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Goal: describe the general solution (i.e., for arbitrary IC) of ODEs
for large x ; understand the structure of singularities;

obtain
expansions in terms of simpler functions in a way that allows for
efficient calculations for large x . Latter is relevant to the ongoing
Painlevé project (Bornemann, Clarkson, Deift, Edelman, Its,
Lozier), in terms of finding effective representations for large x of
the generic solutions of Painlevé equations. The method we
developed likely applies to relatively general ODEs; rigorous proofs:
first order, P1.
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developed likely applies to relatively general ODEs; rigorous proofs:
first order, P1.

Collaborators: R. Costin (OSU) F. Fauvet (Strasbourg), M. Huang (U Chicago)Generalized transseries and global asymptotics of ODEs



Goal: describe the general solution (i.e., for arbitrary IC) of ODEs
for large x ; understand the structure of singularities; obtain
expansions in terms of simpler functions in a way that allows for
efficient calculations for large x .

Latter is relevant to the ongoing
Painlevé project (Bornemann, Clarkson, Deift, Edelman, Its,
Lozier), in terms of finding effective representations for large x of
the generic solutions of Painlevé equations. The method we
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Singular points of ODEs

Key remark (Riemann): the global information about an analytic
function is contained in the structure of its singularities and in the
local behavior near each singularity.

For linear ODEs we distinguish two types of singularities: regular, iff
the general solution is given by a convergent Frobenius expansion –a
series in z and ln z of the form

∑
j,k,l cj,k,lz

j·a+k(ln z)l , and irregular,
all the others. Here |j| ≤ 1, l ≤ n, k = 0, 1, ...,.

Simplest: regular ones. For a scalar nth order ODE
y (n) + a1(z)y (n−1) + · · ·+ an(z)y = 0, z = 0 is a regular singularity
if for j = 1, ..., n, aj has a pole of order at most j .

The equation y ′′+ (z−1− z−2)y ′+ z−3y = 0 has an irregular singu-
larity at 0 and the general solution is

y = Ae−1/z+Be−1/zEi(1,−z−1); A = 0⇒ y ∼ −B
∞∑

k=1

(k−1)!zk , z → 0
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Placing the singularity at infinity, a generic nth order system at an
irregular singular point (of rank one) can be brought the form

y ′ = Λy + x−1By + g(1/x) y + f0(1/x); y ∈ Cn

and a nonlinear one to

y ′ = Λy + x−1By + g(1/x , y) + f0(1/x);

Λ = diagλi ,B = diagβi const. matr., f0 = o(x−m)

g = O(1/x2, y/x2, y2) bianalytic at 0 and the eigenvalues of Λ are
nonresonant.
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General formal solution in the linear case is a transseries

ỹ = ỹ0 +
∑

0<|k|≤1

Cke−(k·λ)xxk·βỹk

where ỹk =
∑

k,l ck,lx
−l are factorially divergent power series.

General small formal solution in the nonlinear case (Écalle)

ỹ = ỹ0 +
∑
0<|k|

Cke−(k·λ)xxk·βỹk

=
∑

k1,...,km;m≤n

(C1e−λ1xxβ1)k1 · · · (Cme−λmxxβm )km yk1,...,km

where now Cj must be set to zero if |xβj e−λjx | 6→ 0.⇒ generic loss
of dimensions.

In fact, this is a (formal) multiseries in x−1 and ξ, ξk = Cke−λkxxβk ,

ỹ(ξ, x−1) =
∑

0≤|k|,j

ck,jξ
kx−j
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ỹ(ξ, x−1) =
∑

0≤|k|,j

ck,jξ
kx−j

Collaborators: R. Costin (OSU) F. Fauvet (Strasbourg), M. Huang (U Chicago)Generalized transseries and global asymptotics of ODEs



General formal solution in the linear case is a transseries
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Theory of transseries originates with the work of Écalle (similar ob-
jects were discovered, simultaneously in logic).

We are interested not only in the formal expansions but also in finding
actual solutions. Do transseries correspond to actual solutions? Is
every solution given by a transseries?

Answer to first question is yes; extensive literature, Écalle, Balser,
Braaksma, Ramis, Malgrange,... and is based on generalized Borel
summation LB.

In general, the answer to second one: in general, no. What lies be-
yond? Can more general expansions characterize uniquely the general
solution?
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jects were discovered, simultaneously in logic).

