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Motivation

o Equations have been thoroughly studied near one singularity, but few
results (if any) in regions with two (or more) singularities.

o Start the study with the simplest type of singularity: regular.
Then, irregular singularities could be studied by coalescence (limits
when regular singular points tend to coincide).

o Integrability of complex ODEs - existence of independent,
single-valued first integrals.
Equations "known" (i.e. strongly suspected) to be non-integrable
reduce to differential systems with Fuchsian linear part (RDC - '96,
'97).
o Results with a similar flavor (connected?):
» Ecalle and Vallet showed that resonant systems are linearizable after
appropriate correction (1998);
» Gallavotti showed that there exists appropriate corrections of
Hamiltonian systems so that the new system is integrable (1982),
convergence proved by Eliasson (1988).
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Differential equation in the complex domain

We consider ordinary differential equations

%:F(u,x), ue@d, x € C=CU{oo}

where F is analytic on a domain Dg C Ed x C.
Definition

(ug, x0) is a regular point (of the equation) if F is analytic at (ug, xp). J
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Differential equation in the complex domain

We consider ordinary differential equations

%:F(u,x), ueC’ xeC=Cuix}

where F is analytic on a domain Dg C Ed x C.
Definition

(ug, x0) is a regular point (of the equation) if F is analytic at (ug, xp).

Definition

(ug, x0) is a singular point (of the equation) if F is not analytic at (ug, xo)

v

We will consider here ug = 0.
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Analytic Equivalence

Definition
Two equations

du dw
(€r): T =Flxu: (So): = =G(zw)
are analytically equivalent in the domains Dg, respectively Dg if they are

transformed into each other after an analytic change of variables.

(The change of coordiantes (x,u) = H(z,w) should be a biholomorphism
H : Dg — Dg -possibly local.)
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Analytic Equivalence

Definition
Two equations

(EF) : v F(x,u); (&): 4 G(z,w)

are analytically equivalent in the domains Dg, respectively Dg if they are
transformed into each other after an analytic change of variables.

(The change of coordiantes (x,u) = H(z,w) should be a biholomorphism
H : Dg — Dg -possibly local.)

Question: what is the simplest form an equation can have after an analytic
change of variables? Normal form.
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Any two equations are equivalent near one regular point

The Rectification Theorem

Let (ug, xo) be a regular point of F. Then

du dw

ax F(x,u), dz 0

are analytically equivalent in a small neighborhood D of (ug, x),
respectively a small neighorhood Dy of (0, 0)
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Any two equations are equivalent near one regular point

The Rectification Theorem

Let (uo, xp) be a regular point of F. Then

du dw

dx F(x,u), dz 0

are analytically equivalent in a small neighborhood D of (ug, x),
respectively a small neighorhood Dy of (0, 0)

So equations can be distinguished by
o looking near singular points

o looking at larger domains
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Near a regular singular point not all equations are
equivalent

Consider equations with u = 0 stationary point: F(0,x) =0.

du 1 1
ol ;L(x)u + ;f(x, u)

with f(x,u) having a zero of order 2 at u = 0 (so f is the nonlinear part of
the equation). Assume L, f analytic at x =0,u = 0.

Note: x = 0 is a regular singular (Fuchsian) point of the linear part.
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Near a regular singular point not all equations are
equivalent

Consider equations with u = 0 stationary point: F(0,x) = 0.

du 1 1
==L —f
LG)ut f(xu)

dx

with f(x,u) having a zero of order 2 at u = 0 (so f is the nonlinear part of
the equation). Assume L, f analytic at x =0,u = 0.

Note: x = 0 is a regular singular (Fuchsian) point of the linear part.

How much can we simplify the equation near (0, 0)?

Theorem: invariants

Any analytic change of coordinates preserves the spectrum of L(0). J

So we can at most hope to bring the equation to the form
dw

w1 ow

dx X
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Normal from near a regular singular point

Generic systems are indeed linearizable locally:

Theorem

If o(L(0)) is not 'too close’ to resonance then 3 u = h(x, w) analytic for
x| <€ |ul <e
du 1 1 dw

1
==y o f — Ww_2
= x (x)u+X (x,u) = x 0O)w
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Generic systems are indeed linearizable locally:

Theorem

If o(L(0)) is not 'too close’ to resonance then 3 u = h(x, w) analytic for
X <6 ful < e

du 1 1 dw 1

—— ~f — — =

=L ut_f(xu) = 1(0)w J
Consequence

The study of the local analytic properties of nonlinear systems reduces to
the study of linear equations with (almost) constant coefficients.

