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Motivation

Based mainly on [Kycia].

Semilinear wave equation

�U(t, x) − U(t, x)p = 0, � = ∂tt−△,

where x ∈ Rn, n ≥ 3, p-even to preserve reflection symmetry or
Up → |U |p−1U .

Spherical symmetry

Utt−Urr −
n − 1

r
Ur − Up = 0,

where r = |x|.
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Motivations

There exist ’smooth’ initial data that develop singularity when
t → T < ∞.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2  2.5  3  3.5  4  4.5

U
(t

,r
)

r

t=0
t=0.009375

t=0.01103074
t=0.01121828
t=0.01127034

Example of nonglobal existence.

Common behavior for many nonlinear PDEs, see
[Eggers, Fontelos].

Blowup dynamics is governed by self-similar solutions.
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Motivations

Self-similar solutions

U(t, r) =
u(ρ)

(T − t)α
, ρ =

r

T − t
, α =

2

p − 1
(> 0).

Self-similar solution

1 U0(t) = b0
(T−t)α

2 U∞(r) = b∞r−α

Self-similar profile

1 u0 = b0

2 u∞(ρ) = b∞ρ−α

1 b0 =
(

2(p+1)
(p−1)2

)
1

p−1

2 b∞ =
(

2(p(n−2)−n)
(p−1)2

)
1

p−1
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Motivation

ODE for self-similar profiles

(1 − ρ2)u′′ +

(

n − 1

ρ
−

2(p + 1)

p − 1
ρ

)

u′ −
2(p + 1)

(p − 1)2
u + up = 0,

where ′ = d
dρ

.

Fixed singularities at 0, ±1, ∞.

Question: Is there a global (on [0; 1]) analytic solution ?

Method of attack [Bizoń, Maison, Wasserman]:

Construct local analytic solution at 0.
Construct local analytic solution at 1.
C1 match at some ρ0 ∈ (0; 1).
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Method of attack [Bizoń, Maison, Wasserman]:

Construct local analytic solution at 0.
Construct local analytic solution at 1.
C1 match at some ρ0 ∈ (0; 1).



Motivation

ODE for self-similar profiles

(1 − ρ2)u′′ +

(

n − 1

ρ
−

2(p + 1)

p − 1
ρ

)

u′ −
2(p + 1)

(p − 1)2
u + up = 0,

where ′ = d
dρ

.

Fixed singularities at 0, ±1, ∞.

Question: Is there a global (on [0; 1]) analytic solution ?

Method of attack [Bizoń, Maison, Wasserman]:

Construct local analytic solution at 0.
Construct local analytic solution at 1.
C1 match at some ρ0 ∈ (0; 1).



Local analytic solution at ρ = 0

On substituting the formal power series u(ρ) =
∑∞

l=0 alρ
l

and using Cauchy product

(
∑∞

l=0 al(x − x0)
l
)p

=
∑∞

l=0 cl(x − x0)
l,

c0 = ap
0, cm = 1

ma0

∑m
l=1(lp − m + l)alcm−l,

that simplifies nonlinear term up

we obtain unique recurrence for {al}
∞
l=1

and the solution

u(ρ) = c +
1

n

[

c
p + 1

(p − 1)2
−

1

2
cp

]

ρ2 + O(ρ4),

where c is initial data at ρ = 0.



Local analytic solution at ρ = 0

Question: Is the formal solution a solution ?

Proposition [Breitenlohner, Forgács, Maison]

Consider a system of differential equations for i + j functions
u = (u1, . . . , ui) and v = (v1, . . . , vj),

t
dul

dt
= tµlfl(t, u, v), t

dvl

dt
= −λlvl + tνlgl(t, u, v),

with constants λl > 0 and integers µl, νl ≥ 1 and let U be an open
subset of Rn such that the functions f and g are analytic in a
neighborhood of t = 0, u = c, v = 0 for all c ∈ U . Then there
exists an i-parameter family of solutions of that system such that

ul(t) = cl + O(tµl), vl(t) = O(tνl),

where ul(t) and vl(t) are defined for c ∈ U , |t| < t0(c) and are
analytic in t and c.



Local analytic solution at ρ = 0

Question: Is the formal solution a solution ?

Proposition [Breitenlohner, Forgács, Maison]
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Digression: The Lane-Emden equation [Hunter]

The Lane-Emden equation

U ′′ +
n − 1

x
U ′ + Up = 0, U = U(x)

Widely used in astrophysics to model star structures.

The simplest equation with power type nonlinearity and fixed
singularities at 0 and ∞.

Formal power series solution at x = 0 is of the form
U(x) = 1 − 1

2n
x2 + O(x4) with U(0) = 1, U ′(0) = 0.

Formal solutions are solutions - apply the Proposition
[Breitenlohner, Forgács, Maison]:

{

U ′ = V
xV ′ = −(n − 1)V − xUp,
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Digression: The Lane-Emden equation [Hunter]

Movable singularities decrease the radius of convergence. They can
be determined numerically - scanning complex plane [Hunter].

