0 > 0 is sufficiently small.

Ω is characterized by

t0 =
1

π
area(Ω), tk = − 1

π

∫∫

C\Ω

dA(z)

zk
, k ≥ 1

As a function of t0, the boundary of Ω evolves according
to the model of Laplacian growth.

The exterior harmonic moments tk , k ≥ 1, are constants
of the motion.

Wiegmann-Zabrodin (2000)

Teoderescu-Bettelheim-Agam-Zabrodin-Wiegmann (2005)



Unstable

Laplacian growth model is unstable.

Singularities develop in finite time.



4. Mathematical problem

Normal matrix model

1

Zn

e
− n

t0
Tr(MM∗−V (M)−V (M∗))

dM, t0 > 0,

is not well-defined if V is a polynomial of degree ≥ 3

The normalization constant (partition function)

Zn =

∫

e
− n

t0
Tr(MM∗−V (M)−V (M∗))

dM = +∞.

is divergent.



Elbau-Felder approach

Elbau and Felder use a cut-off.

They restrict to matrices with eigenvalues in a
well-chosen bounded domain D.

Then the induced probability measure on eigenvalues is
a determinantal point process on D.

Eigenvalues fill out a domain Ω that evolves according to
Laplacian growth provided t0 is small enough.

Elbau-Felder (2005)



Orthogonal polynomials

Average characteristic polynomial

Pn(z) = E [zIn −M]

in the cut-off model is an orthogonal polynomial for
scalar product

〈f , g〉 =
∫∫

D

f (z)g(z)e
− n

t0
(|z|2−V (z)−V (z))

dA(z)

Elbau (ETH thesis, arXiv 2007)

Orthogonality does not make sense if D = C, since
integrals would diverge if f and g are polynomials



Zeros of OPs

Conjecture: The zeros of Pn do not fill out the domain
Ω as n → ∞, but instead accumulate along a contour Σ1.

In the cubic case

V (z) =
t3

3
z3, t3 > 0,

the contour is a three-star

Σ1 = [0, x∗] ∪ [0, e2πi/3x∗] ∪ [0, e−2πi/3x∗].



Cubic case



Cubic case



Cubic case



Cubic case



Cubic case



Recurrence relation

OPs in the cut-off model satisfy a recurrence relation

If degV = r + 1 then

zPn(z) = Pn+1(z) + an,0Pn(z) + · · ·+ an,rPn−r (z)

+ “remainder term”

Remainder term comes from boundary integrals that are
due to the cut-off.

Remainder term is exponentially small for t0 > 0
sufficiently small.

Elbau (ETH thesis, arXiv 2007)



5. Different approach

Scalar product

〈f , g〉 =
∫∫

D

f (z)g(z)e
− n

t0
(|z|2−V (z)−V (z))

dA(z)

satisfies (due to Green’s theorem)

n〈zf , g〉 = t0〈f , g ′〉+ n〈f ,V ′g〉

− t0

2i

∮

∂D
f (z)g(z)e

− n
t0
(|z|2−V (z)−V (z))

dz .

Drop the boundary term.



Hermitian form

We consider an a priori abstract sesquilinear form on the
space of polynomials satisfying

n〈zf , g〉 = t0〈f , g ′〉+ n〈f ,V ′g〉

We also want to keep the Hermitian form condition

〈g , f 〉 = 〈f , g〉.

What can we say about the orthogonal polynomials
(OPs)

〈Pk , z
j〉 = 0, j = 0, 1, . . . , n − 1

for such an Hermitian form ?



Short recurrence

Lemma

If degV = r + 1 then OPs for an Hermitian form satisfying

n〈zf , g〉 = t0〈f , g ′〉+ n〈f ,V ′g〉

satisfy an r + 2-term recurrence relation

Proof: Suppose zPk(z) = Pk+1(z) +
k
∑

j=0

ak,jPk−j(z)

Then ak,j =
〈zPk ,Pk−j〉
〈Pk−j ,Pk−j〉

n〈zPk ,Pk−j〉 = t0〈Pk ,P
′
k−j〉+ n〈Pk ,V

′Pk−j〉
First term 〈Pk ,P

′
k−j〉 = 0

Second term 〈Pk ,V
′Pk−j〉 = 0 if j > r .



Short recurrence

Lemma

If degV = r + 1 then OPs for an Hermitian form satisfying

n〈zf , g〉 = t0〈f , g ′〉+ n〈f ,V ′g〉

satisfy an r + 2-term recurrence relation

Is there a multiple orthogonality?



Double integral representations

Theorem (Bleher-K, arXiv 2011)

(a) The real vector space of Hermitian forms satisfying

n〈zf , g〉 = t0〈f , g ′〉+ n〈f ,V ′g〉

is r2 dimensional, where r = degV − 1.

