
Differential systems with Fuchsian linear part:
correction and linearization, normal forms and matrix

valued orthogonal polynomials

Rodica D. Costin

Ohio State University

R.D. Costin (OSU) ODEs: semilocal linealization 1 / 22



Lazarus Fuchs
Born on 5 May 1833 in Mosina, Grand Duchy of Poznań
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Motivation

Equations have been thoroughly studied near one singularity, but few
results (if any) in regions with two (or more) singularities.

Start the study with the simplest type of singularity: regular.
Then, irregular singularities could be studied by coalescence (limits
when regular singular points tend to coincide).

Integrability of complex ODEs - existence of independent,
single-valued first integrals.
Equations ”known” (i.e. strongly suspected) to be non-integrable
reduce to differential systems with Fuchsian linear part (RDC - ’96,
’97).

Results with a similar flavor (connected?):
I Écalle and Vallet showed that resonant systems are linearizable after

appropriate correction (1998);
I Gallavotti showed that there exists appropriate corrections of

Hamiltonian systems so that the new system is integrable (1982),
convergence proved by Eliasson (1988).
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Differential equation in the complex domain

We consider ordinary differential equations

du

dx
= F(u, x), u ∈ Cd

, x ∈ C ≡ C ∪ {∞}

where F is analytic on a domain DF ⊂ Cd × C.

Definition

(u0, x0) is a regular point (of the equation) if F is analytic at (u0, x0).

Definition

(u0, x0) is a singular point (of the equation) if F is not analytic at (u0, x0).

We will consider here u0 = 0.
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Analytic Equivalence

Definition

Two equations

(EF ) :
du

dx
= F(x ,u); (EG ) :

dw

dz
= G(z ,w)

are analytically equivalent in the domains DF, respectively DG if they are
transformed into each other after an analytic change of variables.

(The change of coordiantes (x ,u) = H(z ,w) should be a biholomorphism
H : DG −→ DF -possibly local.)

Question: what is the simplest form an equation can have after an analytic
change of variables? Normal form.
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Any two equations are equivalent near one regular point

The Rectification Theorem

Let (u0, x0) be a regular point of F. Then

du

dx
= F(x ,u),

dw

dz
= 0

are analytically equivalent in a small neighborhood DF of (u0, x0),
respectively a small neighorhood D0 of (0, 0)

So equations can be distinguished by

looking near singular points

looking at larger domains
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Near a regular singular point not all equations are
equivalent

Consider equations with u = 0 stationary point: F(0, x) ≡ 0.

du

dx
=

1

x
L(x)u +

1

x
f(x ,u)

with f(x ,u) having a zero of order 2 at u = 0 (so f is the nonlinear part of
the equation). Assume L, f analytic at x = 0,u = 0.
Note: x = 0 is a regular singular (Fuchsian) point of the linear part.
How much can we simplify the equation near (0, 0)?

Theorem: invariants

Any analytic change of coordinates preserves the spectrum of L(0).

So we can at most hope to bring the equation to the form

dw

dx
=

1

x
L(0)w

R.D. Costin (OSU) ODEs: semilocal linealization 6 / 22



Near a regular singular point not all equations are
equivalent

Consider equations with u = 0 stationary point: F(0, x) ≡ 0.

du

dx
=

1

x
L(x)u +

1

x
f(x ,u)

with f(x ,u) having a zero of order 2 at u = 0 (so f is the nonlinear part of
the equation). Assume L, f analytic at x = 0,u = 0.
Note: x = 0 is a regular singular (Fuchsian) point of the linear part.
How much can we simplify the equation near (0, 0)?

Theorem: invariants

Any analytic change of coordinates preserves the spectrum of L(0).

So we can at most hope to bring the equation to the form

dw

dx
=

1

x
L(0)w

R.D. Costin (OSU) ODEs: semilocal linealization 6 / 22



Near a regular singular point not all equations are
equivalent

Consider equations with u = 0 stationary point: F(0, x) ≡ 0.

du

dx
=

1

x
L(x)u +

1

x
f(x ,u)

with f(x ,u) having a zero of order 2 at u = 0 (so f is the nonlinear part of
the equation). Assume L, f analytic at x = 0,u = 0.
Note: x = 0 is a regular singular (Fuchsian) point of the linear part.
How much can we simplify the equation near (0, 0)?

