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1. Introduction

It is well known that harmonic functions posses the
mean-value property.
If u is harmonic on Ω ⊂ Rd, then for every closed
ball B(x̊, R) ⊂ Ω (or sphere S(x̊, R) ⊂ Ω) of a
center at x̊ ∈ Ω and radius R > 0 the average of u
over B(x̊, R) (or over S(x̊, R)) equals to u(x̊) i.e.
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u(x̊) =
1

σ(d)Rd

∫

B(x̊,R)
u(x)dx

=
1

dσ(d)Rd−1

∫

S(x̊,R)
u(x)dS(x),

where σ(d) = πd/2/Γ(d/2 + 1) is the volume of the
unit ball in Rd and dS denotes the surface measure
on S(x̊, R).
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On the other hand if a continuous function u sat-
isfies the above equality for every ball (for every
sphere) in Ω, then u is twice continuously differen-
tiable and harmonic on Ω.
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Clearly, for polyharmonic functions, i.e. the solu-
tions of the iterated Laplace operator ∆m, m ∈ N,
or more generally for real analytic functions, the
integral means over balls or spheres need not to be
equal the value of a function at the center of a ball
or sphere. It appears however that this means can
be expressed by some polynomials of the radius of
the ball or sphere.
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In fact, the mean-value formula for polyharmonic
functions for spherical means in dimensions d = 2, 3
was established already in 1909 by Pizzetti [15, 16].
The inverse to the mean-value property for polyhar-
monic functions in dimension d = 2 was first proved
by Sbrana [17]. The Pizzetti mean-value property
for polyharmonic functions and its inverse was ex-
tended to the case of spherical and solid means in
arbitrary dimension by Nicolesco [14].
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Afterwards some other theorems on mean-value
properties for polyharmonic and real analytic func-
tions have been obtained by Ghermanesco [9], Fried-
man [8], Bramble and Payne [5], Bojanov [4], Zal-
cman [18], and others.
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In the lecture we first derive differential relations
between the spherical and solid means of functions.
Next we extend the mean-value formulas to the case
of real analytic functions we obtain a characteriza-
tion of that functions in terms of integral means
over balls or spheres. We also obtain similar char-
acterization of functions of Laplacian growth.
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As an application we study the problem of analyt-
icity in time of solutions of the initial value problem
to the heat equations ∂tu = ∆u with real analytic
initial data u(0, ·) = u0. We prove that the solu-
tion u is analytic in time at t = 0 if and only if
the integral means of u0 over balls or spheres of ra-
dius R can be extended to entire functions of R of
exponential order at most 2.
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2. Relations between spherical and solid means.

Let u ∈ C0(Ω), x̊ ∈ Ω, 0 < R < dist(x̊, ∂Ω).
Define

M(u, x̊; R) =
1

σ(d)Rd

∫

B(x̊,R)

u(x)dx,

N(u, x̊; R) =
1

dσ(d)Rd−1

∫

S(x̊,R)

u(x)dS(x).
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Lemma 1 Let u ∈ C0(Ω). Then for any x̊ ∈ Ω
and 0 < R < dist(x̊, ∂Ω),

(R

d

∂

∂R
+ 1

)
M(u, x̊; R) = N(u, x̊; R).

If u ∈ C2(Ω), then

d

R

∂

∂R
N(u, x̊; R) = M(∆u, x̊; R).
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The proof of the first formula is done by computa-
tion of M(u,R) in the spherical coordinates, while
that of second by using the Green formula.

Corollary 1 (Beckenbach-Radó-Reade). Let u ∈
C0(Ω). If for any x̊ ∈ Ω and 0 < R < dist(x̊, ∂Ω),

M(u, x̊; R) = N(u, x̊; R),

then u is harmonic on Ω.
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3. Mean-value properties for real-analytic functions.

Let A(Ω) be the set of real-analytic functions i.e.
u ∈ A(Ω) if for any x̊ ∈ Ω and ‖x − x̊‖ < r with
some r > 0,

(1) u(x) =
∑

`∈Nd
0

1

`1! · · · `d!
∂|`|

∂x`
u(x̊)(x− x̊)`,

where |`| = `1 + · · · + `d and x` = x
`1
1 · · · x

`d
d .
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Theorem 1 (Mean-value property). Let u ∈ A(Ω),
x̊ ∈ Ω. Then M(u, x̊; R) and N(u, x̊; R) are an-
alytic functions at the origin and for R small

M(u, x̊; R) =

∞∑

k=0

∆ku(x̊)

4k
(d

2 + 1
)
kk!

