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Abstract. Adapting the Newton-Puiseux Polygon algorithm to q−di-
fference equations of any order and degree, we give a bound for the
q−Gevrey order of their solutions and, for the specific case of order and
degree 1, we also bound the rational rank of generalized power series
solutions.

1. Introduction

The Newton Polygon construction and its generalization by Puiseux (see
[5] for an interesting detailed historical narrative) has been successfully used
countless times both in the algebraic [11], [12] [8] and in the differential
contexts [6], [9], [3], [4], [17] (this is just a biased and briefest of samples,
obviously).

We extend the Newton-Puiseux algorithm its use to non-linear q−difference
equations. For the linear case it was introduced by Adams [1], and used by
Ramis [14] in a more modern context. Since then, it has been extensively
used in this setting (see, just to give an example, [16]).

What we attempt is to use it to produce generalized power series solutions
of non-linear q−difference equations, and to study the asymptotic behaviour
of these solutions in terms of those of the original equation, in the same
spirit as [2]. The method allows us to bound the q−Gevrey order of a
formal power series solution in terms of that of the original equation, thus
generalizing Zhang’s [18] result in the q−difference case (Zhang’s result is
for q−difference-differential equations, but analytic). This generalization is
analogue to the one given by Cano in the same paper for the Malgrange-
Maillet theorem [10].

Let K = C[[x]] be the ring of formal power series in one variable over the
complex field and denote by σ the K−automorphism given by σ(x) = qx
for some q ∈ C with |q| > 1 (the case |q| < 1 is equivalent, but we do not
deal with |q| = 1).

A q−difference equation is a “functional equation” of the form

(1) P (x, y0, y1, . . . , yn) = 0
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where P ∈ K[[x, y0, . . . , yn]], y0 is the “unknown”, understood as a “function
of x” and yi(x) = yi−1(qx) = σ(yi−1(x)) for i > 0. This equation is plainly
analogue to the differential case —whose Polygon was completely studied in
[2], correcting the classical “and so on. . . ” mistakes in [9]. We shall also say
that P is a q−difference equation, obviating the = 0.

Unlike the differential case, however, the variables yi will have the same
x−weight as y0 because the order valuation of K is invariant by σ, i.e.
ordx(σ(f)) = ordx(f) for f ∈ K.

Let K = C[[xR≥0 ]] be the ring of Hahn power series [7] in x with exponents
in R≥0, that is, the ring of power series whose exponents are a well-ordered
subset of R≥0. We shall say that an element

g =
∑
γ∈Γ

xγ ∈ K

is a solution of (1) if

P (x, g(x), σ(g(x)), . . . , σn(g(x))) = P (x, g(x), g(qx), . . . , g(qnx)) = 0,

where we are assumming that a determination of the logarithm has been
chosen and fixed in order to compute all the values qα for α ∈ Γ \ N.

2. The Newton Polygon in the general case

Let F = C[[xR≥0 ]][[y0, . . . , yn]] denote the ring of formal power series in
n + 1 variables over the ring of Hahn series in one variable over C. As is
customary, given an element P (x, y0, . . . , yn) =

∑
Pγ,ρx

γyρ0
0 . . . yρn

n ∈ F , its
associated cloud of points is the set of those (γ, j) ∈ R2 of indices of nonzero
coefficients:

C(P ) =
{
(γ, j)

∣∣ ∃ρ with |ρ| = j and Pγ,ρ 6= 0
}

and given a subset S ⊂ R2
≥0, its associated Newton Polygon, N (S) is the

border of the convex hull of

S+ =
{
p + R2

≥0

∣∣ p ∈ S
}

(the set obtained from adjoining at each point of S the first quadrant of the
real plane).

Definition. A q−difference equation of order n is P ∈ F .

Definition 1. The Newton Polygon N (E) of P

(2) P =
∑
γ,ρ

Pγ,ρx
γyρ0

0 . . . yρn
n

is the Newton Polygon of C(P ).