We are interested not only in the formal expansions but also in finding
actual solutions. Do transseries correspond to actual solutions? Is
every solution given by a transseries?

Answer to first question is yes; extensive literature, Écalle, Balser,
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Generic nonlinear systems. The small formal solutions are represented
by transseries,

ỹ(ξ, x−1) =
∑
0≤|k|

ỹk(x−1)ξk

(O.C., Duke Math. J., 1998) For generic systems of ODEs, the formal
series ỹk(x−1) are generalized Borel summable in a common domain
|ξ| < ε, and |LBỹk| ≤ ck indep of k, ε. The function series∑

0≤|k|

ξkLBỹk

converges and gives the general small solution of the system.
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|ξ| < ε, and |LBỹk| ≤ ck indep of k, ε. The function series∑

0≤|k|

ξkLBỹk
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Transseries contain the complete description (in sectors near ∞) of
the general solution of linear ODEs and small solutions of nonlinear
ones: ỹ =

∑
k,j ξkx−j = ỹ(ξ, x), with ξ, x−1 small.

However, except for first order eq., small solutions form a lower di-
mensional manifold (because of the cond. ξi → 0). More generally
solutions that are not small are not covered in any generality by clas-
sical or exponential asymptotics.
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Two examples of nonlinear equations:

y ′ = y3 + z Abel’s equation, nonintegrable (1)

u′′ = u2 + z Painlevé P1, integrable (2)

Their normal forms at infinity:

y ′ + 3y3 − 1

9
+

1

5x
y = 0 (3)

u′′ +
u′

x
− u − u2

2
− 392

625x4
= 0 (∗) (4)

The equations above are approximations of

y ′ + 3y3 − 1

9
= 0; u′′ − u − u2

2
= 0 (5)

respectively. How do solutions of (4) and (5) relate to each other?
One idea: look at the question from a KAM point of view: rely on
asymptotic (in 1/x) constants of motion. Need an ansatz for consts.
of motion.
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First order equations are special –no dimensionality loss in transseries
for small solutions:

ỹ = ỹ0 +
∞∑

k=1

C ke−kxxkβ ỹk =: ỹ0 +
∞∑

k=1

ξk ỹk = y(ξ, 1/x) (1)

The transseries is valid if ξ = Ce−xxβ is small. What happens when
ξ is not small? Thinking of the transseries as a double series, we
simply do not expand in ξ anymore. Then,

y(ξ, 1/x) =
∞∑

k=0

Fk(ξ)x−k ; (2)

(2) is valid until ξ 6= o(x).

A simple way to find the Fks is by inserting (2) in the eq. and solving
order by order the autonomous equations for Fk (by quadratures).
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ỹ = ỹ0 +
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y(ξ, x) =
∞∑

k=0

Fk(ξ)x−k ; (2)

Theorem (Singular region beyond transseries O C, R D Costin,
Inv. Math., 2001)

Expansions similar to the one above hold for generic order n ODEs.
They describe the first array of singularities of y.

(Array since ξ = ξ(x) = e−xxβ, almost periodic with period 2π.)

(1) is valid for any fixed ξ ∈ C. This includes the transseries region,
ξ � 1. But it breaks down if ξ 6= o(x).
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Beyond transseries, and the first singular array

Start with scalar case.

y ∼
∑∞

k=0 x−kFk(Ce−xxβ)(1), Ce−xxβ = o(x) works for arbitrary
but fixed ξ (away from singularities). A better behaved quantity:
C = C (y , x): it remains constant whether y is small or not.

Solving F0(Ce−xxβ) = y + · · · for C we get C = exx−βF−1
0 (y)+ · · ·

and taking the log,

C = C (y , x) = x − β log x + K0(y) + x−1K1(y) + O(1/x2)(∗)

an asymptotic constant of motion.

Rigidity: If C is presented in additive form, then (*), with −β log x ,
etc. is unique up to trivial transformations.

To obtain Kj : solve dC
dx := Cx + Cy y ′ = 0, order by order (in 1/x).

The eqns. are solved by by quadratures (once more, we are dealing
with autonomous systems).
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Analysis of general solutions; first order ODEs

Consider first the simplest case, scalar first order equations.

Typically, they can be brought to the form

y ′ = P0(y) + Q(y , 1/x) =
∞∑

k=0

Pk(y)

xk
(6)

Assume for simplicity Pk are polynomials (analytic would be OK;
genericity conditions are imposed). Solutions are described by transseries
when/if P0(y)� 1.

