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The fifth Painlevé equation

We consider the fifth Painlevé equation (P5):
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z
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where α, β, γ, δ are complex parameters, z and w are the respective
independent and dependent variables. The P5 equation has two
singular points z = 0 и z =∞.
The P5 equation is invariant under the substitution (symmetry)

(z̃ , w̃ , α̃, β̃, γ̃, δ̃) = (z ,
1

w
,−β,−α,−γ, δ).



The aim of the present work

By means of Power Geometry we are looking for all asymptotic
expansions of solutions to the P5 equation as z → 0 and as z →∞
of the following form:

w = cr (z)z r +
∑
s∈K

cs(z)zs ,

where cr (z), cs(z), r , s ∈ C, K ⊂ {s | Re s > Re r} for the
expansions as z → 0 and K ⊂ {s | Re s < Re r} for the expansions
as z →∞; the set K is countable.
1. Power expansions: cr (z) and cs(z) are constants.
2. Power-logarithmic : cr (z) is constant, cs(z) are polinomials in
log z .
3. Complicated : cr (z), cs(z) are series in decreasing powers of log z .
4. Exotic : r , s ∈ R, cr (z) and cs(z) are series in z i , cr is a sum of
countable (for half-exotic the sum is just finite) number of terms,
the set of power exponents of z i in cr is bounded either from above
or from below.



Basic notions

1. A differential sum is a sum of differential monomials:

a(z ,w) = Czq1wq2

k∏
j=1

(
d lj w

dz lj

)rj

.

2. The vector degree: Q(a(z ,w)) = (q1 −
k∑

j=1

lj rj , q2 + k
k∑

j=1

rj).

3. To transform the P5 equation to a differential sum we multiply it
by z2w(w − 1):

−z2w(w − 1)w ′′ + z2

(
3

2
w − 1

2

)(
w ′
)2 − zw(w − 1)w ′+

+(w − 1)3(αw2 + β) + γzw2(w − 1) + δz2w2(w + 1) = 0.



The polygon Γ(f) as αβγδ 6= 0
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Expansions of solutions corresponding to the edges Γ
(1)
1 , Γ

(1)
2 , Γ

(1)
3 as

αβδ 6= 0, z →∞

Γ
(1)
1 (2 power expansions):

Dk : w = (−1)k

√
β

δ

1

z
+

(
−2β

δ
+ (−1)k γ

2δ

√
β

δ

)
1

z2
+
∞∑

s=3

csk

zs
.

(1)
Γ

(1)
2 (power expansion):

E1 : w = −1 +
2γ

δz
+
∞∑

s=2

cs

zs
.

Γ
(1)
3 (2 power expansions):

Fk : w = (−1)k

√
− δ
α

z + 2 + (−1)k 1

2

γ√
−αδ

+
∞∑

s=1

cs,k

zs
,

where cs , csk are uniquely defined constants, k = 1, 2.



The polygon Γ(f) as αβγ 6= 0, δ = 0
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Expansions of solutions corresponding to the edges αβγ 6= 0, δ = 0,
z →∞

Γ
(1)
1 (2 power expansions):

Dk : w = (−1)k

√
−β
γ

1√
z

+
β

γ

1

z
+
∞∑

s=3

cs,k

zs/2
.

Γ
(1)
2 (power expansion): E2 : w = 1.

Γ
(1)
3 (2 power expansions):

Fk : w = (−1)k

√
−γ
α

√
z + 1 +

∞∑
s=1

cs,k

zs/2
,

where cs , csk are uniquely defined complex constants, k = 3, 4.



α = 0, δ 6= 0

If α = 0 P5 has the following form:

−z2w(w−1)w ′′+z2

(
3

2
w − 1

2

)(
w ′
)2−zw(w−1)w ′+β(w−1)3+

+γzw2(w − 1) + δz2w2(w + 1) = 0.
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α = 0, z →∞

If α = 0, δ 6= 0, z →∞ we obtain the following asymptotics

wσ = Cz

(
1− σγ√

−2δ

)
exp{σ

√
−2δz +

∞∑
s=2

cs
z−s+1

−s + 1
}, σ = ±1,

where C is an arbitrary constant, the expansion exists when
Re(σ

√
−δz) > 0.

The case α = 0, δ = 0, z →∞ we obtain the asymptotics

wσ = C
√

zexp{2σ
√
−2γz +

∞∑
s=3

cs
z−s/2+1

−s/2 + 1
}, σ = ±1,

the expansion exists when Re(σ
√
−γz) > 0.



Expansions obtained in the case z →∞

If α 6= 0 there exist 10 power expansions. Six of them (in integer
degrees of z) have been known before [1, §37], [2]), four of them
(in half-integer degrees of z) are new.
If α = 0 there exist 4 one-parameter families of expansions of
solutions w(z) (they are new).
If α = β = 0 does not give any new solutions.
The expansions in case β = 0 are obtained from the expansions in
case α = 0 with the help of the symmetry:

(z̃ , w̃ , α̃, β̃, γ̃, δ̃) = (z ,
1

w
,−β,−α,−γ, δ).



The polygon Γ(f) as αβγδ 6= 0
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The polygon after the substitution w = 1 + y

-

6

q1

q2

0

1

2

G
(1)
4

G
(1)
1

G
(1)
2

G
(1)
3

@
@
@
@
@
@

@
@

@
@

@
@

t
t
t
t
t

t
t

t
t
t
t



Expansions obtained in the case z → 0 corresponding to the edge
G

(1)
4

Let us denote a =

(
sgn Re

√
−γ

2

2δ

)√
−γ

2

2δ
.

