The Newton-Puisuex Polygon for q—difference equations. Applications.

Pedro Fortuny Ayuso

Bedlewo, August 2011

Universidad de Oviedo, Spain.

First things first

1.-Thanks to the Scientific Committee

2.-Thanks to the Organizing Committee (Prof. Walser, Greg, Galina, Sławomir)

3.-Enjoy

Prior Art

- Maillet-Malgrange (1903-1989): Any power series solution of an analytic ODE is of Gevrey type.
- J. Cano (1993): Any power series solution of a Gevrey ODE is Gevrey, explicit computation (Newton Polygon).
- Zhang 1998 (& di Vizio 2007 ultrametric): Any power series solution of an analytic q-difference equation is of q-Gevrey type.

This work is the natural next step. Techniques like Cano's.

$$P(x, y, \sigma(y)) = \sigma(y)y^{2} + \sigma(y)^{2} + x^{2}y + x = 0$$

Given a general q-difference equation like (no independent term)

$$P(x, y, \sigma(y)) = \sigma(y)y^{2} + \sigma(y)^{2} + x^{2}y + x = 0$$

Compute solutions

$$P(x, y, \sigma(y)) = \sigma(y)y^{2} + \sigma(y)^{2} + x^{2}y + x = 0$$

- Compute solutions
- Behaviour of solutions

$$P(x, y, \sigma(y)) = \sigma(y)y^{2} + \sigma(y)^{2} + x^{2}y + x = 0$$

- Compute solutions
- Behaviour of solutions
 - Convergence, *q*—Gevrey asymptotics

$$P(x, y, \sigma(y)) = \sigma(y)y^{2} + \sigma(y)^{2} + x^{2}y + x = 0$$

- Compute solutions
- Behaviour of solutions
 - Convergence, *q*—Gevrey asymptotics
 - Rational rank, "size" of the exponent's semigroup

Framework

Framework

Equation: A q-difference equation is [we use |q| > 1]

$$P(x, y_0, \ldots, y_n) \in \mathbb{C}[[x^{\mathbb{R}_{>0}}]][[y_0, \ldots, y_n]]$$

(too general, usually
$$\mathbb{C}[[x, y_0, \dots, y_n]]$$
), $P(0) = 0$.

Framework

Equation: A q-difference equation is [we use |q| > 1]

$$P(x, y_0, \ldots, y_n) \in \mathbb{C}[[x^{\mathbb{R}_{>0}}]][[y_0, \ldots, y_n]]$$

(too general, usually
$$\mathbb{C}[[x, y_0, \dots, y_n]]$$
), $P(0) = 0$.

Solution: A solution of P is a generalized power series

$$f(x) = \sum_{\gamma \in \Gamma} f_{\gamma} x^{\gamma}, \text{ with } \Gamma \subset \mathbb{R}_{>0}$$

where Γ is well ordered, such that

$$P(x, f(x), f(qx), \dots, f(q^n x)) = 0$$

(a determination of the logarithm is fixed).

Solution of [implicit equation]

$$y + xy^3 + y^5 + x^3 = 0$$

Solution of [implicit equation]

$$y + xy^3 + y^5 + x^3 = 0$$

Start with an "obvious" term (least degree, $y = -x^3$).

Solution of [implicit equation]

$$y + xy^3 + y^5 + x^3 = 0$$

Start with an "obvious" term (least degree, $y = -x^3$). Substitute: $y = y - x^3$ to get

$$y - x^{10} - x^{15} + [\dots] + 10x^9y^2 + [\dots] + y^5 = 0$$

Solution of [implicit equation]

$$y + xy^3 + y^5 + x^3 = 0$$

Start with an "obvious" term (least degree, $y = -x^3$). Substitute: $y = y - x^3$ to get

$$y - x^{10} - x^{15} + [\dots] + 10x^9y^2 + [\dots] + y^5 = 0$$

Following "obvious" term is $y = x^{10}$.

Solution of [implicit equation]

$$y + xy^3 + y^5 + x^3 = 0$$

Start with an "obvious" term (least degree, $y = -x^3$). Substitute: $y = y - x^3$ to get

$$y - x^{10} - x^{15} + [\dots] + 10x^9y^2 + [\dots] + y^5 = 0$$

Following "obvious" term is $y = x^{10}$.

Go on. This one was easy.