Note: a diophantine condition is needed!
Note: the result is local, in small enough neighborhoods!
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Can equations be simultaneously linearized near two
singularities?

d 1 1
E.g., instead of a_ —L(x)u+ —f(x,u) for x near 0, consider
dx x X

du 1 1 1
(—A—i— 18) u—l—X(—f(x,u)

dx  \x X — x—1)

for x in a domain containing both singularities x =1 and x = 0.
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du 1 1 1
dx (XA+X—1B> u+x(x—1)f(x’u)

for x in a domain containing both singularities x =1 and x = 0.

A change of variables analytic at both x = 0 and x = 1 preserves both
o(A) and o(B).
Question: Perhaps for x € D 3 0,1 the equation is equivalent to
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x =17
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E.g., instead of % = %L(x) u+ %f(x, u) for x near 0, consider

du 1 1 1
dx (XA+X—1B) u+x(x—1)f(x’u)

for x in a domain containing both singularities x =1 and x = 0.

A change of variables analytic at both x = 0 and x = 1 preserves both
o(A) and o(B).
Question: Perhaps for x € D 3 0,1 the equation is equivalent to

dw 1 1
P <XA+X_1B>W

In other words, is the equation linearizable simultaneous at x = 0 and
x =17

This type of semi-local questions received very little attention.
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Linearizability and integrability are equivalent

Linearizability and integrability are equivalent - at least in the generic case,
in the scalar case:

Theorem (RDC, M.D. Kruskal, Nonlin."03)

d 1
/f the equation d_i = %—l— Xa_ll) u+mf(x, u)

is not analytically linearizable
then for generic ag, a1 (precise conditions given) no single-valued integrals
exist for x in a domain encircling both singularities.

v

Question: when is the equation linearizable near both singularities?
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Answer to the simultaneous linearization question

In the general multi-dimensional setting:
du 1 1 f(x,u) dw 1 1
) —=|-A+——8B —— () —=(-A B
(n)dx (x +x—1 >u+x(x—1) ()dx (x +x—1 )w

Question: Are the equations equivalent for x in a domain containing both
singularities x = 1 and x = 07
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Question: Are the equations equivalent for x in a domain containing both
singularities x = 1 and x = 07

Answer: No.

3lu = ho(x,w) analyticat x =0 s.t. (nl) < (/).

and 31 u = hy(x,w) analyticat x=1 s.t. (nl) < (/).

But hg # hy. (hg is ramified at x =1 and h; is ramified at x = 0.)

If we do not take NO for an answer, then...
Question 2: Which systems (n/) are linearizable?
Question 3: What are the normal forms of equations (n/)?
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Linearization after Correction: Normal Form.

Theorem - Linearization after correction (RDC, Nonlin. 2008)

For any f there exists a unique correction ¢(u) (formal series) so that

is (formally) linearizable (assuming A, B non-resonant).
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Linearization after Correction; Normal Form.

Theorem - Linearization after correction (RDC, Nonlin. 2008)

For any f there exists a unique correction ¢(u) (formal series) so that

(€r-¢) % = (1A I B) u+ _f(x)’(z'j - S(U)

X x—1

is (formally) linearizable (assuming A, B non-resonant).

Convergence of the correction ¢(u) was proved on a subclass.

Theorem - Normal Form (RDC, Nonlin. 2008)

Assume A, B non-resonant. For any f there exists a unique series 7/(u) so
that (&) is formally equivalent to

dw:(lA—l- ! B)w-l— V()

dx X x—1 x(x —1)
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For many singularities: Correction and Linearization

du f(x,u)
a = A(X) u -+ Q(X)
S+1 1 S+1
with A(x) = Z s p-Aj (Fuchsian matrix),  Q(x) = H(x - pj)
j=0 J j=0

Theorem (RDC, Nonlin. 2008, J.Diff.Eq. 2009)

Assume Ay, ..., Asi1,Asx = ) Aj are nonresonant.

Then 3 unique correction ¢(x,u) = Z G (X)u™  (formal)
meN9,| |m|>2

where ¢,,(x) are polynomials in x of deg. < S, s.t. the corrected system

du f(X7u) — ¢(X7u)

T A

™ (x)u+ )

Note. Equation (*) is linearizable iff ¢(x,u) =0, so
the unique correction ¢ is the obstruction to linearizability.
12 /22

is (formally) linearizable.




