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First things first

1.-Thanks to the Scientific Committee

2.-Thanks to the Organizing Committee
(Prof. Walser, Greg, Galina, Stawomir)

3.-Enjoy
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Prior Art

m Maillet-Malgrange (1903-1989): Any power series
solution of an analytic ODE is of Gevrey type.

m J. Cano (1993): Any power series solution of a Gevrey
ODE is Gevrey, explicit computation (Newton Polygon).

m Zhang 1998 (& di Vizio 2007 ultrametric): Any power
series solution of an analytic g—difference equation is of
qg—Gevrey type.

This work is the natural next step. Techniques like Cano's.
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Aims: solve & (g—Gevrey) bound

Given a general g—difference equation like (no independent
term)

P(x,y,0(y)) =o(y)y’ +o(y)* +x°y +x =0
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Given a general g—difference equation like (no independent
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m Compute solutions
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Aims: solve & (g—Gevrey) bound

Given a general g—difference equation like (no independent
term)

P(x,y,0(y)) =o(y)y’ +o(y)* +x°y +x =0

m Compute solutions
m Behaviour of solutions
m Convergence, g—Gevrey asymptotics
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Aims: solve & (g—Gevrey) bound

Given a general g—difference equation like (no independent
term)

P(x,y,0(y)) =o(y)y’ +o(y)* +x°y +x =0

m Compute solutions
m Behaviour of solutions

m Convergence, g—Gevrey asymptotics
m Rational rank, “size” of the exponent’s semigroup
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Framework
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Framework

Equation: A g—difference equation is [we use |g| > 1]

P(x, 0. - -+ ya) € Cllx*>*Nlllyo, - - yall

(too general, usually C|[[x, yo, ..., ¥a]]), P(0) = 0.
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Framework

Equation: A g—difference equation is [we use |g| > 1]

P(x, 0. - -+ ya) € Cllx*>*Nlllyo, - - yall

(too general, usually C|[[x, yo, ..., ¥a]]), P(0) = 0.

Solution: A solution of P is a generalized power series

F(x) = £x7, with T C Ry

yel

where [ is well ordered, such that

P(x, f(x),f(gx),...,f(g"x)) =0

(a determination of the logarithm is fixed).
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Algebraic Curves (Newton)

Solution of [implicit equation]

y+x2+y +x3=0
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Algebraic Curves (Newton)
Solution of [implicit equation]

y+x2+y +x3=0

Start with an “obvious” term (least degree, y = —x3).
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Algebraic Curves (Newton)

Solution of [implicit equation]
y+xy +y +x3=0

Start with an “obvious” term (least degree, y = —x3).
Substitute: y = y — x> to get

y—x0 —x®  [] 102 L] +y =0
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Algebraic Curves (Newton)

Solution of [implicit equation]
y+xy +y +x3=0

Start with an “obvious” term (least degree, y = —x3).
Substitute: y = y — x> to get

y—x0 —x®  [] 102 L] +y =0

Following “obvious” term is y = x1©.
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Algebraic Curves (Newton)

Solution of [implicit equation]
y+xy +y +x3=0

Start with an “obvious” term (least degree, y = —x3).
Substitute: y = y — x> to get
y—=x0 —xP [ ]+H10Cy2 ]y =0

Following “obvious” term is y = x1©.

Go on. This one was easy.
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Algebraic Curves (Puisuex)

What happens with
y2—x*=07

(no formal power series solution).

Newton Puiseux Polygon for g—diff. ..



Algebraic Curves (Puisuex)

What happens with

y?—x3=0?
(no formal power series solution).
Obviously
y = x3/?

is a “solution”.
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Algebraic Curves (Puisuex)

What happens with

y?—x3=0?
(no formal power series solution).
Obviously
y = x3/?

is a “solution”.
What with ...