More generally, for large x , we show that there are finitely many
constants of motion whose union of domains covers the phase space.

Global description: assuming x0 is regular and y0 = y(x0), one calcu-
lates, say by local power series, the solution in a compact set, while
outside it, asymptotic formulae give accurate description.
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y ′ = P0(y) + Q(y , 1/x); C = x − β ln x + K0(y) + K1(y)/x + · · · .

Theorem (OC, M. Huang, F. Fauvet, 2011; constants of mo-
tion)

Given an IC:

1 When P0(y) is small y is given by a transseries in a half plane.

2 In the complementary regions {(y , x) : |P0(y)| > ε > 0, |x | >
R, arg(x) = ϕ(|x |)}, a constant of motion C describes solutions.
The asymptotic expansion of C in 1/x can be calculated by order by
quadratures.

3 The different regions overlap and the constants of motion match each
other.

This description incorporates transseries and describes the general
solution.

For (2): C (y(x), x) = const ⇒ Cy y ′+Cx = 0⇒ K ′0(y)P0(y)+1 = 0
etc.

Collaborators: R. Costin (OSU) F. Fauvet (Strasbourg), M. Huang (U Chicago)Generalized transseries and global asymptotics of ODEs



y ′ = P0(y) + Q(y , 1/x); C = x − β ln x + K0(y) + K1(y)/x + · · · .

Theorem (OC, M. Huang, F. Fauvet, 2011; constants of mo-
tion)

Given an IC:

1 When P0(y) is small y is given by a transseries in a half plane.

2 In the complementary regions {(y , x) : |P0(y)| > ε > 0, |x | >
R, arg(x) = ϕ(|x |)}, a constant of motion C describes solutions.
The asymptotic expansion of C in 1/x can be calculated by order by
quadratures.

3 The different regions overlap and the constants of motion match each
other.

This description incorporates transseries and describes the general
solution.

For (2): C (y(x), x) = const ⇒ Cy y ′+Cx = 0⇒ K ′0(y)P0(y)+1 = 0
etc.

Collaborators: R. Costin (OSU) F. Fauvet (Strasbourg), M. Huang (U Chicago)Generalized transseries and global asymptotics of ODEs



y ′ = P0(y) + Q(y , 1/x); C = x − β ln x + K0(y) + K1(y)/x + · · · .

Theorem (OC, M. Huang, F. Fauvet, 2011; constants of mo-
tion)

Given an IC:

1 When P0(y) is small y is given by a transseries in a half plane.

2 In the complementary regions {(y , x) : |P0(y)| > ε > 0, |x | >
R, arg(x) = ϕ(|x |)}, a constant of motion C describes solutions.
The asymptotic expansion of C in 1/x can be calculated by order by
quadratures.

3 The different regions overlap and the constants of motion match each
other.

This description incorporates transseries and describes the general
solution.

For (2): C (y(x), x) = const ⇒ Cy y ′+Cx = 0⇒ K ′0(y)P0(y)+1 = 0
etc.

Collaborators: R. Costin (OSU) F. Fauvet (Strasbourg), M. Huang (U Chicago)Generalized transseries and global asymptotics of ODEs



y ′ = P0(y) + Q(y , 1/x); C = x − β ln x + K0(y) + K1(y)/x + · · · .

Theorem (OC, M. Huang, F. Fauvet, 2011; constants of mo-
tion)

Given an IC:

1 When P0(y) is small y is given by a transseries in a half plane.

2 In the complementary regions {(y , x) : |P0(y)| > ε > 0, |x | >
R, arg(x) = ϕ(|x |)}, a constant of motion C describes solutions.
The asymptotic expansion of C in 1/x can be calculated by order by
quadratures.

3 The different regions overlap and the constants of motion match each
other.

This description incorporates transseries and describes the general
solution.

For (2): C (y(x), x) = const ⇒ Cy y ′+Cx = 0⇒ K ′0(y)P0(y)+1 = 0
etc.

Collaborators: R. Costin (OSU) F. Fauvet (Strasbourg), M. Huang (U Chicago)Generalized transseries and global asymptotics of ODEs



y ′ = P0(y) + Q(y , 1/x); C = x − β ln x + K0(y) + K1(y)/x + · · · .

