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The equations we want to consider have the form
y(n+1) + a(n)y(n) + b(n)y(n-1)=0,

which are called either

3-term linear recurrence relations or

second order linear difference equations.

We will treat them as 2-dimensional, first order linear
vector/matrix systems of the form

yr=Amym), Am=[_" | |

where we always assume A is invertible, so that a
fundamental solution exists and can be given by

Y(n)= A(n-1)A(n-2)...A(1).

We ask for the asymptotic behavior of Y(n) as n- .



Such equations are especially studied due to

1. applications to orthogonal polynomials, e. g.
(n+1)p,..(x)-Cn+Dxp,(x)+np,,(x) =0

h,..(x)—2xh,(x)+2nh, (x)=0
Our emphasis will be on classes of asymptotically equivalent
equations instead of special examples.

2. second order equations or 2-d systems are the simplest
ones for which there are not generally closed form
solutions. Close analogies exist with second order or 2-d
systems of linear differential equations. The terms
Liouville/Green or WKB asymptotics are associated with
the Kinds of problems we consider. When “realistic”
error terms are also included, they are also often called
Liouville/Green/Olver formulas.

3. Applications to spectral problems of Jacobi operators.
Our own interest is motivated by

4. a book we are writing on asymptotic methods for solving
differential and difference equations; we are looking for
some nice examples for applying a class of general theorems
leading to what we call “asymptotic factorization” of a
fundamental matrix.

Many ad hoc techniques have been applied to study the
asymptotic behavior of classes of orthogonal polynomials.



Some of these include:

1. Riccati methods. If y(n)/y(n-1)=u(n), the equation is
equivalent to

u(n+1)u(n) +a(n)u(n) + b(n)=0, which can
sometimes be approximated by
u’ (n) +a(n)u(n) +b(n) = 0.

2. Continued fraction expansions. These can lead to some
interesting types of formal solutions.

3. Expanding difference operators in terms of
differential operators, using the difference calculus
and considering difference equations as “differential
equations of infinite order”. See Dingle, etal.

While these techniques have lead to some useful results, our
goal is to see whether or not more general asymptotic
methods can be applied to yield at least equivalent (or
possibly better) results. If, not then maybe we can learn some
new procedure that would improve the general approach. In
doing so, we also hope to understand the various assumptions
from a more general perspective.



Asymptotic Factorization:
Y (n)=P(n)[I+Q()] [I+Em)] [T A),

where P(n) is a normalizing or preliminary transformation,
[+Q is a so-called conditioning transformation,
A(n) is a diagonal matrix, and E =0(1) and can be
“realistically estimated” in the sense of Olver.
The role of the transformation
y(0)=P()[1+Q(n)]z(n)
is to take the system y(n+1)=A(n)y(n) into a normalized form
z(n+1)=[A(n) +R(n)]z(n),

so that a discrete analogue of Levinson’s Fundamental
Theorem on asymptotic integration can be applied to yield

Z(n)- [1+E(n)] ﬁA(m.

Compare with formal and asymptotic solutions of
meromorphic linear differential systems.



A discrete analog of Levinson’s
Asymptotic Integration Theorem.

Consider z(n+1)=[ A(n) + R(n)]z(n),
where A(n)-= diag{ Ai(n), ..., Aa(n)} is invertible for all n and

satisfies ordinary dichotomy conditions involving partial

n

quotients I

m

2,)
2,(0)|

If also R(n)/Ai(n) is in I', then there exists a solution vector of
the form

zmy=le: + o] [T4,0)

where the o(1) terms can be estimated in terms of R and A.

Ref: Rappoport, Evgrafov, Gel’fond/Kubenskaya,
Benzaid/Lutz, Bodine/Lutz.

In Benzaid/Lutz, two further extensions were given
which we will also use. They correspond to special
choices of [I+Q(n)] or conditioning transformations.



These results reduce the problem from analyzing the
asymptotic behavior of products of two-dimensional
matrices to that of products of scalars, which can often
be treated using standard techniques or even
sometimes having explicit representations using
elementary functions.

Some applications to classes of 3 term recursions.

1.(Spigler/Vianello) [1992])
2.(Mate/Nevai/Totik [1985])
3.(Mate/Nevai [1988])
4.(Geronimo/Smith [1992])
5.(Stepin/Titov [2006])

6.(van Assche/Geronimo [1988])

We emphasize that we are only concerned here
with deriving some basic asymptotic formulas, not
with more specialized results deduced from them. Our
main point will be that the general approach can yield
at least as good or better results in most cases.

