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classsical Massera theorem
J. L. Massera (1950) studied the existence of a periodic solution to a
periodic ordinary differential equation of normal form: dx

dt = X (t, x), where
x(t) is an Rm-valued unknown function, and X (t, x) is 1-periodic in t.

In the linear case, he gave the following result for the equation

dx

dt
= A(t)x + f (t),

where A : R→ Rm×m and f : R→ Rm are 1-periodic and continuous.

Theorem (Massera, linear case)

For the equation above, the existence of a bounded solution in the future
(i.e., solution defined and bounded on a set {t > t0} with some t0) implies
the existence of a 1-periodic solution.

Note: Since periodic C 1-functions are bounded, we have

∃ a bounded solution in the future. ⇐⇒ ∃ a 1-periodic solution.
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question

After Massera, many generalizations by many authors have appeared also
on linear functional equations.

From now on, let ω be a positive constant, (representing the period).

Problem

Consider an ω-periodic linear functional equation. Does “the existence of
a bounded solution in the future” imply “the existence of an ω-periodic
solution”?
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a few references

Chow-Hale (1974) studied functional differential equations with
retarded type. An example is,

dx

dt
= A(t)x +

∫ r

0
B(t, s)x(t − s)ds + f (t).

A, B, (resp. f ): square matrices (resp. a vector) of size m, whose
entries are continuous and ω-periodic in t,
r > 0: a constant, (representing a “finite delay”).

Hino-Murakami (1989)

Zubelevich (2006)
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a few references

Chow-Hale (1974)

dx

dt
= A(t)x +

∫ r

0
B(t, s)x(t − s)ds + f (t).

Hino-Murakami (1989) studied similar equations with infinite delay.

dx

dt
= A(t)x +

∫ ∞
0

B(t, s)x(t − s)ds + f (t).

A, B, f : the continuity, the ω-periodicity in t,
B: some condition on the integrability in s,
x : some restriction on the behavior near −∞.

Zubelevich (2006)
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a few references

Chow-Hale (1974)

dx

dt
= A(t)x +

∫ r

0
B(t, s)x(t − s)ds + f (t).

Hino-Murakami (1989)

dx

dt
= A(t)x +

∫ ∞
0

B(t, s)x(t − s)ds + f (t).

Zubelevich (2006) studied discrete dynamical systems in reflexive
Banach spaces and those in sequentially complete locally convex
spaces with Montel property.
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a few references

Chow-Hale (1974)

dx

dt
= A(t)x +

∫ r

0
B(t, s)x(t − s)ds + f (t).

Hino-Murakami (1989)

dx

dt
= A(t)x +

∫ ∞
0

B(t, s)x(t − s)ds + f (t).

Zubelevich (2006)

Question

Does this phenomenon appear commonly in periodic linear equations?
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Sato’s hyperfunction

The notion of hyperfunction was introduced by M. Sato (1959, 1960), and
plays impotant roles in the study of analytic ordinary and partial
differential equations.

Hyperfunctions admit many good properties, for ex.,

flabbiness,

boundary value representations by holomorphic defining functions,

(comparatively) direct action of linear differential operators.

On the other hand, we must suffer from the inconveniences:

no inequality nor boundedness for hyperfunctions,

no good topology on the spaces B(Ω) of hyperfunctions for

Ω
open
⊂ Rn.
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univariate hyperfunctions
Recall the notion of hyperfunction on R. O denotes the sheaf of
holomorphic functions on C.

Definition

The space B(Ω) of hyperfunctions on Ω
open
⊂ R is defined by

B(Ω) := lim−→
U

O(U \ Ω)

O(U)
.

Here, U runs through complex neighborhoods of Ω.

U
U+

U−

Ω◦ ◦

For Ω ⊂ R, a complex neighborhood of Ω is an open
set in C including Ω as a closed subset.
For ex., U = U+ ∪Ω ∪ U− (U± = {x + iy ∈ C | x ∈
Ω, 0 < ±y < d±(x)}) is a complex neighborhood
when d± : Ω → R are positive and upper semicon-
tinuous.
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My interest

Interest (of the speaker)

Is there any counterpart to the Massera type phenomenon in the
framework of hyperfunctions?