Notice that, as we mentioned in the introduction, there is no “translation
to the left” because the operator yk(x) = qkx does not modify the degree in
x.

The elements of the Newton Polygon are essentially two: corners and
sides. Let x, y denote the standard coordinates on R2:
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Definition 2. A point p = (γ, j) ∈ N (P ) is a corner of N (P ) if there
exists a line y+µx = k (with µ ∈ R>0) whose intersection with N (P ) is the
singleton {p}.

From the definition and the structure of F it is clear that there is a finite
number of corners in N (P ) (at most one for each height y up to the highest
one). We shall always assume they are ordered by their x coordinate (so
that there is a first corner —the leftmost one— and a last one). The height
of N (P ) is the y−coordinate of the leftmost vertex.

Definition 3. A side of N (P ) is either the vertical ray starting at the first
corner of the Newton Polygon or the horizontal ray starting at the last one or
any segment joining two consecutive corners of N (P ). A compact side s has
an associated slope µ(s) or µs, and value ν(s), both given by the equation
of the only line y + µsx = ν(s) containing it.

And the key elements to compute solutions using the Newton Polygon are
those of valuation, initial form and inicial polynomial associated to a slope:

Definition 4. Given a slope µ ∈ R>0, the valuation associated to µ is the
map

νµ : F → R
given by

νµ(P ) = νµ

(∑
Pγ,ρx

γyρ0
0 . . . yρn

n

)
= min {j + µγ | (γ, j) ∈ C(P )} .

Definition 5. Given a slope µ ∈ R>0, the initial form of P with respect to
µ is

Φµ(P )(x, y0, . . . , yn) =
∑

Pγ,ρx
γyρ0

0 . . . yρn
n

where the sum is taken for |ρ|+ µγ = νµ(P ).

Definition 6. The initial polyonomial of P with respect to (or associated
to) slope µ (or to the corresponding side) is

QE
µ (T ) = Φµ(P )(1, T, qT, . . . , qnT ).

If QE
µ (T ) = 0, µ will be called an exceptional slope for E.

Given g(x) ∈ F , one can consider the substitution

(3) y = ȳ + g(x)

into equation P , which will be denoted P [ȳ + g(x)], which gives

P [ȳ + g(x)] := P̄ (x, ȳ0, . . . , ȳn) =

=
∑

Pγ,ρx
γ ((ȳ0 + g(x))ρ0 , . . . , (ȳn + g(qnx))ρn) =

∑
P̄γ,ρx

γ ȳρ0
0 . . . ȳρn

n ,

(4)

which is another q−difference equation of order n, called the translation of
E by g(x) or by substitution (3).
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Definition 7. We shall say that an element

g =
∑
γ∈Γ

cγxγ ∈ F

is a solution of (2) if

P (x, g(x), . . . , g(qnx)) = 0

(using the already fixed determination of the logarithm for computing qα for
any α).

Remark 1. Let g(x) ∈ F be any Hahn series and let

P̄ (x, ȳ0, . . . , ȳn)

be the “translated equation”. It is clear that g(x) is a solution of P if and
only if P̄ (x, 0, 0) = 0.

Remark 2. From the definition (and from the basic properties of Hahn series)
it follows that if

g(x) =
∑
Γ

gγxγ

is a solution of P and
bgcη(x) =

∑
γ≤η

gγxγ

is its truncation up to order η and if P̄ is the translation of P by bgcη(x),
then g(x)− bgcη(x) is a solution of P̄ .

The following is essentially what motivates the Newton-Puiseux Polygon
construction:

Lemma 1. Let c ∈ C and α ∈ R>0 be a coefficient and a slope, respectively.
If g = cxα + · · · ∈ K is a solution of P whose least order term is cxα, then

(5) QE
α (c) = 0.

(The coefficient of order α is a root of the initial polynomial for α).

