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Orthogonal polynomials

@ Orthogonal polynomials on the real line

/ Pa(x)x¥w(x) dx = 0, k=0,1,....,n—-1

—00

@ OP satisfy three term recurrence

XxPp(x) = Ppy1(x) + anPn(x) + bpPn_1(x)

@ What about polynomials satisfying a longer recurrence
(but finite) ?

XQn(X) = Qn+1(X) + an,OQn(X) + an,1 Qn—l(x)+
+ ap2Qn—2(x) + -+ + anrQn_r(x)



Multiple orthogonal polynomials

e Multiple orthogonal polynomial (MOP) is a monic
polynomial of degree n; + ny

Pnl,nz(X) = x"Mtm + -

characterized by

/ Pn17n2(X)XkW1(X) dX:07 kZO,l,...,n1—17

—0o0

Pr. n, (x)x wo(x) dx = 0, k=0,1,...,nm — 1.
1,M2

—0o0

@ wi, wp are two given weight functions.

o (n1, m) € N2 is a multi-index.

o Immediate extension to r weights wi,..., w, and
(m,...,n) eN".



Short recurrence

@ Given MOPs P, ,, with two weight functions.

@ The polynomials @, defined by

ok = Pk, Qok+1 = Pryik

have a four term recurrence

xQn(x) = Qny1(x) + anQn(x) + by Qn—1(x) + cnQn—2(x)

@ MOPs with r weight functions and near-diagonal
multi-indices satisfy an r 4+ 2-term recurrence.



2. MOP in random matrix theory

o MOPs appeared first in Hermite’s proof of the
transcendence of the number e.

@ MOPs were later used in analytic number theory, and
approximation theory (simultaneous rational
approximation).

@ MOPs appear in random matrix theory and related
stochastic processes

Random matrices with external source

(a)

(b) Non-intersecting Brownian motions
(c) Non-intersecting squared Bessel paths
(d)

Coupled random matrices (two matrix model)



Non-intersecting squared Bessel paths

@ Squared Bessel process is a Markov process on [0, o)
depending on a parameter o > —1, with transition
probabilities

o 1 a/2 Xy
pix6y) = o (%) e~ Gt/ <\/:> . Xy >0,

where /, is the modified Bessel function

@ Assume n independent squared Bessel paths conditioned
so that
(a) the paths start at time t =0 at a >0
(b) the paths end at time t =1 at 0
(c) the paths do not intersect



Simulation of 50 non-intersecting paths

2.5




Average polynomial

@ Random positions  x;(t) < xo(t) < --- < xp(t) at time
t € (0,1) give rise to random polynomial

n

[I(x—x(1)

J=1
o Average polynomial

n

Pa(x) = E | TT(x = (1))

is MOP on [0, c0) with (n1,m) = ([n/2], |n/2]) and

wi(x) = X2 F 1 |, (:X>

wa(x) = X(O‘H)me_ﬁ/a_s_1 <\/§>

t
K-Martinez Finkelshtein-Wielonsky (2009)



Recurrences

@ Recurrence relation (four term) and differential equation
(third order) for MOPs were found earlier
Coussement-Van Assche (2003)

@ Asymptotic analysis of
MOPs leads to the
limiting domain filled by
the squared Bessel
paths

Local correlations at
the critical time when
the paths come to the
wall at 0

K-Martinez Finkelshtein-Wielonsky (2009 + to appear)



3. Normal matrix model

@ Probability measure on n x n complex matrices

Zie,% TH(MM* —V(M)=V(M)) gog. to >0,
n

where o
tk k
V(M) = —M*.
()= 3w
k=1
@ Model depends on parameters
top > 0, t1,to, ., bk,

@ For t; = tp = --- = 0 this is the Ginibre ensemble.
Ginibre (1965)



Ginibre ensemble

@ Eigenvalues in the Ginibre ensemble have a limiting

distribution as n — oo that is uniform in a disk around 0
with radius /1.
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Laplacian growth

o For general t1, 1y, ..., the eigenvalues of M fill out a
two-dimensional domain

Q= Q(to, ty,.. )

provided ty > 0 is sufficiently small.
o Q is characterized by

C

™ ™ \Q Zk

@ As a function of ty, the boundary of ) evolves according
to the model of Laplacian growth.

@ The exterior harmonic moments t,, kK > 1, are constants
of the motion.

Wiegmann-Zabrodin (2000)
Teoderescu-Bettelheim-Agam-Zabrodin-Wiegmann (2005)



@ Laplacian growth model is unstable.

@ Singularities develop in finite time.



4. Mathematical problem

@ Normal matrix model

ie—% Tr(MM* =V (M)—V(M*)

)
dM tp >0
Z ) o>,

is not well-defined if V is a polynomial of degree > 3
@ The normalization constant (partition function)

Z = /e_% THMM =V(M)=V(M) o

is divergent.



Elbau-Felder approach

o Elbau and Felder use a cut-off.
@ They restrict to matrices with eigenvalues in a
well-chosen bounded domain D.