There are some obstacles.

1 How to give a meaning to “a bounded solution in the future” in
hyperfunctions? (Note. No notion of bdd’ness for hyperfunctions).

2 There are many periodic hyperfunctions satisfying periodic equations,
which, at a glance, do not seem bounded. Can we treat them?
For ex., u(t) := tan(t + i0) is a π-periodic hyperfunction solution to a
π-periodic differential equation (cos2 t)dudt = 1.

3 If we want to consider equations with infinity delay, (for ex., equations
containing a term like

∫∞
0 k(t, s)u(t − s)ds), what kind of restriction

we should impose on the behavior of u(t) near t = −∞?
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Let us construct a new class of “bounded hyperfunctions”!
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boundedness for hyperfunctions

We will introduce the sheaf BL∞ of bounded hyperfunctions at infinity in
one variable, in a similar manner as Sato defined the sheaf B of
hyperfunctions and the sheaf Q of Fourier hyperfunctions in one variable.

In fact, we define the sheaf BL∞ on a compactification
D1 := [−∞,+∞] = R t {±∞} of R, using the sheaf OL∞ of bounded
holomorphic functions on D1 + iR.

O · · ·

C = R + iR ⊂ D1 + iR

· · · OL∞

∪ ∪

B · · ·

R = ]−∞,+∞[ ⊂ D1 = [−∞,+∞]

· · · BL∞

We take coordinates t ∈ R and w = t + iτ ∈ C = R + iR.
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bounded holomorphic functions

O · · · C = R + iR ⊂ D1 + iR · · · OL∞

∪ ∪
B · · · R = ]−∞,+∞[ ⊂ D1 = [−∞,+∞] · · · BL∞

Definition (OL∞)

OL∞ : the sheaf of bounded holomorphic functions on D1 + iR, is defined
as the sheaf associated with the presheaf

D1 + iR ⊃ U 7→ O(U ∩ C) ∩ L∞(U ∩ C).

Fact

OL∞(U) = {f ∈ O(U ∩ C);∀K b U, ‖f ‖K < +∞}, where
‖f ‖K := supw∈K∩C|f (w)|.
OL∞(U) is a Fréchet space, and OL∞ |C = O.
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bounded hyperfunctions at infinity

O · · · C = R + iR ⊂ D1 + iR · · · OL∞

∪ ∪
B · · · R = ]−∞,+∞[ ⊂ D1 = [−∞,+∞] · · · BL∞

Definition (BL∞)

BL∞ : the sheaf of bounded hyperfunctions at infinity on D1, is defined as
the sheaf associated with the presheaf

D1
open
⊃ Ω 7→ lim−→

U

OL∞(U \ Ω)

OL∞(U)
.

Here U runs through complex neighborhoods of Ω.

Cf. hyperfunctions: B(Ω) = lim−→U

O(U\Ω)
O(U) .
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properties of BL∞

BL∞ is an extension of B to D1. That is, BL∞ |R = B.

BL∞ is a flabby sheaf.

u ∈ BL∞(]a,+∞]) admits a boundary value representation:

u(t) = f+(t + i0)− f−(t − i0). ◦ ◦

◦

◦...........
..

.
..

..............
..
a +∞

f+

f−

OO

There exists a natural embedding L∞(]a,+∞[) ↪→ BL∞(]a,+∞]).

Moreover, for E : a sequentially complete locally convex space over C, we
can also define vector-valued variants EOL∞ on D1 + iR and EBL∞ on D1

in a similar manner.
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operators of type K

Let K = [a, b] be a closed interval in R, or K = [−∞, b] ⊂ D1.

Now we introduce classes of operators for bounded hyperfunctions, what
we call “operators of type K for OL∞”. But, before giving the definition,
we give some properties and some examples.