(b) Any such Hermitian form is of the form

r
∑

j ,k=0

Cj ,k

∫

Γj

dz

∫

Γk

ds f (z)g(s)e
− n

t0
(zs−V (z)−V (s))

(Cj ,k)j ,k=0,...r is a Hermitian matrix with zero row and
column sums,

Γ0, . . . , Γr is a system of unbounded contours along
which the integrals converge.



Contours Γj for cubic potential

Re z

Im z

Γ0
Γ1

Γ2

Contours Γ0, Γ1, Γ2 for V (z) = t3
3 z

3 with t3 > 0,
extending to infinity at asymptotic angles ±π/3 and π.



Hermitian form

The Hermitian form

r
∑

j ,k=0

Cj ,k

∫

Γj

dz

∫

Γk

ds f (z)g(s)e
− n

t0
(zs−V (z)−V (s))

is similar to the bilinear form for the biorthogonal
polynomials in the two-matrix model.

The integrals for the biorthogonal polynomials are over
the real line, instead of over Γj and Γk .

Mehta (1994), Eynard-Mehta (1998)

Ercolani-McLaughlin (2001)

Bertola-Eynard-Harnad (2002, 2003)



Multiple orthogonal polynomials

The biorthogonal polynomials are multiple orthogonal
polynomials in the case of polynomial potentials.

K-McLaughlin (2005)

Same argument carries over to orthogonal polynomials
for the Hermitian forms. They are multiple orthogonal
polynomials with r weights.

Weights are on

Γ =
r
⋃

j=0

Γj

instead of on the real line.



MOP in cubic case

For V (z) = t3
3 z

3 the two weights are























w0(z) = e
nt3
3t0

z3
2

∑

k=0

Cj ,k

∫

Γk

e
− n

t0
(zs− t3

3
s3)

ds

w1(z) = e
nt3
3t0

z3
2

∑

k=0

Cj ,k

∫

Γk

se
− n

t0
(zs− t3

3
s3)

ds

z ∈ Γj ,

Multiple orthogonality on Γ = Γ0 ∪ Γ1 ∪ Γ2
∫

Γ
Pn(z)z

kw0(z)dz = 0, k = 0, . . . , ⌈n2⌉ − 1,

∫

Γ
Pn(z)z

kw1(z)dz = 0, k = 0, . . . , ⌊n2⌋ − 1,



Airy functions

Weight w0 is expressed in terms of the Airy function

Ai(z) =
1

2πi

∫

Γ0

e
1
3
s3−zsds

and weight w1 in terms of the derivative

Ai′(z) = − 1

2πi

∫

Γ0

se
1
3
s3−zsds

x
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Airy functions

The Airy function Ai(x) is the solution of the Airy
differential equation

y ′′(x) = xy(x)

that satisfies

Ai(x) =
1

2
√
πx1/4

e−
2
3
x3/2(1 + O(1/x))

as x → +∞.

x
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7. Asymptotic analysis

We want to choose Hermitian matrix (Cj ,k) in such a
way that we can find the large n asymptotics of the
MOP Pn for the n-dependent weights























w0(z) = e
nt3
3t0

z3
2

∑

k=0

Cj ,k

∫

Γk

e
− n

t0
(zs− t3

3
s3)

ds

w1(z) = e
nt3
3t0

z3
2

∑

k=0

Cj ,k

∫

Γk

se
− n

t0
(zs− t3

3
s3)

ds

z ∈ Γj ,

Q1: Can we find the limiting behavior of zeros of Pn,n as
n → ∞ ?

Q2: Can we find the connection with Laplacian growth ?

Q3: What happens in the critical case ?



Existence of OP

Theorem (Bleher-K, arXiv 2011)

With the choice

C = (Cj ,k) =
1

2πi

( 0 −1 1
1 0 −1
−1 1 0

)

the following hold. Assume 0 < t0 < t0,crit =
1
8t23

(a) Then the orthogonal polynomials Pn for the Hermitian
form exist if n is sufficiently large.

(b) The zeros of Pn accumulate as n → ∞ on the set

Σ1 = [0, x∗] ∪ [0, ωx∗] ∪ [0, ω2x∗], ω = e2πi/3,

x∗ =
3

4t3

(

1−
√

1− 8t0t23

)2/3

Theorem to be continued...



Main tool: Riemann-Hilbert problem

MOPs with two weight functions have a
Riemann-Hilbert problem of size 3× 3

(1) Y : C \ R → C
3×3 is analytic,

(2) Y+ = Y−





1 w0 w1

0 1 0
0 0 1



 on R,

(3) Y (z) = (I3 + O(1/z))





zn1+n2 0 0
0 z−n1 0
0 0 z−n2



 as z → ∞.