Algebraic Curves (Puisuex)

What happens with

$$y^2 - x^3 = 0$$
?

(no formal power series solution).

Algebraic Curves (Puisuex)

What happens with

$$y^2 - x^3 = 0?$$

(no formal power series solution).

Obviously

$$y=x^{3/2}$$

is a "solution".

Algebraic Curves (Puisuex)

What happens with

$$y^2 - x^3 = 0$$
?

(no formal power series solution).

Obviously

$$y=x^{3/2}$$

is a "solution".

What with ...

$$y^6 + x^5y^5 + xy^4 + x^3y^2 + x^{10} = 0?$$

The Polygon

For $y^2 - x^3$, the number $\frac{3}{2}$ corresponds to the side *inclination*

The Polygon

For $y^2 - x^3$, the number $\frac{3}{2}$ corresponds to the side *inclination*

The coefficient $y = 1 \cdot x^{3/2}$ comes from substituting $y = y + cx^{3/2}$, which gives at y = 0:

$$x^3 + c^2 x^3 = 0 \Rightarrow c = \pm 1.$$

The Polygon: positive convex hull of cloud

For
$$y^6 + x^5y^5 + xy^4 + x^3y^2 + x^{10} = 0$$
:

The inner point (5,5) is irrelevant for starting a solution. Solutions $y = cx^{\alpha} + \ldots$ admit $\alpha = \frac{1}{2}, 1, \frac{7}{2}$, the *inclinations*.

If a solution starts with $y = cx^{\alpha}$, α is the inclination, and c?

If a solution starts with $y = cx^{\alpha}$, α is the inclination, and c? Substitute: $y = y + cx^{\alpha}$. Example: y = y + cx ($\alpha = 1$):

If a solution starts with $y = cx^{\alpha}$, α is the inclination, and c? Substitute: $y = y + cx^{\alpha}$. Example: y = y + cx ($\alpha = 1$):

Lowest x—term for that side must be 0:

$$P_{\alpha}(C) = x(y+cx)^4 + x^3(y+cx)^2\Big]_{y=0} = 0 \simeq c^4 + c^2 = 0.$$

If a solution starts with $y = cx^{\alpha}$, α is the inclination, and c? Substitute: $y = y + cx^{\alpha}$. Example: y = y + cx ($\alpha = 1$):

Setting c = i, a new Newton Polygon appears. The green side is *new*, and has inclination $\alpha = 1$.

Recurse with new equation and Polygon.

■ N-P Polygon: convex envelope of "cloud of points (i, j)."

- N-P Polygon: convex envelope of "cloud of points (i, j)."
- Given a slope μ , the valuation $\nu_{\mu}(P)$ is the minimal value for $j + \mu i$ and the initial form

$$In_{\mu}(P) = \sum_{i+\mu x = \nu_{\mu}(P)} p_{ij} x^i y^j$$

- N-P Polygon: convex envelope of "cloud of points (i, j)."
- Given a slope μ , the valuation $\nu_{\mu}(P)$ is the minimal value for $j + \mu i$ and the initial form

$$In_{\mu}(P) = \sum_{i+\mu x = \nu_{\mu}(P)} p_{ij} x^{i} y^{j}$$

■ Given $In_{\mu}(P)$, plausible coeffs c are the roots of the initial polynomial

$$Q_{\mu}(T) \equiv In_{\mu}(P)(1, T) = 0$$

- N-P Polygon: convex envelope of "cloud of points (i,j)."
- Given a slope μ , the valuation $\nu_{\mu}(P)$ is the minimal value for $j + \mu i$ and the initial form

$$In_{\mu}(P) = \sum_{i+\mu x = \nu_{\mu}(P)} p_{ij} x^{i} y^{j}$$

■ Given $In_{\mu}(P)$, plausible coeffs c are the roots of the initial polynomial

$$Q_{\mu}(T) \equiv In_{\mu}(P)(1, T) = 0$$

But: in the algebraic case, μ is always rational and any slope and root give rise to a solution.

The polygon for q-diff equation $P = \sum p_{ij_0...j_n} x^i y_0^{j_0} \dots y_n^{j_n}$.

The polygon for q-diff equation $P = \sum p_{ij_0...j_n} x^i y_0^{j_0} \dots y_n^{j_n}$.

Notice $\deg_x(y_n(x^{\alpha})) = \deg_x(y_0(x^{\alpha}))$ (not so in differential equations).