Proof. One needs only perform the substitution ȳ = y + cxα and verify on
one hand that Φα(P )(x, 0, 0) = QP

α (c) and on the other that the term of least
degree of P (x, y0 + cxα, . . . , yn + cqnαxα) is precisely Φα(P )(x, 0, . . . , 0) =
QP

α (c). �

Finally, a substitution of slope α only modifies the Polygon for slopes less
than or equal to α, that is, it only modifies the sides to the right of the
side of slope α, or the corner met by the line y + αx = να(P ). Moreover,
the cloud of points of the transformed equation belongs to the semigroup
generated by the previous cloud of points “and α”:

Lemma 2. Let N (P ) be the Newton Polygon of P and N (P̄ ) be the one of
the translated equation by the substitution y = ȳ + cxα. Then
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(1) The cloud of points C(P̄ ) —and hence N (P̄ ) is included in the semi-
group generated by C(P ) and (α,−1).

(2) The Newton Polygons N (P ) and N (P̄ ) have the same sides of slope
greater than α (that is, to the left of slope α).

(3) For any β > α, Φβ(P ) = Φβ(P̄ ) and consequently QP
β (T ) = QP̄

β (T ).
(4) If Aγ,ρ is such that (γ, |ρ|) is the leftmost corner of N (P ) with value

να(P ), then Āγ,ρ = Aγ,ρ and (γ, |ρ|) is also the leftmost corner of
N (P̄ ) with value να(P ).

Remark 3. As a matter of fact, the coefficients corresponding to sides of
slope greater than α do not change, but this result will not be used.

The proof is an straightforward computation. However, one has a specific
and relevant behaviour in the case of exceptional slopes corresponding to
corners when the equation has order and degree 1:

Lemma 3. Assume P is of order and degree 1. Let µ be an exceptional slope
of P corresponding to a corner of N (P ) and let c be any nonzero coefficient.
Then the Newton Polygon of the translation P̄ of P by cxµ has a corner at
height 1.

Proof. Let Φµ(P ) be the initial form of P for the slope µ. We only need
to show that Φµ(P̄ ) has a point at height 1 and no point at height 0. But,
since µ meets N (P ) at a single point,

Φµ(P )(x, y, σ(y)) = Aγ,j,0x
γyj

0 + Aγ,j−1,1x
γyj−1

0 y1,

for just one (γ, j) (the coordinates of the point). The translation y = ȳ+cxµ

works as follows

Φµ(P )(x, y, σ(y)) = (...) = QP
µ (c)xνµ(P ) + ȳ1Aγ,j−1,1c

j−1xγ+µ(j−1) + . . .

On one hand, QP
µ = 0 by hypothesis and on the other, Aγ,j−1,1 6= 0 (because

otherwise QP
µ cannot be 0, µ corresponding to a single point ofN (P )). Thus,

the translation gives rise to the point (νµ(P ) − 1, 1) = (γ + µ(j − 1), 1) in
C(P̄ ) and (since QP

µ = 0) the point (νµ(P ), 0) does not belong to C(P̄ ),
which gives the result. �

Lemma 4. Let g(x) =
∑

Γ cγxγ be a solution of P . For η ∈ Γ, let Pη be the
Newton Polygon of the translation of P by the substitution

y = ȳ +
∑
γ≤η

cγxγ .

(The truncation up to order η). Then either bgcη(x) is a solution of P or
N (Pη) has at least a compact side of slope less than η.

Proof. This is a straightforward consequence of Remark 2 and Lemma 2. �

The following corollary, which follows from the well-ordering of N serves
also as a definition:
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Corollary 1 (Definition of pivot point). Let g(x) ∈ F be a Hahn series
with g(0) = 0

g(x) =
∑

Γ⊂R>0

cγxγ .

For each γ ∈ Γ, let Pγ denote the equation

Pγ = P [y + bgcγ ] = P (x, y0 + gγ(x), . . . , yn + gγ(qnx))

where gγ(x) is the truncation of g(x) up to order γ. Assume Γ is not finite.
Then there is γ0 ∈ Γ and j ∈ Z>0 such that the corner (γ0, j) belongs to
N (Pγ) for any γ ≥ γ0 and γ0 is maximal with this property. This corner is
called the pivot point of P with respect to g(x) —or for any of the corre-
sponding translations. Moreover, γ0 is in the first ω0−component of Γ (that
is, there is a finite number of terms of g(x) before γ0).