 0.9
 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

|solution|

|solution|

Re

Im

|solution|

Figure: The Lane-Emden solution for n = 3, p = 5.



Digression: The Lane-Emden equation [Hunter]

Movable singularities decrease the radius of convergence. They can
be determined numerically - scanning complex plane [Hunter].

 0.9
 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

|solution|

|solution|

Re

Im

|solution|

Figure: The Lane-Emden solution
for n = 3, p = 5.

p movable singularities

1 ∞

2 ±3.964581i

3 ±2.574840i

4 ±2.034896i

5 ±1.732051i

Table: Numerical estimates of the
location of movable singularities for
n = 3 [Hunter].



Local analytic solution at ρ = 0

Question: How large is the circle of convergence - where are the
closest movable singularities ?

Rescaling local solution at ρ = 0 using ρ = x

c
p−1
2

and U = u/c

we get

u(ρ) = cU

(

x

c
p−1
2

)

= c

[

(1 −
1

2n
x2 + O(x4)) + o

(

1

c

)]

.

The equation transforms as

U ′′ +
n − 1

x
U ′ + Up =

1

cp−1

(

x2U ′′ + (2α + 2)xU ′ + α(α + 1)U
)

.

For large c asymptotic form of local solution at ρ = 0 obey
the Lane-Emden equation.

Connection between location of movable singularities (the
radius of convergence):

RW ≈
RLE

c
p−1
2

.

[Animation]
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Local analytic solution at ρ = 1

ODE for self-similar profile at ρ = 1

y(2 − y)u′′(y) −
[

n−1
1−y

− 2(p+1)
p−1 (1 − y)

]

u′(y)−
2(p+1)
(p−1)2

u(y) + up(y) = 0,

where y = 1 − ρ and ′ = d
dy

.

There exist the parameter k = (n−1)p−n−3
2(p−1) which determines the

form of analytic solution.

2 3 4 5 6 7 8 9 10 11 12 13
2
3
4
5
6
7
8
9

10
11
12
13

n

p



Local analytic solution at ρ = 1

Formal power series solutions u(y) =
∑∞

l=0 aly
l:

For noninteger k we get standard formal analytic solution

u(y) = b +
2(p + 1)b − (p − 1)2bp

2(1 − k)(p − 1)2
y + O(y2),

where b = u(y = 0) is a free parameter.
For integer k we have:

First k recurrence equations for {a0, . . . , ak−1} give nonlinear
algebraic system of equations...
...which has (among others) the solution

a0 = b∞, . . . , ak−1 = (−1)k u(k)
∞

(ρ)|ρ=1

k! .
The free parameter b appears at yk and then formal series
proceed in usual way

u(y) = a0+. . .+ak−1y
k−1+byk+ak+1(b, a0, . . . , ak−1)y

k+1+. . .

The proof of convergence uses Proposition
[Breitenlohner, Forgács, Maison] and induction in k [Kycia].
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Local analytic solution at ρ = 1

Movable singularity moves from ρ = ∞ to ρ = 1 along the real
axis when |b| > b0 increases.
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Figure: Local solution at ρ = 1 for n = 3, p = 7 and
b = 1.1 > b0 ≈ 0.8736.



Global existence

Matching of two local asymptotics at some ρ0 ∈ (0; 1) (details in
[Bizoń, Maison, Wasserman],[Kycia]):

Use of Lyapunov functions - local solutions can develop
singularities only at endpoints of [0; 1].

C1 matching at ρ0 (analytic continuation):

C0 - curve of integration of local analytic solution at 0 to ρ0

and parameterized by initial data c.
C1 - curve of integration of local analytic solution at 1 to ρ0

and parametrized by initial data b.
Intersections of the curves on the plane (u(ρ0), u

′(ρ0)) is
exactly C1 matching.
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Global existence

-2

-1

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1  1.2

u’
(ρ

0)

u(ρ0)

C0
C1

Figure: n = 3, p = 7, ρ0 = 0.5



Global existence

The curves have a countable number of intersections ⇒
countable family of global analytic solutions.

The family can be enumerated by the pairs of initial data at
both endpoints {cl, bl}

∞
l=0.

For integer k only solutions with asymptotics at ρ = 1 for

which u(1) = b∞ (a0 = b∞, . . . , ak−1 = (−1)k
u
(k)
∞ (ρ)|ρ=1

k! )
gives countable family of global solutions; the others give only
one global solution for each solution. These constraints lead
to simple numerical methods to study global solutions [Kycia].
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The End

Thank You for Your Attention

Any suggestions and comments would be extremely

useful.
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Classification

Equation’s symmetry

Uλ(t, r) = λαU

(

t

λ
,
r

λ

)

, α =
2

p − 1
.

Scaling is critical for β = 0, i.e., p = pQ = n+2
n−2 ,

subcritical for p < pQ,

supercritical for p > pQ.
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