We have obtained the following results

-if γδ 6= 0,
γ2

2δ
= −s2, s ∈ R \ Z there exists the family of power

expansions

H1 : w = 1−2δ

γ
z +

∑
s∈K

csz
s ,

where K = {s : s = l + m + ma, l ,m ∈ Z, l ,m ≥ 0, l + m > 0},
ca+1 is an arbitrary constant, other coefficients cs are uniquely
defined. The expansion can be found in [1]. If the set K is a subset
of Z or even Q, this expansion converges according to Theorem
1.7.2 [3];



Expansions obtained in the case z → 0 corresponding to the edge
G

(1)
4

-if γδ 6= 0,
γ2

2δ
= s2, s ∈ R there exist new families of half-exotic

expansions

Hτ1 : w = 1+

−2δ

γ
+ Cz

iτ
γ√
2δ

 z+
∑

Re s>1

csz
s , cr ∈ C, γ2/(2δ) ∈ R;

-if |γ|+ |δ| 6= 0 there exists a new family of half-exotic expansions

H4 : w = 1+

(
crz

ir− γ
r2

+
γ2 − 2δr2

4cr r4
z−ir

)
z+

∑
Re s>1

csz
s , r ∈ R\{0},

cr ∈ C.



Expansions obtained in the case z → 0 corresponding to the edge
G

(1)
4

-if γδ 6= 0,
γ2

2δ
= −n2, n ∈ N there exists a new family of

power-logarithmic expansions

H2 : w = 1−2δ

γ
z +

∞∑
s=1

csz
s ,

where cs , 1 ≤ s ≤ a are constant, cs , s ≥ a + 2 are polynomials in
log z with uniquely defined coefficients, ca + 1 is a polynomial in
log z which contains one arbitrary constant.

For example, if
γ2

2δ
= −1, then

w = 1− 2δ

γ
z +

(
C +

(α + β)γ2

2
ln z

)
z2 +

∞∑
s=3

csz
s , where cs are

polynomials in log z with uniquely defined coefficients, C is an
arbitrary constant.



Expansions obtained in the case z → 0 corresponding to the edge
G

(1)
4

- if γ 6= 0 there exists a family of complicated expansions

H3 : w = 1 +
(
−γ

2
ln2 z + C ln z

)
z +

∞∑
p=2

ϕpz
p.

It can be obtained from the expansion of solution to the P3
equation [4], [5];
-if γ = 0, δ 6= 0 there exist two families of complicated expansions

H(1)
j : w = 1 +

(
(−1)j

√
−2δ ln z + C

)
z +

∞∑
p=2

ϕpz
p,

where j = 5, 6, ϕp are series in decreasing powers of log z with
uniquely defined coefficients.



We have also obtained more than 20 expansions from the
corresponding expansions of solutions to the P6 equation.
We do not consider the case γ = δ = 0 in this work as for these
values of parameters the equation can be solved directly (see [3]).



Expansions obtained in the neighbourhood of the nonsingular point

To explore the expansions near the nonsingular point
z = z0, z0 6= 0, z0 6=∞ of the equation we perform the
transformation z = t + z0 which permits us to apply the algorithms
of Power Geometry described above to the transformed equation.
In the neighbourhood of the nonsingular point z = z0 of the P5
equation there exist 10 families of asymptotic expansions of its
solutions:

O1,2 : w = (−1)j

√
−2β

z0
(z − z0) +

∞∑
s=2

csj(z − z0)s , j = 1, 2,

where c2j are arbitrary constants. The expansions exist when β 6= 0;

O3,4 : w = (−1)j z0√
2α(z − z0)

+
∞∑

s=0

csj(z − z0)s , j = 3, 4,

where c0j are arbitrary constants. The expansions exist when α 6= 0;



Expansions obtained in the neighbourhood of the nonsingular point

O5 : w =
∞∑

s=0

cs(z − z0)s ,

where c0, c1 ∈ C are arbitrary constants, c0 6= 0, c0 6= 1. The
expansions exist for all values of parameters;

O6,7 : w = 1 + (−1)j
√
−2δ(z − z0) +

∞∑
s=2

csj(z − z0)s , j = 6, 7,

where c3j are arbitrary constants. The expansions exist when δ 6= 0;

O8 : w = 1− γ

2z0
(z− z0)2 +

∞∑
s=4

cs(z− z0)s,

where c4 is an arbitrary constant. The expansions exist when
γ 6= 0, δ = 0;



Expansions obtained in the neighbourhood of the nonsingular point

O9 : w =
∞∑

s=−2

cs(z − z0)s ,

expansions exist when α = 0;

O10 : w =
∞∑

s=2

cs(z − z0)s ,

where c2 is an arbitrary constant. The expansions exist when β = 0.
The constants cij , cj about which it has not been mentioned that
they are arbitrary are uniquely defined.
The family O5 is two-parametric, the rest families are
one-parametric.
The expansions Oj , j = 1, 2, 5, 6, 7, 8, 10 (they are Taylor series)
converge in the neighbourhood of z = z0, the expansions
O3, O4, O9 (they are Laurent series) converge in the deleted
neighbourhood of z = z0.
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the third Painlevé equation. Preprint no. 10, Keldysh Inst. Appl.
Math., Moscow, 2010 (Russian).
5. Bruno, A.D., Asymptotics and expansions of solutions to an
ordinary differential equation // УМН 59:3 (2004) 31-80 =
Russian Mathem. Surveys 59:3 (2004) 429-480.



References

6. Bruno, A.D., Parusnikova, A.V., Asymptotic expansions of
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