The rational rank of any Hahn series solution of a q−difference equation is
finite. The proof of the following result can be translated from Proposition
1 of [3]:

Theorem 1. Let g(x) =
∑

Γ cγxγ ∈ F be a solution of P . Then Γ is a
finitely generated semigroup over Z>0. As a consequence, Γ has no accumu-
lation points in R.

Finally, “a vertex at height one is always s pivot point”:

Remark 4. Notice that if C(Pγ) above has a point p = (η, 1) with η =
νγ(P )−1 —that is, if the slope γ “falls to height 1”—, then p is automatically
the pivot point of P for g(x).

2.1. Relative Pivot points. All the above constructions can be made rel-
ative to a monomial ρ = (ρ0, . . . , ρn), by taking from the start

Definition. The cloud of points of P relative to ρ, Cρ(P ) is the set of points
(α, j) ∈ R2 for which there is γ such that

Pα,γ 6= 0 and γi ≥ ρi for i = 0, . . . , n.

One can construct the Newton Polygon relative to ρ, Nρ(P ) and, what is
most important:

Definition 8. The pivot point of P relative to ρ with respect to g(x) ∈ F
is (γ, j) if and only if (γ, j) is a vertex of Nρ(Pγ) for all γ >> 0 and j is
minimal. It will be denoted Qρ(P, f).

Notice that the Pivot point of P with respect to g is the pivot point of P
relative to (0, . . . , 0).

With this notation, one has

Proposition 1. Let g(x) ∈ F be a solutionof P and p = (a, b) be the pivot
point of P relative to ρ with respect to g(x). Then b > |ρ| if and only if g(x)
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is a solution of

∂|ρ|P

∂yρ0
0 . . . ∂yρn

n
= 0.

Which is a consequence of the following easy lemma:

Lemma 5. Let c ∈ C, α ∈ R>n and j ∈ {0, . . . , n}. Then

(1) One has ∂P
∂yj

[y + cxα] = ∂
∂yj

(P [y + cxα]).
(2) Let ρ ∈ Nn+1 be such that ρj ≥ 1 and let ej = (0, . . . , 1, . . . , 0). Then

(6) Qρ−ej

(
∂P

∂yj
, g

)
= Qρ(P, g)− (0, 1).

Corollary 2. The power series g(x) ∈ F is a solutionof ∂P
∂yj

if and only if
Qej

(P, f) has ordinate greater than 1. If, on the other hand, Qej
(P, f) =

(a, 1), then ordx

(
∂P
∂yj

)
[f ] = a.

3. Recursive Formulæfor the coefficients

We are working now in the case Γ = Z, so that the equation P is in
C[[x, y0, . . . , yn]] and solutions lie in C[[x]]. Notice that this case includes
that of Γ ⊂ Q, because, as we have proved, after a ramification we can
obtain a new semigroup included in Z.

Let g(x) =
∑

cix
i be a power series solution of P = 0 and denote, P1 =

· · · = Pp = P , Pi = Pi−1[y + cix
i] for i ≥ p. By Lemma 1, ci satisfies

Q
Pi−1

1/i (ci) = 0.

This equation has a unique solution (it is actually a linear equation) for i
large enough (whenever the pivot point has been reached).

Assume from now until further notice that the pivot point p = p(P, g) is
(a, 1) for some a ∈ N. Let

(Pi0)(p) = a0x
ay0 + · · ·+ arx

ayr, ar 6= 0, 0 ≤ r ≤ n.

(the terms of P at the pivot point).
The above equation is equivalent to

(7) ciΨ(i) = −Coeffxa+i(Pi−1), i ≥ i0

where Ψ(i) = a0 + a1q + · · ·+ arq
r.