An operator P of type K for OL∞ induces, for any open Ω ⊂ D1, a linear
map

PΩ : BL∞(Ω + K )→ BL∞(Ω),

and we have, for any pair Ω2 ⊂ Ω1,

(PΩ1u)|Ω2 = PΩ2(u|Ω1+K ), ∀u ∈ BL∞(Ω2 + K ).
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typical examples of our operators

An operator P of type K induces PΩ : BL∞(Ω + K )→ BL∞(Ω).

Let U◦ := R1 + i ]−d , d [ be a strip domain, and ω, r > 0.

differential operator
∑m

j=0 aj(t)∂jt , an operator of type K = {0}.
aj(w) are bounded and holomorphic on U◦.

translation operator Tω : u(t) 7→ u(t + ω), K = {ω}.
difference operator Tω − 1 : u(t) 7→ u(t + ω)− u(t), K = [0, ω].

integral operator u(t) 7→
∫ r

0 k(t, s)u(t − s)ds, K = [−r , 0].
k(w , s) ∈ (C ∩ L∞)(U◦ × [0, r ]), and is holomorphic in w .

integral operator u(t) 7→
∫∞

0 k(t, s)u(t − s)ds, K = [−∞, 0].
k(w , s) ∈ (C ∩ L∞)(U◦ × [0,∞[), holomorphic in w , and∫∞

0 supw∈U◦ |k(w , s)|ds < +∞.
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definition of our operators

Let U ⊂ D1 + iR be an open set, K a closed interval [a, b] ⊂ R or [−∞, b].

Definition (Operators of type K )

Let P = {PV : OL∞(V + K )→ OL∞(V )}V⊂U be a family of linear
continuous maps. P is said to be an operator of type K for OL∞ on U, if
the diagram below commutes for any pair V1 ⊃ V2 in U.

OL∞(V1 + K )
PV1 //

��

OL∞(V1)

��

OL∞(V2 + K )
PV2 // OL∞(V2)

Here the vertical arrows are
the restriction maps.

As is seen in the definition, we require the “continuity” and the
“commutativity with restrictions” in terms of defining functions.
Note that the spaces BL∞(Ω) (Ω ⊂ D1) have no good topology.
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periodicity for bounded hyperfunctions

We fix a period ω > 0, and denote by Tω the ω-translation operator
u(t) 7→ u(t + ω).

We introduce the notion of ω-periodicity

for bounded hyperfunction u by the equation (Tω − 1)u = 0, and

for operators P of type K by the commutativity P ◦ Tω = Tω ◦ P.

As for periodic bounded hyperfunction, we can prove the followings:

Every ω-periodic hyperfuntion f ∈ B(R) has the unique ω-periodic
extension f̂ ∈ BL∞(D1).

Every ω-periodic bounded hyperfunction f ∈ BL∞(D1) admits an
ω-periodic boundary value representation.

Note that an ω-periodic operator preserves the ω-periodicity of its
operands.
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Massera type theorem for the case K ⊂ R

K = [a, b] ⊂ R, ω > 0, and U = D1 + i ]−d , d [.
P: an ω-periodic operator of type K for OL∞ on U,
f : an ω-periodic (bounded) hyperfunction,
(BL∞)+∞ = lim−→R

BL∞(]R,+∞]): the stalk of BL∞ at +∞.

Theorem (O. 2008)

Pu = f has an ω-periodic B(R)-solution if and only if it has an
(BL∞)+∞-solution.

Example: periodic integro-differential equation with finite delay.

∂tu = a(t)u +

∫ r

0
k(t, s)u(t − s)ds + f ,

where a(t): an ω-periodic real-analytic function,
k(w , s) ∈ (C ∩ L∞)(U◦ × [0, r ]): holomorphic and ω-periodic in w .
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Theorem (O. 2008)
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(BL∞)+∞-solution.

This theorem can be extended to E -valued case, when E admits the
Montel property, or E is a reflexive Banach space.