The polygon for q-diff equation $P = \sum p_{ij_0...j_n} x^i y_0^{j_0} \dots y_n^{j_n}$.

- Notice $\deg_x(y_n(x^\alpha)) = \deg_x(y_0(x^\alpha))$ (not so in differential equations).
- So, one should place $x^i y_0^{j_0} \dots y_n^{j_n}$ at (i,j) with $j = j_0 + \dots + j_n$.

The polygon for q-diff equation $P = \sum p_{ij_0...j_n} x^i y_0^{j_0} \dots y_n^{j_n}$.

- Notice $\deg_x(y_n(x^\alpha)) = \deg_x(y_0(x^\alpha))$ (not so in differential equations).
- So, one should place $x^i y_0^{j_0} \dots y_n^{j_n}$ at (i,j) with $j = j_0 + \dots + j_n$.

For the equation $y_2^2 - q^3y_1y_0 + xy_1^2y_0 + x^3 = 0$

The polygon for q-diff equation $P = \sum p_{ij_0...j_n} x^i y_0^{j_0} \dots y_n^{j_n}$.

- Notice $\deg_x(y_n(x^\alpha)) = \deg_x(y_0(x^\alpha))$ (not so in differential equations).
- So, one should place $x^i y_0^{j_0} \dots y_n^{j_n}$ at (i,j) with $j = j_0 + \dots + j_n$.

For the equation $y_2^2 - q^3y_1y_0 + xy_1^2y_0 + x^3 = 0$

The polygon for q-diff equation $P = \sum p_{ij_0...j_n} x^i y_0^{j_0} \dots y_n^{j_n}$.

- Notice $\deg_x(y_n(x^\alpha)) = \deg_x(y_0(x^\alpha))$ (not so in differential equations).
- So, one should place $x^i y_0^{j_0} \dots y_n^{j_n}$ at (i,j) with $j = j_0 + \dots + j_n$.

For the equation $y_2^2 - q^3y_1y_0 + xy_1^2y_0 + x^3 = 0$

Newton-Puisuex for q-difference equations

The polygon for q-diff equation $P = \sum p_{ij_0...j_n} x^i y_0^{j_0} \dots y_n^{j_n}$.

- Notice $\deg_x(y_n(x^\alpha)) = \deg_x(y_0(x^\alpha))$ (not so in differential equations).
- So, one should place $x^i y_0^{j_0} \dots y_n^{j_n}$ at (i,j) with $j = j_0 + \dots + j_n$.

For the equation $y_2^2 - q^3y_1y_0 + xy_1^2y_0 + x^3 = 0$

Pathologies

Sample equation: $y_2^2 - q^3y_1y_0 + xy_1^2y_0 + x^3 = 0$

Pathologies

Sample equation:
$$y_2^2 - q^3 y_1 y_0 + x y_1^2 y_0 + x^3 = 0$$

Null Q : For $\mu > \frac{2}{3} \to l n_\mu = y_2^2 - q^3 y_1 y_0$, so: $Q_\mu(T) = (q^2 T)^2 - q^3 (qT) T \equiv 0$.
Any c will make $Q_\mu(c) = 0$: free slopes.

Pathologies

Sample equation:
$$y_2^2 - q^3 y_1 y_0 + x y_1^2 y_0 + x^3 = 0$$

Null Q : For $\mu > \frac{2}{3} \to ln_\mu = y_2^2 - q^3 y_1 y_0$, so: $Q_\mu(T) = (q^2 T)^2 - q^3 (qT) T \equiv 0$.
Any c will make $Q_\mu(c) = 0$: free slopes.
Constant Q : For $\mu = \frac{2}{3} \to ln_\mu = y_2^2 - q^3 y_1 y_0 + x^3$, so $Q_\mu(T) = (q^2 T)^2 - q^3 (qT) T + 1 \equiv 1$
No c will make $Q_\mu(c) = 0$. Useless slope.

Exceptional behaviour

Recall:
$$y_2^2 - q^3y_1y_0 + xy_1^2y_0 + x^3 = 0$$

Exceptional behaviour

Recall:
$$y_2^2 - q^3y_1y_0 + xy_1^2y_0 + x^3 = 0$$

■ $Q_{\mu}(T) = 0$ for $\mu > 2/3$: $y = cx^{1/\mu} + ...$ possible (may have $\mu \notin \mathbb{Q}$: not so in algebraic curves).