The main focus now is to find suitable preliminary or
normalizing transtformations P(n), followed by (if
necessary) conditioning transformations (I+Q(n)).
Then the discrete analog of Levinson’s Theorem and
estimation of operators yield the asymptotic results.



A.1'perturbations of asymptotically constant equations.
Let y(n+l) = [ A+ R(n)]y(n), where A is

invertible and diagonalizable and R is in 1. Then

P7'AP= A satisfies Levinson’s dichotomy conditions
and there exists a fundamental matrix satistying

Y(n) = P [I + E(n)] diag{A,....,1"}.

Example 1: (see Spigler/Vianello [1992])

A(Ay (n)) + (o + g(n))y(n) = 0,
where o is unequal to -1. This is equivalent to the

above system with A =[ ° 'Tand R(n)=[ i

0 O] '
-(l1+a) 2 g(n) 0
If a is also not zero and g is in I', then the analog of
Levinson’s Theorem immediately applies. If a = 0,
then A has equal roots, but is not diagonalizable
and stronger decay conditions such as ng(n)or
n*g(n) in1'lead to asymptotic formulas.

Error estimates for o(1) terms can be given in terms
of g and the eigenvalues of A.



Example 2: (Spigler/Vianello)[1994])

y(n+2) +a(n)y(n+1) + b(n)y(n) = 0,

where is b(n)/a(n)a(n-1) = L +h(n), where hisin I
and L #0,1/4. Then

y(n)- diag{La(n-D}Tatk) 2(n)

transforms the system into z(n+1)=[A + R(n)]z(n),

where A = | 2 _11 ] and R(n)=| h(on) g ] isin1"

(n=1) yz(”—l)]

So a fundamental matrix Y(n)- [y
¥, (n) Y (n)

can be represented as
Y(n)- diag{La(n-1)}[Tack) [P+ E(n)]diag{ 4", 22},

with 4, =(c14T=4Z)2) and P-[ | '],
. /,LI /12

If L =1/4, then stronger decay conditions on h lead
to some corresponding asymptotic representations.



B. Asymptotically constant systems with regularly-
varying perturbations;

y(n+1) = [ A+ V(n)]y(n),

where A has distinct, non-zero eigenvalues, and
V=0(1).

If A(n), the diagonal matrix of eigenvalues of
A+V(n) satisties Levinson’s dichotomy conditions
and if also V(n+1)-V(n) is in I, then

Y(n)= P()[1+EM)][TA®)

where P(n) diagonalizes A+V(n).

A tunction V satistying the condition V(n+1)-V(n)
in I' is said to be regularly varying. Examples
include such functions as 1/n, 1/logn, etc.



Application 1. (Mate/Nevai/Totik[1985]); Let

xp(n,x)=a(n+1)p(n+1,x)+b(n)p(n,x)+a(n)p(n-1,x)=0,

where x is a complex parameter with values in K, a
compact set avoiding {-1,+1} and a(n)> 0 for all n.

Assume that a(n) = %2 + o(1) as n tends to infinity
and b(n) = o(1) as well. Finally assume that a(n)
and b(n) are “regularly varying” in the sense that

both a(n+1)-a(n) and b(n+1)-b(n) are in1".

Then we have p(n+1)=[A + V(n,x)|p(n), where

0 1
A= [_1 2x] and

V(nx)-| ’ |

1- a(n)/a(n+1) (x—b(n))/a(n+1)—2x

A is diagonalizable provided x is not in {-1, +1} and
has eigenvalues

p(x)=x++x* -1 and 1/p(x).

Also, it is easy to check that V is regularly varying.



We take the positive branch of the root for x not in
[-1,+1]. Then A+V(n,x) has eigenvalues

a(n) 1
a(n+1) x—b(n)
& 2\/a(n)a(n +1)

Ai(n,x)=

- 1/p(x) + o(1)
|

_ | a(n) x—b(n) ) .
and As(n.x) a(n+1) p(%/a(n)a(n + l)] p(x) + o(l).

Then provided the eigenvalues satisty dichotomy
conditions, the discrete analogue of Levinson’s
theorem applies and there exists a fundamental
matrix for the original system of the form

1 1 I+&8, &y || A 0
1/p(x) p(x) &y 1+e&y H 0 A, (k, x)

and the g, can be estimated. For x to lie in certain

subsets of C, this yields the most of the asymptotic
formulae in Mate/Nevai/Totik. If x is in a compact
subset of the complex plane bounded away from
[-1,1], then L even satisfies an exponential
dichotomy condition. This can be used to extend
those results as in the next section.