@ Then the induced probability measure on eigenvalues is
a determinantal point process on D.

o Eigenvalues fill out a domain Q that evolves according to
Laplacian growth provided t; is small enough.
Elbau-Felder (2005)



Orthogonal polynomials

@ Average characteristic polynomial
P.(z) =E[zl, — M|

in the cut-off model is an orthogonal polynomial for
scalar product

(f.g) = // f(z)g(z)efﬁqz'kv(z)*V(Z))dA(z)
D
Elbau (ETH thesis, arXiv 2007)

@ Orthogonality does not make sense if D = C, since
integrals would diverge if f and g are polynomials



Zeros of OPs

@ Conjecture: The zeros of P, do not fill out the domain
Q as n — oo, but instead accumulate along a contour X;.

@ In the cubic case

t:
V(z) = §323, t3 > 0,

the contour is a three-star

Y1 =[0,x*]U [0, e /3x* U0, e 2™ /3x4].



Cubic case




Cubic case




Cubic case




Cubic case




Cubic case




Recurrence relation

@ OPs in the cut-off model satisfy a recurrence relation
o If degV =r + 1 then

zPp(z) = Pny1(2) + anoPn(z) + -+ + an,r Pa—r(2)
+ “remainder term”

@ Remainder term comes from boundary integrals that are
due to the cut-off.

@ Remainder term is exponentially small for t5 > 0
sufficiently small.

Elbau (ETH thesis, arXiv 2007)



5. Different approach

o Scalar product

(f,g) = //D f(z)@e—%(lzIQ—V(z)_W)dA(Z)

satisfies (due to Green’s theorem)

n(zf,g) = to(f,g"y + n(f,V'g)

— D24 frgle Wl VEOVE) g,
2i Jop

o Drop the boundary term.



@ We consider an a priori abstract sesquilinear form on the
space of polynomials satisfying

n(zf,g) = to(f,g') + n{f, V'g)
@ We also want to keep the Hermitian form condition
(g.f) =(f.g)

@ What can we say about the orthogonal polynomials
(OPs)

(P, 2y =0, j=0,1,....,n—1

for such an Hermitian form ?



Short recurrence

If degV = r + 1 then OPs for an Hermitian form satisfying

n(zf,g) = to(f,g"y + n(f,V'g)

satisfy an r -+ 2-term recurrence relation

k
Proof: Suppose  zPi(z) = Pry1(z) + > ak jPk—j(2)

j=0
<ZPk, Pk—j)
@ Then gy, = ————~
Py, Piy)
] n<sz, Pk_j> = to(Pk, Pll<—j> + n(Pk, V/Pk_j>

(]

First term (P, P,’<7J-> =0
Second term (Py, V'P,_j) =0if j > r.



Short recurrence

If degV = r + 1 then OPs for an Hermitian form satisfying

n(zf,g) = to(f,g"y + n(f,V'g)

satisfy an r -+ 2-term recurrence relation

Is there a multiple orthogonality?



Double integral representations

Theorem (Bleher-K, arXiv 2011)

(a) The real vector space of Hermitian forms satisfying

n(zf,g) = to(f,g') + n(f,V'g)

is r2 dimensional, where r = deg V — 1.

(b) Any such Hermitian form is of the form

Ty

J,k=0

® (Cjk)jk=o0,.r is @ Hermitian matrix with zero row and
column sums,

o [g,...,[, is a system of unbounded contours along
which the integrals converge.




Contours [ for cubic potential

Im~z

_ A
N

Rez

e Contours I, ', 2 for V(z) = 223 with t3 > 0,
extending to infinity at asymptotic angles +7/3 and 7.



o The Hermitian form

Tk

Jj,k=0

is similar to the bilinear form for the biorthogonal
polynomials in the two-matrix model.

@ The integrals for the biorthogonal polynomials are over
the real line, instead of over '; and T.
Mehta (1994), Eynard-Mehta (1998)
Ercolani-McLaughlin (2001)
Bertola-Eynard-Harnad (2002, 2003)



Multiple orthogonal polynomials

@ The biorthogonal polynomials are multiple orthogonal
polynomials in the case of polynomial potentials.
K-McLaughlin (2005)

@ Same argument carries over to orthogonal polynomials
for the Hermitian forms. They are multiple orthogonal
polynomials with r weights.

@ Weights are on
.
r=r
j=0

instead of on the real line.



MOP in cubic case

e For V(z) = £2° the two weights are

nt3 3 _13g3
_e3t0 C k/ e tO zs )ds
E : Js
nt3 .3 _3s
_e3t0 E C]k/ se o (z5—3s )ds

@ Multiple orthogonality on T =TqUTl; Ul

ZEFJ',

/P,,(z)zkwo(Z)dZ —0, k=0,...,[2] -1,
i

/Pn(z)zkwl(z)dz:O, k=0,....[5] -1,
r



o Weight v, is expressed in terms of the Airy function
1
Ai(z) = — 35 2 s
27i Jr,

and weight w; in terms of the derivative




@ The Airy function Ai(x) is the solution of the Airy
differential equation
y'(x) = xy(x)

that satisfies

Ai(x)

2.3/2

(14 0(1/))

1
- 2ﬁX1/4e

as x — +o00.