Theorem: invariants

Any analytic change of coordinates preserves the spectrum of L(0).

So we can at most hope to bring the equation to the form

dw

dx
=

1

x
L(0)w

R.D. Costin (OSU) ODEs: semilocal linealization 6 / 22



Near a regular singular point not all equations are
equivalent

Consider equations with u = 0 stationary point: F(0, x) ≡ 0.

du

dx
=

1

x
L(x)u +

1

x
f(x ,u)

with f(x ,u) having a zero of order 2 at u = 0 (so f is the nonlinear part of
the equation). Assume L, f analytic at x = 0,u = 0.
Note: x = 0 is a regular singular (Fuchsian) point of the linear part.
How much can we simplify the equation near (0, 0)?

Theorem: invariants

Any analytic change of coordinates preserves the spectrum of L(0).

So we can at most hope to bring the equation to the form

dw

dx
=

1

x
L(0)w

R.D. Costin (OSU) ODEs: semilocal linealization 6 / 22



Normal from near a regular singular point

Generic systems are indeed linearizable locally:

Theorem

If σ(L(0)) is not ’too close’ to resonance then ∃ u = h(x ,w) analytic for
|x | < ε, |u| < ε1

du

dx
=

1

x
L(x)u +

1

x
f(x ,u) ⇐⇒ dw

dx
=

1

x
L(0)w

Consequence

The study of the local analytic properties of nonlinear systems reduces to
the study of linear equations with (almost) constant coefficients.

Note: a diophantine condition is needed!
Note: the result is local, in small enough neighborhoods!
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Can equations be simultaneously linearized near two
singularities?

E.g., instead of
du

dx
=

1

x
L(x)u +

1

x
f(x ,u) for x near 0, consider

du

dx
=

(
1

x
A +

1

x − 1
B

)
u +

1

x(x − 1)
f(x ,u)

for x in a domain containing both singularities x = 1 and x = 0.
A change of variables analytic at both x = 0 and x = 1 preserves both
σ(A) and σ(B).
Question: Perhaps for x ∈ D 3 0, 1 the equation is equivalent to

dw

dx
=

(
1

x
A +

1

x − 1
B

)
w

In other words, is the equation linearizable simultaneous at x = 0 and
x = 1?
This type of semi-local questions received very little attention.
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Linearizability and integrability are equivalent

Linearizability and integrability are equivalent - at least in the generic case,
in the scalar case:

Theorem (RDC, M.D. Kruskal, Nonlin.’03)

If the equation
du

dx
=

(
a0
x

+
a1

x − 1

)
u +

1

x(x − 1)
f (x , u)

is not analytically linearizable
then for generic a0, a1 (precise conditions given) no single-valued integrals
exist for x in a domain encircling both singularities.

Question: when is the equation linearizable near both singularities?
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Answer to the simultaneous linearization question

In the general multi-dimensional setting:

(nl)
du

dx
=

(
1

x
A +

1

x − 1
B

)
u +

f(x ,u)

x(x − 1)
(l)

dw

dx
=

(
1

x
A +

1

x − 1
B

)
w

Question: Are the equations equivalent for x in a domain containing both
singularities x = 1 and x = 0?
Answer: No.
∃! u = h0(x ,w) analytic at x = 0 s.t. (nl) ⇔ (l).
and ∃! u = h1(x ,w) analytic at x = 1 s.t. (nl) ⇔ (l).

But h0 6= h1. (h0 is ramified at x = 1 and h1 is ramified at x = 0.)

If we do not take NO for an answer, then...
Question 2: Which systems (nl) are linearizable?
Question 3: What are the normal forms of equations (nl)?
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Linearization after Correction; Normal Form.

Theorem - Linearization after correction (RDC, Nonlin. 2008)

For any f there exists a unique correction φ(u) (formal series) so that

(Ef−φ)
du

dx
=

(
1

x
A +

1

x − 1
B

)
u +

f(x ,u)− φ(u)

x(x − 1)

is (formally) linearizable (assuming A,B non-resonant).

Convergence of the correction φ(u) was proved on a subclass.