Thus, if we can compute Coeffxa+i(Pi−1) in terms of cp, . . . , ci−1, we shall
get a family of recursive formulæ for ci which may allow us to bound for
them.

Consider the formal series (analogue to the one in [3])
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Hi(T(α,ρ),C0,p, . . . , C0,i−1, . . . , Cn,p, . . . , Cn,i−1, x, y0, . . . , yn) =∑
(α,ρ)

T(α,ρ)x
α
[
(C0,px

p + · · ·+ C0,i−1x
i−1 + y0)ρ0 . . .

(Cn,pq
npxp + · · ·+ Cn,i−1q

n(i−1)xi−1 + yn)ρn

]
=

=
∑

(β,γ)∈C(P )

Li
(β,γ)(T(α,ρ), C

i
0, . . . , C

i
n)xαyγ0

0 . . . yγn
n

where Ci
k = (qkpCk,p, . . . , q

k(i−1)Ck,i−1) and Li
(β,γ) is a polynomial with non-

negative coefficients.
The polynomial Li = Li

(a+i,0) = Coeffxa+i(Hi) has the following form
(8)

Li
(a+i,0) =

∑
(β,γ,d)∈Fi

Bi
(β,γ,d)T(β,γ)q

η(d)C
d0,p

0,p . . . C
d0,i−1

0,i−1 . . . C
dn,p
n,p . . . C

dn,i−1

n,i−1 ,

where Bi(β, γ, d) ∈ N and

(β, γ, d) = (β, γ0, . . . , γn, d0,p, . . . , d0,i−1, . . . , dn,p, . . . , dn,i−1)

η(d) =
∑

k=0,...,n
l=p,...,i−1

kldk,l

and the summation set Fi in (8) comprises those (β, γ, d) for which the
following formula holds:

a + i = β + pd0,p + · · ·+(i− 1)d0,i−1 + · · ·+ pdn,p + · · ·+ (i− 1)dn,i−1 =

= pdp + · · ·+ (i− 1)di−1.

If we write ci
j =

(
qjpcp, q

j(p+1)cp+1, . . . , q
j(i−1)ci−1

)
, then

Hi(A(α,ρ), c
i
0, . . . , c

i
n, x, y0, . . . , yn) = Pi−1, i > p

and hence
Coeffxa+i(Pi−1) = Li(A(α,ρ), c

i
0, . . . , c

i
n).

Corollary 3. If g(x) is a solution of P and the pivot point of P with respect
to g has ordinate 1, then

(9) ciΨ(i) = −Li(A(α,ρ), c
i
0, . . . , c

i
n), for i > p.

4. The Gevrey bound

Let P be the power series

P =
∑

(a,ρ)∈N×Nn+1

A(α,ρ)x
αyρ0

0 . . . yρn
n
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We say that P has q−Gevrey order t + 1 (see [14] and [15]) if

βt(P ) =
∑ A(α,ρ)

|q|t(α+|ρ|)(α+|ρ|+1)/2
xαyρ0

0 . . . yρn
n ∈ C{x, y0, . . . , yn}

(the exponent on the |q| is t times the sum 1+ · · ·+(α+ |ρ|), which appears
quite naturally in this context).

As in [13] and [3], let

s = max
{{

k − r

ek − a

∣∣∣ lk = 1, r < k ≤ n

}
∪ {0}

}
, where Qek

= (ek, lk)

Theorem 2. If P has q−Gevrey order t+1, then any solution g of P whose
pivot point has height 1, has q−Gevrey order s + t + 1.

Proof. (compare with [3])
Consider the algebraic equation (for some K, k2 ∈ N later to be specified)

xaw =
|q|k2p

|q|s
p(p+1)

2

|cp|xa+p + · · ·+
∑

P(α,ρ)∈C′(P )

K|q|k2i|A(α,ρ)|xαwρ0 . . . wρn

where C′(P ) is the whole cloud of points of P without (a, 1) and (a + p, 0).
This equation has obviously a unique solution w(x)

w(x) =
|q|k2p

|q|s
p(p+1)

2

|cp|xp +
∞∑

i=p+1

c′ix
i,

whose coefficients c′i satisfy the recursive formula

c′i = Li(K|q|k2i|A(α,ρ)|, c′p, . . . , c′i−1, . . . , c
′
p, . . . , c

′
i−1) for i > p,

c′p =
|q|k2p

|q|s
p(p+1)

2

.