Van Assche-Geronimo-K (2001)

RH problem has a unique solution if and only if the
MOP Pn1,n2 uniquely exists and in that case

Y11(z) = Pn1,n2(z)

MOPs with r weight functions have a RH problem of
size (r + 1)× (r + 1).



RH problem for OPs w.r.t. Hermitian form in cubic case

There is a RH problem of size 3× 3 with jumps on Γ
that characterizes the MOPs

(1) Y : C \ Γ → C
3×3 is analytic,

(2) Y+ = Y−





1 w0 w1

0 1 0
0 0 1



 on Γ,

(3) Y (z) = (I3 + O(1/z))





zn 0 0

0 z−n/2 0

0 0 z−n/2



 as z → ∞.

(assume n is even)

Γ0Γ1

Γ2

RH problem is ideal tool for
asymptotic analysis...

Deift-Zhou (1993)



Why this choice for C ?

In a first step of the RH analysis
we want to deform contours
in such a way that
they cover Σ1

Γ0
Γ1

Γ2

Σ1



Deformation of contours

Γ0
Γ1

Γ2

Σ1



Deformation of contours

Γ1

Γ2

Σ1
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Deformation of contours
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Choice for C

Σ1

Γ2

Γ0

Γ1

The choice for (Cj ,k) is such that the
combined weight on [0, x∗] is

Ai(cnx) e
nt3
3t0

x3



Multiple orthogonality with Airy weights

On Σ1 the new weights are

w0,n(z) = ω2j Ai(cn|z |) e
nt3
3t0

z3

, z ∈ [0, ωjx∗], j = 0, 1, 2,

w1,n(z) = ωj Ai′(cn|z |) e
nt3
3t0

z3

, cn = n2/3

t
2/3
0 t

1/3
3

.

Large n behavior of the two weights for z ∈ Σ1 \ {0},

wk,n(z) ≈ exp(−nQ(z)),

Q(z) = 1
t0

(

2
3
√
t3
|z |3/2 − t3

3 z
3
)

.

Next step is the characterization of the limiting zero
distribution of the polynomials in terms of Q.



Limiting zero distribution

Theorem (continued)

(c) There is a limiting zero distribution µ∗
1 on Σ1.

(d) µ∗
1 is characterized by a vector equilibrium problem from

logarithmic potential theory.

(e) The function

t3z
2 + t0

∫

1

z − s
dµ∗

1(s)

extends to a meromorphic function on a compact three
sheeted Riemann surface



Vector equilibrium problem

Minimize the energy functional

∫∫

log
1

|x − y |dµ1(x)dµ1(y)−
∫∫

log
1

|x − y |dµ1(x)dµ2(y)

+

∫∫

log
1

|x − y |dµ2(x)dµ2(y) +

∫

Qdµ1

over (µ1, µ2) such that

µ1 is a measure on Σ1

with µ1(Σ1) = 1

µ2 is a measure on Σ2

with µ2(Σ2) =
1
2

x∗

ωx∗

ω2x∗

Σ2

Σ2

Σ2



Minimizer

There is a unique minimizer (µ∗
1, µ

∗
2) of the vector

equilibrium problem.

µ∗
1 is the limiting distribution of the zeros of Pn, that is,

lim
n→∞

1

n

∑

z:Pn(z)=0

δz = µ∗
1

(weak∗ convergence of measures)



Meromorphic function

The function

ξ1(z) = t3z
2 + t0

∫

1

z − s
dµ∗

1(s), z ∈ C \ Σ1

extends to a meromorphic function on a compact three
sheeted Riemann surface whose only poles are at infinity.

ξ1(z) is one of the solutions of a cubic equation
(a.k.a. the spectral curve)

ξ3 − t3z
2ξ2 −

(

t0t3 +
1

t3

)

zξ + z3 + A = 0

A =
1+20t0t

2
3−8t20 t

4
3−(1−8t0t

2
3 )

3/2

32t33
.



Laplacian growth

ξ1(z) = t3z
2 + t0

∫

1

z − s
dµ∗

1(s), z ∈ C \ Σ1

Theorem (continued)

(f) The equation
�

�

�

�
ξ1(z) = z defines a simple closed

curve ∂Ω that is the boundary of a domain Ω containing
Σ1 in its interior.

(g) Ω has exterior harmonic moments (0, 0, t3, 0, 0, . . .) and

area(Ω) = πt0



8. Outlook

Many open questions

Where are the eigenvalues ??

Critical case t0 = t0,crit ?

Supercritical case t0 > t0,crit ??

More general potentials V ?



THANK YOU