Yo+ x°y° + xyt + Py 4+ X1 =07
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The Polygon

For y? — x3, the number % corresponds to the side inclination

3

+y+§x:2
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The Polygon

For y? — x3, the number % corresponds to the side inclination

3

+y+§x:2

The coefficient y = 1 - x?2 comes from substituting
y =y + cx*2, which gives at y = 0:

S+ =0=c=+1.
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The Polygon: positive convex hull of cloud

For y% + x5y% + xy* + x3y? + x10 = 0:

—0—}‘/—|—2X:‘6

& ——y+x=5

x5y3(irrelev.) ——y + %X — 20

4 7
2 [ -
[this curve has at least 3 branches
0 | | |
0 2 4 6 8 10

The inner point (5,5) is irrelevant for starting a solution.

Solutions y = cx® + ... admit v = 1,1, 2, the inclinations.
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The Polygon: coefficients

If a solution starts with y = cx®, « is the inclination, and c?
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The Polygon: coefficients

If a solution starts with y = cx®, « is the inclination, and c?
Substitute: y =y 4+ cx®. Example: y =y + cx (o = 1):

6” ’—0—y—|—x=5‘,
4 Xy”"i |
2t x3y? .
0 | | | |

0 2 4 6 38 10

Newton Puiseux Polygon for g—diff. ..



The Polygon: coefficients

If a solution starts with y = cx®, « is the inclination, and c?
Substitute: y =y 4+ cx®. Example: y =y + cx (o = 1):

6 ’ ’—o—y + x — 5 ‘,

41 |

ol xy* |
must disappear: =0

% 2 TR 8 10

Lowest x—term for that side must be 0:

P.(C) = x(y + cx)* + x*(y + cx)? - O~c*+c?=0.
y:
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The Polygon: coefficients

If a solution starts with y = cx®, « is the inclination, and c?
Substitute: y =y 4+ cx®. Example: y =y + cx (o = 1):

6' —.—‘y+2X:‘67
-y +x=5

4l y+%x:37

ol Lots of inner points

0 | | ; | !

0 2 4 6 8 10

Setting ¢ = i, a new Newton Polygon appears. The
is new, and has inclination> o = 1.
Recurse with new equation and Polygon.
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exicon

m N-P Polygon: convex envelope of “cloud of points (7, j).”
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exicon

m N-P Polygon: convex envelope of “cloud of points (i, )
m Given a slope i, the valuation v,(P) is the minimal value
for j + pi and the initial form

In,(P) = Z pijxiyj

i+px=v,(P)
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exicon

m N-P Polygon: convex envelope of “cloud of points (i, )
m Given a slope i, the valuation v,(P) is the minimal value
for j + pi and the initial form

In,(P) = Z pijxiyj

i+px=v,(P)

m Given In,(P), plausible coeffs c are the roots of the initial
polynomial

Qu(T)=In,(P)(1, T)=0
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exicon

m N-P Polygon: convex envelope of “cloud of points (i, )
m Given a slope i, the valuation v,(P) is the minimal value
for j + pi and the initial form

In,(P) = Z pijxiyj

i+px=v,(P)

m Given In,(P), plausible coeffs c are the roots of the initial
polynomial

Qu(T)=In,(P)(1, T)=0

But: in the algebraic case, y is always rational and any slope
and root give rise to a solution.

Newton Puiseux Polygon for g—diff. ..



Newton-Puisuex for g-difference equations
The polygon for g—diff equation P = 3" py. i, X'y ... yin.
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Newton-Puisuex for g-difference equations
The polygon for g—diff equation P = 3" py. i, X'y ... yin.

m Notice deg, (y,(x“)) = deg,(yo(x“)) (not so in
differential equations).
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Newton-Puisuex for g-difference equations
The polygon for g—diff equation P = 3" py. i, X'y ... yin.

m Notice deg, (y,(x“)) = deg,(yo(x“)) (not so in
differential equations).

m So, one should place x'y ... yi at (/, /) with
j=dt
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Newton-Puisuex for g-difference equations
The polygon for g—diff equation P = 3" py. i, X'y ... yin.