Definition (Montel property)

(M) Any bounded sequence in E has a convergent subsequence.
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”continuity” of our operators in case K = [−∞, b]

The notion of operators of type K is defined by “continuity” and
“commutativity with restrictions”. Under the commutativity, “continuity”
reads:

∀L b ∀M b U, ∀p ∈ N (E ), ∃q = qL,M,p ∈ N (E ),∃C = CL,M,p > 0,

∀V (M b V ⊂ U), ∀f ∈ EOL∞(V + K ), ‖PV (f )‖L,p ≤ C‖f ‖M+K ,q.

Here, N (E ) denotes the system of continuous seminorms of E , and ‖f ‖L,p
denotes the seminorm on EOL∞(V ) defined by ‖f ‖L,p := supw∈L p(f (w)).
(In the scalar case, take ‖f ‖L := supw∈L|f (w)|).

In case K = [−∞, b], M + K always con-
tains points at −∞.
If the contribution of f at w −∞ to Pf
at w is not small, we can not expect a
Massera type theorem for P.

•
w

•
w−∞ LM+K

>>>>>>>>>>>>

//
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fading memory condition for operators of type [−∞, b]

We pose a further assumption on P.

Definition (fading memory condition)

Let P = {PV }V⊂U be an operator of type K := [−∞, b] for EOL∞ on
U ⊂ D1 + iR. P is said to satisfy the condition (FM), if

∀L b ∀M b ∀V ⊂ U, ∀p ∈ N (E ), ∃q = qL,M,p ∈ N (E ),

∀ε > 0, ∃K 0 = K 0
L,M,p,ε b K ∩ R, ∃C = CL,M,p,ε > 0,

∀f ∈ EOL∞(V + K ), ‖PV (f )‖L,p ≤ C‖f ‖M+K0,q + ε‖f ‖M+K ,q.

This condition (FM) seems to have relation with the notion of (uniform)
fading memory space, studied in Hino-Murakami-Naito (1991).

Fact

Volterra integral operators satisfy the condition (FM).
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Massera type theorem under (FM)

ω > 0, and U = D1 + i ]−d , d [: as before.
f ∈ EBL∞(D1): ω-periodic.

Theorem (O.)

Let P be an ω-periodic operator of type K = [−∞, b] for EOL∞ on
D1 + i ]−d , d [. Assume that E admits the Montel property and that P
satisfies (FM). Then Pu = f has an ω-periodic EB(R)-solution if and only
if it has an (EBL∞)+∞-solution.

Example: periodic integro-differential equation with infinite delay.

∂tu = a(t)u +

∫ ∞
0

k(t, s)u(t − s)ds + f ,

where aj(t): an ω-periodic real-analytic function,
k(w , s) ∈ (C ∩ L∞)(U◦ × [0,∞[): holomorphic and ω-periodic in w ,
satisfying

∫∞
0 supw∈U◦ |k(w , s)|ds < +∞.
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idea of the proof
We give the idea of the proof of “∃ a bdd. sol. u0 ⇒ ∃ ω-periodic sol. u”,
for the simplest case: scalar-valued (E = C), P is of type K = {0} (a
local operator).
Moreover, assume that our bounded solution u0 belongs to (OL∞)+∞.
(Therefore, the data f belongs necessarily to OL∞). We can find a
neighborhood V ⊂ D1 + iR of +∞, such that u0 ∈ OL∞(V ) and that
Pu0 = f on V .

We define vk := 1
k

∑k−1
j=0 T j

ωu0, and choose a “convergent” subsequence
from {vk}k . Then, its “limit” becomes an ω-periodic solution.

+∞

V

u0

//

OO

But we omit the details.
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idea of the proof
We give the idea of the proof of “∃ a bdd. sol. u0 ⇒ ∃ ω-periodic sol. u”,
for the simplest case: scalar-valued (E = C), P is of type K = {0} (a
local operator).
Moreover, assume that our bounded solution u0 belongs to (OL∞)+∞.
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Thank you for your attention.
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