>




7. Asymptotic analysis

@ We want to choose Hermitian matrix (C; ) in such a
way that we can find the large n asymptotics of the
MOP P, for the n-dependent weights

nt3 3 5_7 3)
— e’ E Cjk e tO ds
nt3 3 _ 133
) — e3f0 E CJ k/ se © (ZS 35S )dS

ZEFJ',

Q1: Can we find the limiting behavior of zeros of P, , as
n—oo?

Q2: Can we find the connection with Laplacian growth ?
Q3: What happens in the critical case ?



Existence of OP

Theorem (Bleher-K, arXiv 2011)
With the choice

the following hold. Assume 0 < ty < ty it = 8—1#
3

(a) Then the orthogonal polynomials P, for the Hermitian
form exist if n is sufficiently large.

(b) The zeros of P, accumulate as n — co on the set

Y1 = [0,x*]U[0,wx*] U [wa2x*], W= e27ri/37

. 3 5 2/3
= (1— ,/1—8t0t3)

-

Theorem to be continued...



Main tool: Riemann-Hilbert problem

@ MOPs with two weight functions have a
Riemann-Hilbert problem of size 3 x 3

(1) Y:C\R — C3*3 is analytic,

1 wp WwWp
2)Yy=Y_[0 1 0] onR,
0 0 1

ZMm+nm 0 0
(3) Y(z) =(h+ 0(1/2)) 0 z7m 0 | as z = oo.
0 0 z=m
Van Assche-Geronimo-K (2001)

@ RH problem has a unique solution if and only if the
MOP Py, ,, uniquely exists and in that case

Y11(Z) = Pnl,nz(z)

@ MOPs with r weight functions have a RH problem of
size (r+1) x (r+1).



RH problem for OPs w.r.t. Hermitian form in cubic case

@ There is a RH problem of size 3 x 3 with jumps on I
that characterizes the MOPs
(1) Y:C\T — C>3 is analytic,

1 wy wi
(2) Ypy=Y_[0 1 0 ]onT,
0 0 1

"0 0
(3) Y(z)=(k+0(1/2)) | 0 z "2 0 | asz— oc.
0o 0 z"?

(assume n is even)

@ RH problem is ideal tool for
g asymptotic analysis...
0
M1, Deift-Zhou (1993)




Why this choice for C 7

@ In a first step of the RH analysis
we want to deform contours
in such a way that
they cover ¥

Mo




Deformation of contours

RN



Deformation of contours

Mo

2



Deformation of contours

Mo

2



Choice for C

@ The choice for (C; ) is such that the o
combined weight on [0, x*] is

. 23,3
Ai(cpx) e3




Multiple orthogonality with Airy weights

@ On X; the new weights are

. nt3 3 .
wo.n(2) = w¥ Ai(cplz|) €30, z€[0,w/'x*], j=0,1,2,

. nt3 3 n2/3
wi(2) = I Al (Golz]) €507, ey = B
0o 3

@ Large n behavior of the two weights for z € ¥; \ {0},

wi,n(2) = exp(—nQ(2)),

Q(z) = L ( \/», 2|32 - t3z )

@ Next step is the characterization of the limiting zero
distribution of the polynomials in terms of Q.




Limiting zero distribution

Theorem (continued)

(c) There is a limiting zero distribution uj on X ;.

(d) pj is characterized by a vector equilibrium problem from
logarithmic potential theory.

(e) The function
t32% + t0/1d,u*(s)
Z—g5 "

extends to a meromorphic function on a compact three
sheeted Riemann surface




Vector equilibrium problem

Minimize the energy functional

// log ——— d,ul( )dm(y)—// Iog| ! ‘dﬂl(x)dﬂz()/)
+f / og 1 dia(x)daly )+ [ @

over (i1, 12) such that

@ 1 is a measure on ¥ 2
with (%) =1 "
® Lo is @ measure on X,
X
wx*

2,



Minimizer
@ There is a unique minimizer (uj, u3) of the vector

equilibrium problem.
o u] is the limiting distribution of the zeros of P,, that is,

(weak™ convergence of measures)



Meromorphic function

The function
1
g]_(Z): t322+t0/HdMI(S), ZEC\Z]_

extends to a meromorphic function on a compact three
sheeted Riemann surface whose only poles are at infinity.

@ (1(z) is one of the solutions of a cubic equation
(a.k.a. the spectral curve)

1
& — 132262 <t0t3+t> 26+224+4A=0
3

A— 14+20t0t2 —8t2t5—(1-8tt3)>/2
3283 :




Laplacian growth

1
€1(2) = 12 + to/z_sdu’;(s), zeC\ 1

Theorem (continued)

(f) The equation defines a simple closed
curve 02 that is the boundary of a domain 2 containing
21 in its interior.

(g) Q has exterior harmonic moments (0,0, t3,0,0,...) and

area(QQ) = 7ty




8. Outlook

Many open questions

@ Where are the eigenvalues 77
o Ciritical case tyg = to crit ?
@ Supercritical case ty > ty i 27

@ More general potentials V7
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