m Notice deg, (y,(x“)) = deg, (yo(x“)) (not so in
differential equations).
m So, one should place x'y ... yi at (/, /) with
J=Jo+ -+ in
For the equation y3 — @®y1yo + xy2yo + x> =0

o R N W N
T
|
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Newton-Puisuex for g-difference equations
The polygon for g—diff equation P = 3" py. i, X'y ... yin.

m Notice deg, (y,(x“)) = deg,(yo(x“)) (not so in
differential equations).
m So, one should place x'y ... yi at (/, /) with
J=Jo+ -+ in
For the equation y3 — @®y1yo + xy2yo + x> =0

o R N W N
T
|
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Newton-Puisuex for g-difference equations
The polygon for g—diff equation P = 3" py. i, X'y ... yin.

m Notice deg, (y,(x“)) = deg,(yo(x“)) (not so in
differential equations).
m So, one should place x'y ... yi at (/, /) with
J=Jo+ -+ in
For the equation y3 — @®y1yo + xy2yo + x> =0

4 ‘
3 e x5y :
26 Y3 —@’ny )
1 x3
. ,
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Newton-Puisuex for g-difference equations
The polygon for g—diff equation P = 3" py. i, X'y ... yin.

m Notice deg, (y,(x“)) = deg,(yo(x“)) (not so in
differential equations).
m So, one should place x'y ... yi at (/, /) with
J=Jo+ -+ in
For the equation y3 — ¢®y1y0 + xyyo + x> =0

o R N W N
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Pathologies

Sample equation: y3 — q®y1yo + xyZyo + x3 =0
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Pathologies

Sample equation: y3 — q®y1yo + xyZyo + x3 =0
Null Q: For > 2 — In, = yi — ¢*y1y0, so

QuT)=(a’T)* - ¢*(qT)T =0.

Any ¢ will make Q,(c) = 0: free slopes.
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Pathologies

Sample equation: y3 — q®y1yo + xyZyo + x3 =0
Null Q: For > 2 — In, = yi — ¢*y1y0, so

QuT)=(a’T)* - ¢*(qT)T =0.

Any ¢ will make Q,(c) = 0: free slopes.
Constant Q: For =2 — In, = y3 — ¢*y1y0 + x>, 50

Qu(T) =(T)Y -3¢ (qT)T+1=1

No ¢ will make Q,(c) = 0. Useless slope.
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Exceptional behaviour
Recall: v — ¢®y1y0 + xyiyo + x> =0

-e- y 4+ ux = 2 anyone OK.

30 ——y+ %x = 2 "useless”
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Exceptional behaviour
Recall: v — ¢®y1y0 + xyiyo + x> =0

-e- y 4+ ux = 2 anyone OK.

30 ——y+ %x = 2 "useless”

m Q(T)=0forpu>2/3: y=cx/#+ ... possible (may
have i ¢ Q: not so in algebraic curves).
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Exceptional behaviour
Recall: v — ¢®y1y0 + xyiyo + x> =0

-e- y 4+ ux = 2 anyone OK.

30 oy + %x = 2 “useless”

m Q(T)=0forpu>2/3: y=cx/#+ ... possible (may
have i ¢ Q: not so in algebraic curves).
m Q,3(T) = 1: no solution starting with cx®/2.
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Substitution step
After substituting
y=y+to®

new Polygon, continue with greater inclination (to the right).
Say y =y +xinys— @ viyo+xyivo + x> =0,

4 ‘ ‘
; 3y 4+ 2x = 6 (old)
—e—y + x = 1 starting side
) —o-2y 4+ x = 3 new side
| L &
00 1 2 3 4
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Results: Solution construction

Lemma

Generically, the Newton-Puiseux algorithm gives rise to a
solution. And solutions correspond to the algorithm.
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Results: Solution construction

Lemma

Generically, the Newton-Puiseux algorithm gives rise to a
solution. And solutions correspond to the algorithm.