Theorem - Normal Form (RDC, Nonlin. 2008)

Assume A,B non-resonant. For any f there exists a unique series ψ(u) so
that (Ef) is formally equivalent to

dw

dx
=

(
1

x
A +

1

x − 1
B

)
w +

ψ(u)

x(x − 1)
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Linearization after Correction; Normal Form.
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For many singularities: Correction and Linearization

du

dx
= A(x)u +

f(x ,u)

Q(x)

with A(x) =
S+1∑
j=0

1

x − pj
Aj (Fuchsian matrix), Q(x) =

S+1∏
j=0

(x − pj)

Theorem (RDC, Nonlin. 2008, J.Diff.Eq. 2009)

Assume A0, . . . ,AS+1,A∞ =
∑

Aj are nonresonant.

Then ∃ unique correction φ(x ,u) =
∑

m∈Nd , |m|≥2

φm(x)um (formal)

where φm(x) are polynomials in x of deg. ≤ S , s.t. the corrected system
du

dx
= A(x)u +

f(x ,u)− φ(x ,u)

Q(x)
is (formally) linearizable.

Note. Equation (*) is linearizable iff φ(x ,u) ≡ 0, so
the unique correction φ is the obstruction to linearizability.
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Normal forms

Since equations are not necessarily linearizable, then they are not all
equivalent either. Classification of these equations by specifying formal
normal forms:

Theorem (RDC, J.Diff.Eq. 2009)

Assume non-resonance. For any f(x ,w) analytic on D × {|w| < r}
there exists a unique formal series p(x ,w) =

∑
m∈Nd , |m|≥2

pm(x)wm

where pm(x) are polynomials in x of degree at most S , such that
du

dx
= A(x)u +

f(x ,u)

Q(x)
⇐⇒

dw

dx
= A(x)w +

p(x ,w)

Q(x)

through u = h(x ,w) = w +
∑

hm(x)wm with hm(x) analytic on D.
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Normal forms in regions with regular singular points
(generic cases)

In a region containing one sing. point (x ,u) = (0, 0):

x
du

dx
= L0u + f(x ,u) ⇔ x

dw

dx
= L0w

(keep the linear part)
In a region with two sing. points (0, 0), (p1, 0):

x(x − p1)
du

dx
= (L0 + xL1)u + f ⇔ x(x − p1)

dw

dx
= (L0 + xL1)w +ψ0(w)

(keep linear part + some nonlinear terms)
In a region with region with three sing. points (0, 0), (p1, 0), (p2, 0):

x(x − p1)(x − p2)
du

dx
= (L0 + xL1 + x2L2)u + f(x ,u) ⇔

x(x − p1)(x − p2)
dw

dx
= (L0 + xL1 + x2L2)w +ψ0(w) + xψ1(w)

(keep linear part + more nonlinear terms)
Etc.
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What was proved and what was not proved

Formal results: find series for
I correction φ(x ,u) =

∑
m

pm(x)um with pm(x) polynomials, and

I equiv. map h(x ,w) =
∑

m hm(x)wm, with hm(x) analytic at all pj

True under non-resonance conditions. Challenging!
For this we construct matrix-valued generalizations of Jacobi
polynomials, and of multiple-orthogonal polynomials.
(RDC: Nonlin. 2008, J.Diff.Eq. 2009, JAT 2009, 2009, 2010)

Analytic results: when are these series convergent?
I Theorem: φ,h converge in the commutative case, for two singularities,

eigenvalues with positive real parts. (RDC, Nolin. 2008)
Difficult proof! Steepest descent ; small denominators ;

improvement of a rapidly convergent algorithm.

I Conjecture: φ,h converge in general under diophantine conditions.

I Do normal forms converge? Perhaps not...
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A glimpse at the some proofs

A change of variables u = h(x ,w) provides a linearization iff

(∗∗) ∂xh + dwhA(x)w = A(x)h +
1

Q(x)
[f(x ,w + h)− φ(x ,w + h)]

Power series in w: denote by hn the homogeneous part degree n of
h(x ,w):

hn(x ,w) =
∑
|m|=n

hm(x)wm, (n ≥ 2), similarly fn, φn

(**) splits into blocks of systems of ordinary differential equations for
{hm}|m|=n:

∂xhn + dwhn A(x)w − A(x)hn =
1

Q(x)
Rn(x ,w), n ≥ 2

where Rn = fn − φn + R̃n with R̃n a polynomial in φm, hm, fm with
|m| < n, and R̃2 = 0.
Each hn and φn are to be determined inductively on n.
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Difficulties

(∗) ∂xhn + dwhn A(x)w − A(x)hn =
1

Q(x)
Rn(x ,w), n ≥ 2

Each hn and φn are to be determined from inductively on n.
Main difficulties

For systems with 1 sing., or for scalar equations: proving convergence,
due to small denominators.