A related asymptotic factorization result:
(Mate/Nevai[1988].

Let Ey(n)=y(n+1) and consider the operator
E* +a(n)E +b(n),

where a(n) and b(n) are asymptotically constant
and regularly varying in the above sense. Assume

the limiting characteristic equation has roots A and
A> with distinct moduli and let |A/A2| > 1.

Let Ai(n) and A2(n) be corresponding roots for the
perturbed equation. Then there exist sequences

m(n) and po(n) such that the operator can be
factored as

(E- pa(m)) (E-pu(n),
where pi(n)-Au(n) is in 1. This implies that

y(n+1)=(A(n) + [pu(n)-M(n)])y(n)

has a solution yi(n)=[1+o(1) |IT (k).



This leads to the following natural questions:

a.What can be said about the second factor p.?

b. Is there a corresponding factorization with the
order of the factors reversed?

c.Is it essential that the roots have distinct moduli?
d. Do such factorization results also hold for higher
order equations?

The answers to these questions as well as an
alternate proof of the original result can be
obtained from the asymptotic factorization

Ak) 0
0 A, (k)

P(1+ Q(n))(I+E(n))ﬁ{ :l, where E(n)

can be shown to satisfy E(n+1)-E(n) isin 1"

Then the functions i and p can be expressed in
terms of the above functions and the results follow.



C. I? perturbations of diagonal systems having an
exponential dichotomy.

Consider y(n+1)=[A(n) + R(n)]y(n), where

A(n)= diag{ Ai(n), ... , Aa(n)} satisfies an exponential
dichotomy condition and for some fixed index i,

R(n)/Ai(n) is in I for p at most 2.

Then there exists a solution yi(n) satistying
yi(n) = (ei+ o)) [ [ (Ai(k)+ ru(k)).
1

For finite p »2, analogous results also hold with further
modifications to the eigenvalues using an iteration of
normalizing and conditioning transformations.



Application: (Geronimo/Smith[1992]):

Let  d(nsD)y(n+1)-q(nx)y(n)+y(n-1)-0,

where d(n)=1-8(n) and 8(n)=0(1) and q is a complex
sequence depending upon a complex parameter x which
will range over some compact set K. They considered a
corresponding Riccati equation

d(n+)u(n+l)u(n) -q(n,x)u(n) +1 =0
and the quadratic limiting equation
u’(n)—q(n,x)u(n)+1=0

with solutions ue(n,x), vo(n,x) as first approximations
to solutions of the Riccati equation. Some other ad hoc
considerations lead them to two further approximations,
called w(n,x), u:(n,x), and vi(n,x), v2(n,x).

Their main results involve asymptotic formulas for
solutions as products of u:(n,x) and v2(n,x) with error
estimates for the remainders under the following
assumptions:

q(n,x) assumes values in K, a subset of the complex plane
which is bounded away from [-2,+2].

8(n) and A(q(n,x)) in1*and A(8(n)) and A’(¢(n, x)) in I"



Instead of using the Riccati approach, we consider

0 1
“1/(1=8(n+1) qn)/(1-8n+1))

Y(H"l){ }y(n),

which we decompose as
y(n+1)=[A(n,x) + V(n,x)]y(n), where

0 1
-1 g(n,x)

0 0
A(n,x){ } V(n,x){ ~8(n+1) q(n)5<n+1)].

1-6(n+1) 1-06(n+1)

A(n,x)= diag{A,(n,x),A,(n,x)}, where

2n (1, %) = (q(n) £+/q* (n) - 4) /2.

1 1

Then letting y(n)= [ A(n=1) 2, (n-1)

} P(n) = T(0,x) ()

we obtain p(n+1) = [A(n, x)+V(n, x)Jj>(n) , where
V(n,x)=T"(n+D)AM)[T(n)-T(n+D]+T "' (n+ 1)V (n)T(n),

= AMT ' (n+D[T(n)-T(n+D]|+ T (n+ 1)V ()T (n).