R2k,(2)

N(u, x̊; R) =

∞∑

k=0

∆ku(x̊)

4k
(d

2

)
kk!

R2k.(3)

Here (a)k = a(a + 1) · · · (a + k − 1) is the Pochhamer symbol.
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Proof. For simplicity assume x̊ = 0 and let (1)
holds for x ∈ B(0, ρ). Set B(R) = B(0, R) with
R < ρ. Note that if at least one of the exponents
`1, . . . , `d is odd, then the integral of

x` = x
`1
1 · · · x

`d
d

over B(R) vanishes.
Next for ` = 2κ with κ ∈ Nd

0, |κ| = k, using [7,
formula 676, 11)]
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we derive
1

σ(d)Rd

∫

B(R)
x

2κ1
1 · · · x2κd

d dx

=
R2k

σ(d)

∫

B(1)
y

2κ1
1 · · · y2κd

d dy

=

(
1
2

)
κ1
· · · (1

2

)
κd(d

2 + 1
)
k

R2k.
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M(u, x̊; R) = · · ·

=

∞∑

k=0

R2k

4k
(d

2 + 1
)
kk!

∑

κ∈Nd
0,|κ|=k

k!

κ1! · · ·κd!

∂2ku(x̊)

∂x2κ

=

∞∑

k=0

∆ku(x̊)

4k
(d

2 + 1
)
kk!

R2k.

The series converges for R < ρ/
√

d.
Finally, applying Lemma 1 we get (3). ¤
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Theorem 2 (Converse to the mean value prop-
erty). Let ρ ∈ C0(Ω,R+), u ∈ C∞(Ω). If

Ñ(x; R) =

∞∑

k=0

∆ku(x)

4k
(d

2

)
kk!

R2k

is convergent locally uniformly in
{(x,R) : x ∈ Ω, |R| < ρ(x)},
then u ∈ A(Ω) and N(u, x; R) = Ñ(x; R) for
x ∈ Ω, R < min

(
ρ(x), dist(x, ∂Ω)

)
.
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Proof. Fix a compact set K b Ω and set ρ =
infx∈K ρ(x) > 0. Then the assumption implies

∆ku(x)

4k
(d

2

)
kk!

R2k → 0 as k →∞

uniformly on K ×{|R| ≤ ρ1} with any ρ1 < ρ. So
for any ρ1 < ρ there exists a constant C(ρ1) < ∞
such that for k ∈ N0

sup
x∈K

|∆ku(x)| ≤ C(ρ1) · 4k(d/2
)
kk! ρ−2k

1 .
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Applying inequalities (a)k ≤ (
max(1, a)

)k
k! for

a > 0 and 2kk!k! ≤ (2k)! we see that for any com-
pact set K b Ω one can find C < ∞ and L < ∞
such that for k ∈ N0

sup
x∈K

|∆ku(x)| ≤ C(2k)!L2k.

But by [1, Thm 2.2 in Chapter II] this inequality
implies that u ∈ A(Ω). Finally, by Theorem 1 we

get Ñ(x; R) = N(u, x; R). ¤
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Corollary 2. Let u ∈ C∞(Ω). If u is polyhar-
monic in Ω, then u ∈ A(Ω).

Proof. Indeed polyharmonicity of u implies that
the series in (2) is finite and so convergent. The
application of Theorem 2 gives the thesis. ¤
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4. Functions of Laplacian growth.

In order to control the growth of iterated Laplacians
of smooth functions Aronszajn et al. [1] introduced
the notion of the Laplacian growth.
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Definition. Let % > 0 and τ ≥ 0. A function u
smooth on Ω ⊂ Rd is of Laplacian growth (%, τ )
if for every K b Ω and ε > 0 one can find C =
C(K, ε) < ∞ such that for k ∈ N0,

(4) sup
x∈K

|∆ku(x)| ≤ C(2k)!1−1/%(τ + ε)2k.
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Definition. ([3]) Let % > 0 and τ ≥ 0. An en-
tire function F is said to be of exponential growth
(%, τ ) if for every ε > 0 one can find Cε such that
for any R < ∞

sup
|z|≤R

|F (z)| ≤ Cε exp{(τ + ε)R%}.