For systems with two or more sing.: (*) cannot be solved explicitly in
the non-commutative case.

The second difficulty: we need to find conditions for (*) to have an
analytic solution.
Was tackled as follows.
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Tackling the recurrent Heun systems

(∗) ∂xhn+dwhn A(x)w−A(x)hn =
Rn(x ,w)

Q(x)
, (n ≥ 2), Q(x) =

S+1∏
j=0

(x−pj)

where hn = hn(x ;w) ∈ Pn are Cd -val. homog. polyn. in w, of degree n.

Let B(x) be lin. op. on Pn: B(x)hn = dwhn A(x)w − A(x)hn

A(x) =
S+1∑
j=0

1

x − pj
Aj =⇒ B(x) =

S+1∑
j=0

1

x − pj
Bj

where
Bj ∈ L(Pn), Bjq = dwqAjw − Ajq

Systems (*) are non-homogeneous Fuchsian systems!
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A Fundamental Lemma

The results follow using iteratively:

Lemma

y′(x) + B(x) y(x) =
g(x)

Q(x)

a Fuchsian equation with a non-homogeneous term (y ∈ CN) where

B(x) =
S+1∑
j=0

1

x − pj
Bj , and Q(x) =

∏S+1
j=0 (x − pj). Let D 3 p0, . . . pS+1.

Assume non-resonance: k + Bj are invertible for all j .
Then for any function g(x) analytic on D there exists a unique
φ(x) ∈ CN [x ], degφ ≤ S so that the corrected equation

y′(x) + B(x) y(x) =
g(x)− φ(x)

Q(x)

has a solution y(x) analytic on D.
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Idea of the proof

The simplest case: scalar, two singularities:

(∗) y ′(x) +

(
α

x − 1
+

β

x + 1

)
y(x) =

g(x)

(x + 1)(x − 1)

If g(x) = P
(α−1,β−1)
k then the unique analytic solution is y(x) = P

(α,β)
k−1 .

Then expand g(x) in Jacobi polynomials: g(x) =
∞∑
k=0

gkP
(α−1,β−1)
k .

Equation (*) has an analytic solution at both x = ±1 iff g0 = 0.
In this case, the analytic solution is

y(x) =
∞∑
k=1

gkP
(α,β)
k−1

For scalar equations, three singularities: use expansions in
Jacobi-Angelesco polynomials.
For higher dimensions: appropriate generalizations to matrix-valued
polynomials is done!
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(x + 1)(x − 1)

If g(x) = P
(α−1,β−1)
k then the unique analytic solution is y(x) = P

(α,β)
k−1 .

Then expand g(x) in Jacobi polynomials: g(x) =
∞∑
k=0

gkP
(α−1,β−1)
k .

Equation (*) has an analytic solution at both x = ±1 iff g0 = 0.
In this case, the analytic solution is

y(x) =
∞∑
k=1

gkP
(α,β)
k−1

For scalar equations, three singularities: use expansions in
Jacobi-Angelesco polynomials.
For higher dimensions: appropriate generalizations to matrix-valued
polynomials is done!
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Matrix-valued generalizations of Jacobi polynomials

Let B(x) =
S+1∑
j=0

1

x − pj
Bj Fuchsian matrix. Denote Q(x) =

S+1∏
j=0

(x − pj).

Let W (x) be a fundamental matrix for W ′(x) = W (x)B(x).

Theorem (RDC)

Pk(x) = W (x)−1
dk

dxk

(
Q(x)kW (x)x j

)
are matrix-valued polynomials.

Pn(x), n = (S + 1)m + i , m ∈ N, i = 0, 1, . . . ,S forms a complete set in
Md [x ] and are independent over M.

Like classical orthogonal polynomials, they satisfy a three-term relation,
orthogonality-like relations, Rodrigues’ formula.
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Further questions

Which linear equations are equivalent, in finite regions, to Fuchsian
ones?

Classification of linear equations.

Classification of nonlinear perturbations of second order, and higher,
differential equations.

Study the Henon-Heiles system and other Hamiltonian systems with
polynomial potential: for which parameters can they be linearized in
selected regions?
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