Assume that

(10) |cj | ≤
|q|s

j(j+1)
2

|q|k2i
c′j , for j = p, . . . , i− 1.

By Corollary 3, we have

|ci| ≤
1

|Ψ(i)|
|Li(A(α,ρ), c

i
0, . . . , c

i
n)| ≤

≤ 1
|Ψ(i)|

∑
(β,γ,d)∈Fi

Bi
(β,γ,d)|A(β,γ,d)|

K|q|k2β

K|q|k2β
|c′p|dp . . . |c′i−1|di−1 · ri(β, γ, d),

(11)
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where dl = d0,l + · · ·+ dn,l and

ri(β, γ, d) =
|q|s

p(p+1)
2

dp . . . |q|s
(i−1)(i)

2
di−1

|q|k2pdp . . . |q|k2(i−1)di−1
|q|

P
kldk,l =

|q|
Pi−1

l=p s
l(l+1)

2

|q|k2(a+i−β)
|q|

P
kldk,l

where the last exponent is∑
k=1,...,n

l=p,...,i−1

kldk,l = pd1,p + · · ·+(i−1)d1,i−1 + · · ·+npdn,p + · · ·+n(i−1)dn,i−1.

If for all (β, γ, d) in Fi,

(12) Ri(β, γ, d) =
1

K|Ψ(i)||q|k2β
ri(β, γ, d) ≤ |q|s

i(i+1)
2

|q|k2i
,

then one has that

|ci| ≤ Li(A(α,ρ), c
i
0, . . . , c

i
n) · |q|

s
i(i+1)

2

|q|k2i
≤ c′i

|q|s
i(i+1)

2

|q|k2i

which implies inequality (10) for all j ≥ p and we are done.
Thus, we only need to prove the bound in (12). There are two completely

different cases: s = 0 and s 6= 0.
Case s = 0: we are done if we show that for some K, k2 >> 0 the

following inequality holds:
1

K|Ψ(i)||q|k2β|q|k2(a+i−β)
|q|

P
kldk,l ≤ 1

|q|k2i
.

We know that |Ψ(i)| ' |q|ri = |q|ni (because r = n in this case, as s = 0).
By definition,

a + i = β + pdp + · · ·+ (i− 1)di−1,

hence
∑

kldk,l ≤ n
∑

ldkl = n(a + i− β). Thus,

ri(β, γ, d) ≤ 1
K|Ψ(i)||q|k2(a+i)

|q|n(a+i−β) ≤

≤ 1
|q|ni|q|k2a|q|k2i

|qna||q|ni ≤ 1
|q|k2i

if K >> 0 and k2 > n (actually K|Ψ(i)| > |q|ni).
Case s = s1

s2 6= 0, with s1, s2 ∈ N. We distinguish two new cases: |d| = 1
and |d| > 1, where |d| = dp + · · ·+ di−1.

Subcase a: |d| = 1. Let (k, l) be the only pair such that dk,l = 1 (hence
dl = 1 as well). We are obviously done if we show that for i >> 0,

(13) s1
l(l + 1)

2
+ s2kl ≤ s1

i(i + 1)
2

+ s2ri
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independently of (k, l) (recall that in any case, l ≤ i−1). If k ≤ r the bound
is obvious. If, on the other hand, k > r, let e′k = ek − a. We know that
a + i = β + l (and by definition, β ≥ ek), so that l ≤ i− (ek − a) = i− e′k.
Hence, (13) holds if the following inequality does:

(14) s1
(i− e′k)(i− e′k + 1)

2
+ s2k(i− e′k) ≤ s2ri + s1

i(i + 1)
2

,

which is equivalent to
s2ki ≤ s1ie

′
k + s2ri.