If q(n,x) is bounded away from [-2,+2], then A(n,x)
satisfies an exponential dichotomy condition. It can be
easily checked that

A

V(n,x)

2, (n,x)

is in I’ provided 8(n) and A(q(n,x)) are in 1.
Therefore there exists a solution vector of the form

Yi(n,x) = (& +&(n, X))ﬁ [4,(k, x) + diag,V (k,x)].

This leads to an asymptotic formula that is apparently
different from that obtained by Geronimo/Smith. Also,
we do not require their further conditions that A(8(n))
and A’q(n,x) are in |'. However, with those extra
conditions, the two expressions can be shown to produce
asymptotically equivalent results since the terms in the
products differ by /' functions.

Moreover, other conditioning transtormations could be
employed, leading to many other results of this type.



Another result stated in G/S strengthens the assumptions
on § and q to just

8(n) and A(q(n,x)) in 1,

while weakening the assumption on q(n,x) to just lie in a
region bounded away from the points {-2,+2}. This
allows for oscillation of solutions of the unperturbed
equation when the eigenvalues have equal moduli, which
occurs when g(n,x) can take on values inside the so-

called oscillatory interval (-2,+2).

The assumptions on 8 and q imply that V isin I', but
the weakened condition on q means that exponential
dichotomy is lost and should be replaced by ordinary
dichotomy for the eigenvalues of the unperturbed
equation (in order to apply the analog of Levinson’s
theorem).

Without such an assumption on g, such as q not crossing

the interval (=2,+2), the eigenvalues could fail to satisfy
such an ordinary dichotomy condition. This could lead to
the possibility of a change in the asymptotic behavior,

even when 8 and q satisty the other conditions above.

Also in this case, uo(n,x) is already a good approximation
to Ai(n,x), which leads to a simpler result.



D. Some “averaged” decay conditions; see
(Stepin/Titov|[2006]).

Consider y(n+1) —-q(n)y(n) + y(n-1)=0, where q(n)> 0.

This is a normalized version of the equation
w(n+1)-a(n)w(n)+b(n)w(n-1)=0,

where both a(n) and b(n) are positive sequences.

Theorem 1. If {1/q(n)q(n+1)}isin!', then there exist
solutions satisfying

yi(n) ~ f[q(k) and y:(n) ~f[ %]( k)’
Example: q(2n)=1/n, g(2n+1)= 2",

Theorem 2. If q(n)>2 and {1/¢(n-1)q*(n)g(n+1)}is in 1,
then there exist solutions satisfying

yi(n) - H[q( )- ]andyz(n) H(Q( gt 1))_1

(k—)



We first (in the case of Theorem 1) treat the equation as

yoeD=[1) 0 Ty(n), and let y(n)-P)(1+Q@))z(n).
with

pa)-[ 0 UI[ " ] and

1/g(n) 1--0 1/qg(n)
. ) 1 1/g(n)g(n—1)
(I Q(n))"[l/q(n)q(nu) | |-

This yields z(n+1)=(A(n)+R(n))z(n), where

A(n)=diag{l/q(n), g(n+1)}.

Since the assumptions imply that for n sutficiently large,

q(n+1)q(n) » 2, then A satisties exponential dichotomy
conditions, and both q(n)R(n) and R(n)/q(n+1) are in1".

So the analog of Levinson’s theorem applies and yields the
asymptotic representations for solutions yi(n) and y.(n),
also with error estimates not present in Stepin/Titov.

Since exponential dichotomy conditions are satisfied, the
I' decay condition can be relaxed to an 1* condition with the
corresponding modification by diagonal terms from R(n).
Furthermore, the condition g(n)>0 can also be relaxed to
just q(n) not zero together with {q(n)q(n+1)} in1"



For Theorem 2, we let

= 10 11
y(n)ZH Q(k)|:0 }{ }fv”(n)

gn-1)]0 1

to obtain F(n+1) =[A(n)+V(n)]F(»),

where A(n) = lgmg(n=1) 0 an
0 1-1/g(n)g(n—1)
) = { 0 1/ g(n)q(n—- 1)}
—1/g(n)g(n—1) 0

It A satisfies an exponential dichotomy condition and

i[ : ] < 0, then the result would follow, but
T \g(n)gq(n-1)

this condition is stronger (Cauchy-Schwarz) than

i[ 21 ] < oo assumed in Theorem 2.
T \g(n—-1g" (n)g(n+1)

So make one further I+Q(n) transformation with

I 40(n) = { a(n-1)/1-a(n- 1))}

a(n)/(1-a(n)) 1



and where a(n) = 1 . This leads to a system

g(n)g(n—1)

yn+l)= [A(n) + R(n)]f/(n) with
A(n) = {a(n) /(1 - a(n)),1 - a(n)}

which satisfies an exponential dichotomy condition provided

that q(n)> 3++/5)/2.