Theorem

The semigroup generated by [ (exponents) is finitely
generated (like for ODE). [Hence S~ x>~ )is forbidden].
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Results: Solution construction

Lemma

Generically, the Newton-Puiseux algorithm gives rise to a
solution. And solutions correspond to the algorithm.

Theorem

The semigroup generated by [ (exponents) is finitely
generated (like for ODE). [Hence S~ x>~ )is forbidden].

Theorem

If P = A(x, )+ B(x,y0)y1 (“order and degree 1"”), then
rational rank(I") < 2. (“Only one irrational exponent” ).
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Pivot point

In a finite number of steps, the topmost vertex of the
interesting side is fixed (usually at height 1).

T
—— whatever

-e- y = [3 terms] + x>

41 |
ol Cox? |
pivot \L
0 \ L T~ \ \ \
0 2 4 6 8 10 12 14
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Pivot point

In a finite number of steps, the topmost vertex of the
interesting side is fixed (usually at height 1).

T
—— whatever

-e- y = [3 terms| + cx* + c3x°

. |
21 c3x> .
pivot .
0 | | *\‘\\*e | | |
0 2 4 6 8 10 12 14
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Pivot point

In a finite number of steps, the topmost vertex of the
interesting side is fixed (usually at height 1).

T
—— whatever

-e- y = [3 terms] + cox? + c3x® + ex® + ...

4| i
20 cax® B
pivot el
0 | | | el Y
0 2 4 6 8 10 12 14
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Results: g—Gevrey bounds (intro)

t+ 1— Gevrey < > ;X" convergent

I |tn(n+1

Assume Pivot Point (a, 1) contributions up to [r], ord(P) = n.
Worst point: (ex,1), high order “bad”, far from pivot “good”.

cH[ParYr ]y (e, 1) yo = (en,1)

0 2 4 6 8§ 10 12 14

e —a
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Results: g—Gevrey bounds (intro)

t+1— Gevrey >

I |tn(n+1

;X" convergent

Assume Pivot Point (a, 1) contributions up to [r], ord(P) = n.
Worst point: (ex,1), high order “bad”, far from pivot “good”.

0+

+[Pa] i =

e —a

61 Compute s = max{

}fork>r

(ex:1) yn > (en,1)

i_

12

14

Newton Puiseux Polygon for g—diff. ..



Results: g—Gevrey bounds (intro)

t+ 1— Gevrey < > ;X" convergent

I |tn(n+1

Assume Pivot Point (a, 1) contributions up to [r], ord(P) = n.
Worst point: (ex,1), high order “bad”, far from pivot “good”.

8 T T
}fork>r |

61 Compute s = max{

oFH[Parr| y ~ (ex,1) yn =~ (en,1)

0 2 4 6 8 10 12 14

e —a

For pivot at (a, b), analogous computation.
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Results: g—Gevrey bounds (1)

Formal power series solution f(x) € C[[x]] (can be generalized

: H _ _Aord
to rational exponents easily). Recall s = 2.

Theorem (g—Gevrey Malgrange-Maillet)

If P has q— Gevrey order t + 1, then f(x) has g— Gevrey order
<s+t+1
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Results: g—Gevrey bounds (1)

Formal power series solution f(x) € C[[x]] (can be generalized

to rational exponents easily). Recall s = ;224
Istance

Theorem (g—Gevrey Malgrange-Maillet)
If P has q— Gevrey order t + 1, then f(x) has g— Gevrey order
<s+t+1.

Corollary

If the pivot point of f(x) contains order n, then f(x) has the
same q— Gevrey order as P.
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Results: closed-eyed bound

Corollary

If P(x, yo,...,Yn) has g—Gevrey order t + 1, then any solution
has at most q— Gevrey order n + t + 1.

No information required on the solution, whereas the results
above assume the pivot point is known.
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Thanks, etc

Questions?

And many thanks
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