This last equation can be written

s2(k − r) ≤ s1(ek − a),

which is true by definition of s = s1/s2.
Subcase b: |d| > 1. The inequality we have to prove is, for i >> 0 (or,

what amounts to the same, for p >> 0):

(15) s1

i−1∑
l=p

l(l + 1)
2

dl + s2

∑
kldk,l ≤ s1

i(i + 1)
2

+ ris2 + k2s2(a + i).

Let us enumerate p ≤ l0 ≤ · · · ≤ lh those indices for which dl 6= 0. Recall
that a + i = β + l0dl0 + · · ·+ lhdlh .

Again we distinguish two possibilities: lh ≤ a+i
2 and lh > a+i

2 .
If all the indices are less than or equal to a+i

2 , the LHS of (15) is bounded
by

(1 + · · ·+ l0)dl0 + · · ·+ (1 + · · ·+ lh)dlh + s2ni,

which is easily seen to be bounded, as well, by

s1 · 2 ·
(

1 + · · ·+
⌊

a + i

2

⌋)
+ s2ni = s1

i2

4
+ O(i)

whereas the RHS of (15) is a polynomial of degree 2 in i starting with s1
i2

2 ,
and we are done in this case (taking p >> 0).

On the other hand, if lh > a+i
2 , then dlh = 1 and the LHS of (13) is

bounded by

(1 + · · ·+ l0)dl0 + · · ·+ (1 + · · ·+ lh)dlh + s2ni ≤
≤ (1 + · · ·+ p) + (1 + · · ·+ i− p + a) + s2ni,

which is
i2 + i(2a− 2p + 1 + 2s2n) + a2 + a + p2 − 2ap− p

2
,

while the RHS is greater than

i2 + i

2
,

so that if p >> 0, the bound holds. �

For the general case, we need to improve the definition of s
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Definition 9. Let g(x) =
∑∞

i=n+1 cix
i be a solution of P and Q(P, g) be the

pivot point of P with respect to f . Consider the set

E(P, g) =
{

ρ ∈ Nn+1
∣∣ Qρ(P, g) = (a, b) with |ρ| = b

}
.

For ρ ∈ E(P, g), if ρr > 0, let γ
r

= ρ− er = (ρ0, . . . , ρr − 1, . . . , ρn). For all
j > r, write Qγ

r
+ej

(P, g) = (er,j , kr,j) and consider

sr(ρ) = max
{{

j − r

er,j − a

∣∣ j > r and kr,j = b

}
∪ {0}

}
,

s(ρ) = min
{
sr(ρ)

∣∣ρr > 0
}

,

and define

(16) s(P, g) = min
{
s(ρ)

∣∣ ρ ∈ E(P, g)
}

.

Then we have

Theorem 3. Let g be a solution of P . If P has q−Gevrey index t + 1, then
g has q−Gevrey index s(P, f) + t + 1.

Proof. If Q(P, g) = (a, 1) then the result is Theorem 2. Assume hence that
s(P, g) = sr(ρ) for ρ ∈ E(P, g). This means that Qγ

r
(P, g) = Q(P, g) =

(a, b) and |γ|r = b − 1. By Proposition 1, the series g is a solution of P ′,
being

P ′ =
∂P

∂y
γr,0

0 . . . ∂y
γr,n
n

where γ = (γr,0, . . . , γr,n). By Lemma 5, Q(P ′, g) = (a′, 1) and the corre-
sponding s in Theorem 2 for P ′ is exactly sr(ρ) = s(P, g). �

5. Rational rank of solutions for order and degree 1

5.1. Order and degree 1. In this specific case, the above can be greatly
improved, using the following lemmas. Assume in what follows that P is of
order and degree 1 (that is, P is of the form A(x, y0) + B(x, y0)y1.

Let g(x) ∈ F be a solution of P and denote, as before, Pγ = P [y+bg(x)cγ ]
for γ ∈ Γ, the set of exponents of Γ. Fix γ ∈ Γ and let γ+ be the next element
of Γ.