Exceptional behaviour

Recall:
$$y_2^2 - q^3y_1y_0 + xy_1^2y_0 + x^3 = 0$$

- $Q_{\mu}(T) = 0$ for $\mu > 2/3$: $y = cx^{1/\mu} + ...$ possible (may have $\mu \notin \mathbb{Q}$: not so in algebraic curves).
- $Q_{2/3}(T) = 1$: no solution starting with $cx^{3/2}$.

Substitution step

After substituting

$$y = y + cx^{\alpha}$$

new Polygon, continue with greater inclination (to the right). Say y = y + x in $y_2^2 - q^3y_1y_0 + xy_1^2y_0 + x^3 = 0$,

Results: Solution construction

Lemma

Generically, the Newton-Puiseux algorithm gives rise to a solution. And solutions correspond to the algorithm.

Results: Solution construction

Lemma

Generically, the Newton-Puiseux algorithm gives rise to a solution. And solutions correspond to the algorithm.

Theorem

The semigroup generated by Γ (exponents) is finitely generated (like for ODE). [Hence $\sum x^{(2-\frac{1}{n})}$ is forbidden].

Results: Solution construction

Lemma

Generically, the Newton-Puiseux algorithm gives rise to a solution. And solutions correspond to the algorithm.

Theorem

The semigroup generated by Γ (exponents) is finitely generated (like for ODE). [Hence $\sum x^{(2-\frac{1}{n})}$ is forbidden].

Theorem

If $P = A(x, y_0) + B(x, y_0)y_1$ ("order and degree 1"), then rational rank(Γ) ≤ 2 . ("Only one irrational exponent").

Pivot point

In a finite number of steps, the topmost vertex of the *interesting* side is fixed (usually at height 1).

Pivot point

In a finite number of steps, the topmost vertex of the *interesting* side is fixed (usually at height 1).

Pivot point

In a finite number of steps, the topmost vertex of the *interesting* side is fixed (usually at height 1).

Results: *q*—Gevrey bounds (intro)

$$t+1-$$
 Gevrey $\Leftrightarrow \sum \frac{A_n}{|q|^{tn(n+1)/2}} x^n$ convergent

Assume Pivot Point (a, 1) contributions up to r, ord(P) = n. Worst point: $(e_k, 1)$, high order "bad", far from pivot "good".

Results: *q*—Gevrey bounds (intro)

$$t+1-$$
 Gevrey $\Leftrightarrow \sum \frac{A_n}{|q|^{tn(n+1)/2}} x^n$ convergent

Assume Pivot Point (a, 1) contributions up to r, ord(P) = n. Worst point: $(e_k, 1)$, high order "bad", far from pivot "good".

Results: *q*—Gevrey bounds (intro)

$$t+1-$$
 Gevrey $\Leftrightarrow \sum \frac{A_n}{|q|^{tn(n+1)/2}} x^n$ convergent

Assume Pivot Point (a, 1) contributions up to r, ord(P) = n. Worst point: $(e_k, 1)$, high order "bad", far from pivot "good".

For pivot at (a, b), analogous computation.

Results: q—Gevrey bounds (I)

Formal power series solution $f(x) \in \mathbb{C}[[x]]$ (can be generalized to rational exponents easily). Recall $s = \frac{\Delta \text{ord}}{\text{distance}}$.

Theorem (q-Gevrey Malgrange-Maillet)

If P has q-Gevrey order t+1, then f(x) has q-Gevrey order $\leq s+t+1$.

Results: q—Gevrey bounds (I)

Formal power series solution $f(x) \in \mathbb{C}[[x]]$ (can be generalized to rational exponents easily). Recall $s = \frac{\Delta \text{ord}}{\text{distance}}$.

Theorem (q-Gevrey Malgrange-Maillet)

If P has q-Gevrey order t+1, then f(x) has q-Gevrey order $\leq s+t+1$.

Corollary

If the pivot point of f(x) contains order n, then f(x) has the same q—Gevrey order as P.

Results: closed-eyed bound

Corollary

If $P(x, y_0, ..., y_n)$ has q-Gevrey order t + 1, then any solution has at most q-Gevrey order n + t + 1.

No information required on the solution, whereas the results above assume the pivot point is known.

Thanks, etc

Questions?

And many thanks