Theorem (OC, M. Huang, F. Fauvet, 2011; constants of mo-
tion)

Given an IC:

1 When P0(y) is small y is given by a transseries in a half plane.

2 In the complementary regions {(y , x) : |P0(y)| > ε > 0, |x | >
R, arg(x) = ϕ(|x |)}, a constant of motion C describes solutions.
The asymptotic expansion of C in 1/x can be calculated by order by
quadratures.

3 The different regions overlap and the constants of motion match each
other.

This description incorporates transseries and describes the general
solution.

For (2): C (y(x), x) = const ⇒ Cy y ′+Cx = 0⇒ K ′0(y)P0(y)+1 = 0
etc.

Collaborators: R. Costin (OSU) F. Fauvet (Strasbourg), M. Huang (U Chicago)Generalized transseries and global asymptotics of ODEs



y ′ = P0(y) + Q(y , 1/x); C = x − β ln x + K0(y) + K1(y)/x + · · · .

Theorem (OC, M. Huang, F. Fauvet, 2011; constants of mo-
tion)

Given an IC:

1 When P0(y) is small y is given by a transseries in a half plane.

2 In the complementary regions {(y , x) : |P0(y)| > ε > 0, |x | >
R, arg(x) = ϕ(|x |)}, a constant of motion C describes solutions.
The asymptotic expansion of C in 1/x can be calculated by order by
quadratures.

3 The different regions overlap and the constants of motion match each
other.

This description incorporates transseries and describes the general
solution.

For (2): C (y(x), x) = const ⇒ Cy y ′+Cx = 0⇒ K ′0(y)P0(y)+1 = 0
etc.

Collaborators: R. Costin (OSU) F. Fauvet (Strasbourg), M. Huang (U Chicago)Generalized transseries and global asymptotics of ODEs



Example: Abel’s equation, u′ = u3 − z

The Abel equation u′ = u3 − z equation is not (known to be) inte-
grable in any classical sense.

And there probably is no well behaved global constant of motion. But
there still are, as mentioned, finitely many constants covering all of
C, so that the solution can be fully described.

The normalized form of this equation is obtained by the transforma-
tion u(x) = Bx1/5y(x) where x = At5/3 with A = −B2/5, 15/B5 =
−1/9 is

y ′ + 3y3 − 1

9
+

1

5x
y = 0 (7)
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In regions where y(x) is not too small, the constant is given asymptot-
ically by an expansion of the general form mentioned before (β = 1/5
here),

C (y , x) = x − 1

5
log x + K0(y) +

K1(y)

x
+

K2(y)

x2
+ O(x−3)

Once we know that C (y , x) is a constant, we just write

d

dx
C (y(x), x) = 0 =

∂C

∂y
y ′ +

∂C

∂x
=
∂C

∂y
(−3y3 +

1

9
− y

5x
) +

∂C

∂x

In the PDE we substitute C = x − 1
5 ln x + K0(y) + x−1K1(y) + · · · ,

and solve, order by order in x−k . It follows that (27y3 − 1)K ′0 = 1
etc. Continuing and solving, we get:

K0(y) =
√

3 arctan

(
6y + 1√

3

)
− log(3y − 1) +

1

2
log(9y2 + 3y + 1)

K1(y) =
1

10

(
54y2

1− 27y3
− 4
√

3 arctan

(
6y + 1√

3

))
+

1

25
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This provides an asymptotic formula for the general solution, in re-
gions where they are not close to roots of the polynomial; in the
opposite case, the solutions have Borel summable transseries. The
two regions match in a narrow subregion.

The form of y in the non-transseries region. C = x − β ln x + K0 +
x−1K1 + · · · ⇒ y = F0(C , x) + x−1F1(C , x) + · · · ,

y =
1

3
exp

[
(−C − x +

1

5
log x +

(
√

3− 2
√

3

5x

)
arctan

(
6y + 1√

3

)

−log(3y−1)+
1

2
log(9y2+3y+1))+

1

x

(
27y2

5(1− 27y3)
+

1

25

)
+...

]
+

1

3

The general behavior of solutions is:

Starting with initial condition y0 at some x > 0, with probability
one the solution goes to a transseries (non-generic ones are known
“explicitly”)

rotating more than ∼ π/2 we enter a narrow region with singularities,
three arrays in all. There the solution is given by inverting C .
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[
(−C − x +

1

5
log x +

(
√

3− 2
√

3

5x

)
arctan

(
6y + 1√

3

)

−log(3y−1)+
1

2
log(9y2+3y+1))+

1

x

(
27y2

5(1− 27y3)
+

1

25

)
+...