Lemma 6. If γ+ is an exceptional slope for Pγ corresponding to a corner
of N (Pγ) and c is any nonzero coefficient, then the Newton polygon of Pγ′

has a corner at height 1 and Pγ′ has no exceptional slopes greater than γ+.

Proof. Let Φγ′(P ) be the initial form of P for slope γ′. We only need to
show that Φγ′(Pγ′) has a point at height 1 and no point at height 0. But,
since γ′ meets N (Pγ) at a single point,

Φγ′(Pγ)(x, y, σ(y)) = Aα,j,0x
αyj

0 + Bα,j−1,1x
αyj−1

0 y1,
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for just one (α, j) (the coordinates of the point). The translation y = ȳ+cxγ′

works as follows

Φγ′(P )(x, y, σ(y)) = (...) = QP
γ′(c)x

νγ′ (P ) + σ(ȳ0)Bγ,j−1,1c
j−1xα+γ′(j−1).

On one hand, Q
Pγ

γ′ = 0 by hypothesis and on the other, Bγ,j−1,1 6= 0 (because

otherwise Q
Pγ

γ′ would not be 0, γ′ corresponding to a single point of N (P )).
Thus, the translation gives rise to the point (νγ′(P )−1, 1) = (γ+γ′(j−1), 1)
in C(P̄ ) and (since PP

γ′ = 0) the point (νγ′(P ), 0) does not belong to C(P̄ ),
which makes it a corner of N (P̄ ).

The second part is an easy computation �

Lemma 7. Let g(x) ∈ F be a solution of P

g(x) =
∑
γ∈Γ

gγxγ .

Then there is at most one γ ∈ Γ which is an exceptional slope of a corner
(of the corresponding Netwon polygon).

Proof. Without loss of generality, we may assume the first exponent γ0 in
g(x) corresponds to an exceptional slope at a corner (a, b) of N (P ). Assume
there are at least two exceptional slopes. Let Φγ0(P ) = Axayb

0 + Bxayb−1
0 y1

be the initial form at (a, b). From the defition of exceptional slope,

qγ0 = −A/B.

A straightforward computation gives

Φγ0(P )(x, y0 + cxγ0 , y1 + cqγ0xγ0) = (. . . )+

+ xα+γ0(b−1)(bAcb−1 + (b− 1)Bcb−1qγ0)y0 + xα+γ0(b−1)Bcb−1

(where we show only the terms at the pivot point of P̄ ), so that any other
exceptional slope η should give

qη = −bAcb−1 + (b− 1)Bcb−1qγ0

Bcb−1
= qγ0 ,

and we are done.
�

From these two lemmas we deduce

Corollary 4. Any Hahn series g(x) ∈ F solution of a formal q−difference
equation P = A(x, y)+B(x, y)σ(y) of order and degree 1 has at most rational
rank 2.



NEWTON-PUISEUX POLYGON OF NON-LINEAR q−DIFFERENCE EQUATIONS 14

References

1. C. R. Adams, On the linear ordinary q−difference equation, Ann. of Math. 30 (1928-
1929), no. 1, 195–205.

2. J. Cano, An extension of the Newton-Puiseux polygon construction to give solutions
of pfaffian forms, Ann. de L’Institut Fourier (1993), no. 43, 125–142.

3. , On the series defined by differential equations, with an extension of the
Puiseux Polygon construction to these equations, Analysis (1993), no. 13, 103–117.

4. J. Cano and P. Fortuny Ayuso, The space of generalized formal power series solution
of an ordinary differential equation, Astérisque (2009), no. 323, 61–81.

5. C. Christenson, Newton’s method for resolving affected equations, College Mathematics
Journal 27 (1996), no. 5, 330–340.

6. H. B. Fine, On the functions defined by differential equations, with an extension of the
Puiseux Polygon construction to these equations, Amer. J. Math. 11 (1889), 317–328.
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