Moreover, R(n)/A2(n) in 1' and this yields part of Theorem 2,
but with a slightly weaker assumption on q(n). To obtain the
asymptotic for a recessive solution we use a modified
conditioning transformation, and a more restrictive condition

on q(n) (although still weaker than q(n)>2).

Theorem 2 as stated above is actually just the first case of a more
general result in Stepin/Titov having assumptions which involve
products of a fixed, finite number of consecutive terms in the
sequence {q(n)}. Their more general result is proven using
formal continued fractions. For that purpose they require the
condition q(n)>2 for convergence. While we believe that an
asymptotic factorization is possible in more general cases, there
would be some unpleasant algebraic calculations and inductions
using our approach, so we don’t choose to try that now.



E. A case of unbounded, regularly-varying coefficients.
Similar to the case treated by Mate/Nevai/Totik for

asymptotically constant, regularly-varying coefficients,
van Assche and Geronimo (1989) treated a case of

xp,(x) =a(n+D)p,.,(x)+b(n)p,(x)+a(n)p,_,(x)

where p_ =0, p, =1 and the coefficients satisfy the
following conditions:

a. There exists a positive sequence {1 }and a constant o> 0
for which
. [ﬂ, y ]
limn 2 -1|=q.
j'/}’I
b. lim a(n)/Ax= >0 and lim n(a(n+1)-a(n))/A. = aa.

c. lim b(n)/A« = b and lim n(b(n+1)-b(n))/A. = ba.

Then

. A AR d

llm——p’;( nx):((x )2 a ] exp EJ. - f_ —
e X 3/ (x—bs)? —4a’s
1 WA

as n tends to infinity, uniformly in x when it is restricted
to lie in a compact subset of the complex plane bounded



away from an interval [A,B], which is the smallest interval
of R containing {0} and [b-2a, b+2a].

Here z, , =zxa(x) is defined by

. :ﬂnx—b(k)Jr\/[/lnx—b(k)] By
’ 2a(k) 2a(k)

This result does not, so far, appear to be obtainable
using the asymptotic factorization approach.

First, asymptotic factorization cannot handle
initial conditions and yield explicit connection
formulae. So at best we would just want to show
that the above limit exists (as a function of x).

Second, the sequence {g»(x)}, where gu(X)=pn(As,x)
does not necessarily satisty a linear recurrence
relation. So we would instead like to have an
asymptotic representation which implies that

lim pa(x)/z1n(x/An) exists,
which would imply that the above limit exists (and is a

function of x). This would suggest that the system
corresponding to the equation be decomposed as



p(+)=[A(n,x) + V(n,x)|p(n),

. = 0 1
with A(n,x)- L 1 (x-b(n))/ a(”)} ,

(which has eigenvalues z.(x/A.)) and

0 0
V(II,X) = [l —a(n)/a(n+1) (x- b(i’!))( 1 1 ]:| |

a(n+1) - a(n)
For fixed x, the eigenvalues of A(n,x) tend to the

-1 -bl/a
which are unequal provided 5 # +2a4.

iy . |0 1
eigenvalues of the limiting matrix [ },

While V(n,x) tends to zero as n tends to infinity
(when x lies in a compact domain), V just misses
being regularly varying and their “dichotomy
condition” concerning x to be bounded away from
[A,B] does not yield any workable dichotomy

condition for A(n,x) in our sense.



Conclusions:

1. In most cases the asymptotic factorization
method produces at least as good results as the ad
hoc techniques and gives improvements in some
cases. The main challenge is in finding the “right”
normalizing and conditioning transformations.

2. Because the asymptotic factorization approach
preserves linearity and produces a set of equivalent
linear systems, it is also quite flexible. One can use
a wide variety of preliminary and conditioning
transformations to yield many different kinds of
new analogous extensions of known results.

3.The conditions which are required by the discrete
analog of Levinson’s Theorem, while not necessary,
are very sharp in a generic sense. So the results
which are obtained using this approach often
contain assumptions on the behavior of the
coetficients which are sharper and closer to being
“necessary”.

4. The approach is not restricted to 3-term
recurrence relations or 2-dimensional systems as
are most of the ad hoc techniques.
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