]
+

1

3

The general behavior of solutions is:

Starting with initial condition y0 at some x > 0, with probability
one the solution goes to a transseries (non-generic ones are known
“explicitly”)

rotating more than ∼ π/2 we enter a narrow region with singularities,
three arrays in all. There the solution is given by inverting C .
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Figure: Monodromy at ∞ of general solution. horizontal axis=arclength.
Dotted horizontal lines are the imaginary parts of the three roots. There
are two periodic arrays of singularities in every transition region. In in-
tegrable systems, connection formulas follow (in nonintegrable equations,
the solutions are multivalued).
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for θ = π/3. The “ × ” marks are the three roots–each corresponding to
a transseries.
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Figure: Comparison of solutions from the Runge-Kutta method and from
Newton’s method using the formal constant of motion.
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The Painlevé equation P1, y ′′ = y 2 + z
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The Painlevé equation P1

y ′′ = y2 + z . Goal: provide effective, global control in terms of
constants of motion, determining the solutions with high accuracy.

Question: large x asymptotics: Extensive research, substantial results
by Clarkson, Deift, Its, Kapaev, Kitaev (isomonodromy–Riemann
Hilbert), Kruskal-Nalini (multiscale analysis).

(Modified) Boutroux normalized equation: u′′+
u′

x
−u−u2

2
− 392

625x4
=

0 (∗).

The first constant of motion can be obtained as before, from the
transseries. A second one can be obtained by reduction of order.

1 However, alternative approach: note that when not large, u = u(Ce−xxβ).
Because of e−x it is periodic, of period 2πi . It acts like a cyclic vari-
able.

2 As in Hamiltonian dynamics, it is useful to pass to action- angle
variables. u is an angle-like variable, which we naturally take as an
independent variable. Dependent variables: x , s, s = u′

2−u2−u3/3.
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Action angle variables: radial directions
First (Boutroux): if x = re it , r → +∞, then s(u)→ D∞ and
u(x) asympt. traverses a cycle –closed loop surrounding zeros of
cubic–indefinitely.

Thus, we let u be the indep. variable, evolving on the limiting cycle
and s, x become the dependent ones. We have

ds

du
= −

2
√

u3/3 + u2 + s(u)

x(u)

dx

du
=

1√
u3/3 + u2 + s(u)

(∗∗)

We write (**) in an integral contractive form, with s(u) = D∞+δ(u)

δ(u) =
δ0x0

x(u)
− 2J(u,D∞)

x(u)
− 1

4x(u)

∫ u

u0

δ2(t)G0(t, δ(t))

R(t)3
dt (8)

A similar equation is satisfied by ξ := x − L(u,D∞) (quite a bit of
algebra here...); the constants are obtained rigorously by inverting
asymptotically for the IC as functions of x , s, u.
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s = s(u, u′) = u′2 − u2 − u3

3 . Order by order from contraction:

Theorem (Constants of motion, radial direction)

For any solution, there exist C1 and C2 so that

x − L(s, u) +
K1(u, s)

x
= C1 + O(x−2)

xJ(s)−J(s)L(u, s)+L(s)J(u, s)+
H1(u, s)

x
+

H2(u, s)

x2
= C2+O(1/x3)

J(s) :=
∮ √

u3/3 + u2 + sdu; L(s) :=
∮

(u3/3 + u2 + s)−1/2du
are complete elliptic integrals. (Ki ,Hi are explicit combinations of
elliptic integrals.)

Note. Once consts are obtained within o(1), subseq. corrections
follow by solving order by order dC (u, s, x)/dx = 0.

1 Asympt. exp. of C1,2 depend continuously on the direction: J and L
depend on D∞(θ). Analog of Stokes matrices change continuously.

2 Thus, we need a second pair of asymptotic formulas on arc-circles
(the curves ⊥ {x : arg x = θ})
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The lateral connection

ds

du
= −

2
√

u3/3 + u2 + s(u)

x(u)

dx

du
=

1√
u3/3 + u2 + s(u)

(9)

Fix now a cycle; s(u) changes (slowly but) nontrivially;

It is natural to look at the Poincaré map of (9) (an analog of the
KAM approach). We let (sn, xn) be the value of (s, x) after n cycles.