The exponential growth of an entire function can
be expressed in terms of estimations of its Taylor
coefficients.
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It appears that a function u of Laplacian growth
(%, τ ) on Ω is in fact real-analytic on Ω (see [1,
Theorem 2.2 in Chapter II]). So the spherical and
solid means N(u, x; R) and M(u, x; R) are well de-
fined for x ∈ Ω and R small enough. However
due to estimation (4) both functions N(u, x; R) and
M(u, x; R) can be extended to entire functions of
exponential growth.
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Theorem 3 Let % > 0 and τ ≥ 0. If u is
of Laplacian growth (%, τ ), then N(u, x; R) and
M(u, x; R) extend holomorphically to entire func-
tions of exponential growth (%, τ%/%) locally uni-
formly in Ω.
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Theorem 4 Let u ∈ A(Ω). If M(u, x; R) de-
fined for x ∈ Ω and 0 ≤ R < dist(x, ∂Ω) extends

to an entire function M̃(u, x; z) of exponential
growth (%, τ ) locally uniformly in Ω,

then u is of Laplacian growth
(
%, (%τ )1/%

)
.

The same holds for N(u, x; R).
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5. Convergent solutions of the heat equation.

Let us consider the initial value problem for the heat
equation {

∂tu−∆xu = 0,
u|t=0 = u0,

(5)

where u0 ∈ A(Ω), Ω ⊂ Rd.

28



Then its formal power series solution is given by

(6) û(t, x) =

∞∑

k=0

∆ku0(x)

k!
tk.

We ask when the solution u is an analytic function
of time variable at t = 0. In the dimension d = 1
the problem was solved by Kowalevskaya [10].

29



She proved that the solution u is analytic in time
if and only if the initial data u0 can be analytically
extended to an entire function of exponential order
2. In the multidimensional case the solution of the
problem was given by Aronszajn at al. [1] in terms
of the growth of iterates of the Laplacian of the
initial data.
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Theorem 5 Let 0 < T ≤ ∞. If formal power
series solution (6) of the heat equation (5) is
convergent for |t| < T locally uniformly in Ω,
then M(u0, x; R) and N(u0, x; R) extend to an
entire function of exponential growth (2, 1/(4T ))
locally uniformly in Ω.
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Conversely, if M(u0, x; R) or N(u0, x; R) can
be extended to an entire function of exponential
growth (2, 1/(4T )) locally uniformly in Ω, then
the solution û of the heat equation (5) is con-
vergent for |t| < T locally uniformly in Ω.
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Proof. Assume that û(t, x) is convergent for |t| <
T loc. unif. in Ω. Then ∀K b Ω, ε > 0 ∃C s.t.

sup
x∈K

|∆ku0(x)| ≤ C
( 1

T
+ ε

)k · k!

≤ Cε

( 1

T
+ ε

)k(1

2
+ ε

)k · (2k)!1/2

≤ Cε

(
(2T )−1/2 + ε

)2k · (2k)!1/2.
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Hence u0 is of Laplacian growth (2, 1/
√

2T ) and
by Theorem 3, M(u0, x; R) and N(u0, x; R) extend
to entire functions of exponential growth (2, 1/(4T ))
locally uniformly in Ω.

On the other hand let M(u0, x; R) or N(u0, x; R)
can be extended to an entire function of exponen-
tial growth (2, 1/(4T )) loc. unif. in Ω. Then by
Theorem 4, u0 is of Laplacian growth (2, 1/

√
2T )

loc. unif. in Ω.

34



Hence for |t| < T and small ε > 0

sup
x∈K

∞∑

k=0

|∆ku0(x)|
k!

|t|k ≤ ...

≤ Cε

∞∑

k=0

[( 1

T
+ ε

)
|t|

]k
< ∞.

So û(t, x) is convergent for |t| < T locally uniformly
in Ω. ¤
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Finally let me say that using the modified Borel
transformation SÃlawek Michalik obtained a charac-
terization of Borel summable solutions of the heat
equation (5).

Theorem 6 ([13]). Let û be the formal power
series solution (6) of the heat equation (5) with
u0 ∈ O(Dd).
Then the following conditions are equivalent
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• û is 1-summable in a direction θ;

• M(u0; z, R) ∈ O2
(
Dd × (Ŝθ/2 ∪ Ŝθ/2+π)

)
;

• N(u0; z, R) ∈ O2
(
Dd × (Ŝθ/2 ∪ Ŝθ/2+π)

)
.

Furthermore, the 1-sum of û is given by

uθ(t, z) =
1

(4πt)d/2

∫

(eiθ/2R)d
exp

{
− eiθ|x|2

4t

}

u0(x + z)dx.
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Thank you for your attention!
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