One can show that, for large enough starting point x0, we have, with
Q0 a number:
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Eq. for the Poincaré map and its solution

sn+1 = sn − 2
Jn

xn
+

JnLn

x2
n

+ O

(
1

x3
n

)
(10)

xn+1 − xn = Ln +
Q0Jn + 1

2ρ(sn)J2
n

xn
+ O(1/x2

n ) (11)

(J(s) :=
∮ √

u3/3 + u2 + sdu; L(s) :=
∮

(u3/3 + u2 + s)−1/2du)

Heuristics: The recurrence predicts a slow evolution for large xn.

Thus, to leading order sn+1 − sn ≈ ds
dn · 1, xn+1 − xn ≈ dx

dn (think
Euler-Maclaurin). By substitution from (10),(11) and division, we
get (note that J ′ = 1

2L)

ds

dx
≈ −2J

Lx
⇒ J ′

J
ds = −dx ⇒ Jnxn ≈ J0x0

a first, discrete, constant of motion to which corrections can be cal-
culated similarly. (For a rigorous proof, we estimate Jn+1xn+1−Jnxn.)
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Let k =
r3 − r1
r2 − r1

, (
r3
i

3
+ r2

i + s = 0), ψ(k) = k3 2F1(− 1
2
, 3
2
;3;k2)

2F1(− 1
2
, 3
2
;3;1/k2)

Theorem (Constants of motion along arcs of circle)

Let N be the number of arrays of poles traversed. We have

Nψ(k(sN)) =
x0

2πi
(1 + o(1));

xN

x0
J3(sN) = −24

5
+ o(1) (12)

Successive corrections can be calculated as well. The second const.
to two orders is given by Jx + B where

B = C1

(
3s1/3

2F1

(
1

6
,

7

6
;

1

3
,
−4

3s

)
+

7

2
3F2

(
2

3
,

7

6
,

13

6
;

4

3
,

5

3

−4

3s

))
− 3s−1/3C2 3F2

(
1

3
,

5

6
,

11

6
;

4

3
,

5

3

−4

3s

)
(13)

Collaborators: R. Costin (OSU) F. Fauvet (Strasbourg), M. Huang (U Chicago)Generalized transseries and global asymptotics of ODEs



Let k =
r3 − r1
r2 − r1

, (
r3
i

3
+ r2

i + s = 0), ψ(k) = k3 2F1(− 1
2
, 3
2
;3;k2)

2F1(− 1
2
, 3
2
;3;1/k2)

Theorem (Constants of motion along arcs of circle)

Let N be the number of arrays of poles traversed. We have

Nψ(k(sN)) =
x0

2πi
(1 + o(1));

xN

x0
J3(sN) = −24

5
+ o(1) (12)

Successive corrections can be calculated as well. The second const.
to two orders is given by Jx + B where

B = C1

(
3s1/3

2F1

(
1

6
,

7

6
;

1

3
,
−4

3s

)
+

7

2
3F2

(
2

3
,

7

6
,

13

6
;

4

3
,

5

3

−4

3s

))
− 3s−1/3C2 3F2

(
1

3
,

5

6
,

11

6
;

4

3
,

5

3

−4

3s

)
(13)

Collaborators: R. Costin (OSU) F. Fauvet (Strasbourg), M. Huang (U Chicago)Generalized transseries and global asymptotics of ODEs



Figure: Evolution of the “energy” s (J =
∮ √

u3/3 + u2 + sdu) across the
region of poles, for the tritronquée solution. The solution goes to a different
transseries, corresponding to the fixed point u = −2. This is explained by
a form of the Stokes phenomenon: the leading order asymptotics of P1,
y =

√
−x/6: y is single valued while

√
−x is not.
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Conclusions
We are developing a theory, which appears to be applicable to a
wide class of equations to determine the global behavior of the
general solution.

The general solution may have regions where it approaches a con-
stant. Those are describe in great detail by transseries. [DMJ]

There is a borderline region where transseries start failing and singu-
larities start forming [Inv. Math.]

Away from those regions, there exist constants of motion which de-
scribe the singular behavior in the rest of the phase space. For second
order equations, a typical solution may have no transseries region.

For all first order equations and many second order ones, including P1
and P2, the constants can be obtained asymptotically by quadratures.
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