Normal forms

Since equations are not necessarily linearizable, then they are not all

equivalent either. Classification of these equations by specifying formal
normal forms:

Theorem (RDC, J.Diff.Eq. 2009)

Assume non-resonance. For any f(x,w) analytic on D x {|w| < r}

there exists a unique formal series p(x,w) = Z P (x)W™
meN9, |m|>2

where p,,(x) are polynomials in x of degree at most S, such that

du f(x,u)

— = A(x)u :

dx (Ju+ Q(x)

dw p(x,w)
= A(x)w + )

through u = h(x,w) = w + > hpy(x)w™ with hy(x) analytic on D.
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In a region containing one sing. point (x,u) = (0, 0):

d
xd—z = LoL.I + f(x,u) xd—‘: = Low
(keep the linear part)
In a region with two sing. points (0,0), (p1,0):
du dw
x(x — pl)a = (Lo + xL1)u+f < x(x — pl)a = (Lo + xL1)w + tpg(w)

(keep linear part + some nonlinear terms)
In a region with region with three sing. points (0,0), (p1,0), (p2,0):

du
x(x = p1)(x — p2)— = (Lo + xL1 + x*Lo)u + f(x,u) <

dx
dw
X(x = p1)(x = p2)_— = (Lo + xL1 + X2 La)w + tpo(w) + x3py (w)
(keep linear part + more nonlinear terms)
Etc.
«O» «Fr» «Er» «E>» = Q>
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In a region containing one sing. point (x,u) = (0, 0):

du dw
Xa—Lolll—i-f(X,U)@ XE—LOW
(keep the linear part)

In a region with two sing. points (0,0), (p1,0):
dw

d
x(x — pl)—u = (Lo + xL1)u+f & x(x — p1) ™

™ = (Lo + xL1)w + 1pg(w)

In a region with region with three sing. points (0,0), (p1,0), (p2,0):

du
x(x — p1)(x — pg)a = (Lo + xL1 + x*Lo)u + f(x,u) <

x(x — p1)(x pz)% = (Lo + xL1 + x*L2)w + (W) + xtp; (w)

Etc.

«O» «Fr «=)>» <

3

tht
S
yel
)
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Normal forms in regions with regular singular points
(generic cases)

In a region containing one sing. point (x,u) = (0, 0):
d

xd—z = Lou+f(x,u) & Xd_‘: = Low

(keep the linear part)

In a region with two sing. points (0,0), (p1,0):

du
X(X — pl)— = (Lo =+ xLl)u +f
dx
R.D. Costin (OSU) ODEs: semilocal linealization
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Normal forms in regions with regular singular points
(generic cases)

In a region containing one sing. point (x,u) = (0, 0):
du w
e lutf(xu) s x—— =1

X ou + f(x,u) X oW

(keep the linear part)
In a region with two sing. points (0,0), (p1,0):

du dw
X(X — pl)a = (Lo +XL1)u +f < X(X — pl)g = (Lo —|—XL1)W + 1,[)0(W)
(keep linear part + some nonlinear terms)

R.D. Costin (OSU) ODEs: semilocal linealization 14 / 22



Normal forms in regions with regular singular points
(generic cases)

In a region containing one sing. point (x,u) = (0, 0):
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dx 0 ’ dx 0

(keep the linear part)

In a region with two sing. points (0,0), (p1,0):

du dw
x(x — pl)a =(Lo+xL)u+f < x(x — p1)

o (Lo + xL1)w + tpo(w)

(keep linear part + some nonlinear terms)
In a region with region with three sing. points (0,0), (p1,0), (p2,0):

d
x(x = p1)(x — pz)d—:: = (Lo + xL1 + x*Lo)u + f(x,u) <
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What was proved and what was not proved

o Formal results: find series for
» correction ¢(x,u) = Z P, (x)u™ with p,, (x) polynomials, and
m

> equiv. map h(x,w) = >"_hn(x)w™, with h,,(x) analytic at all p;
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For this we construct matrix-valued generalizations of Jacobi
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> equiv. map h(x,w) = th (x)w™, with hy,(x) analytic at all p;
True under non-resonance conditions. Challenging!
For this we construct matrix-valued generalizations of Jacobi
polynomials, and of multiple-orthogonal polynomials.
(RDC: Nonlin. 2008, J.Diff.Eq. 2009, JAT 2009, 2009, 2010)
o Analytic results: when are these series convergent?

» Theorem: ¢, h converge in the commutative case, for two singularities,
eigenvalues with positive real parts. (RDC, Nolin. 2008)
Difficult proof! Steepest descent ~» small denominators ~»
improvement of a rapidly convergent algorithm.
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> equiv. map h(x,w) = th (x)w™, with hy,(x) analytic at all p;
True under non-resonance conditions. Challenging!
For this we construct matrix-valued generalizations of Jacobi
polynomials, and of multiple-orthogonal polynomials.
(RDC: Nonlin. 2008, J.Diff.Eq. 2009, JAT 2009, 2009, 2010)
o Analytic results: when are these series convergent?

» Theorem: ¢, h converge in the commutative case, for two singularities,
eigenvalues with positive real parts. (RDC, Nolin. 2008)
Difficult proof! Steepest descent ~» small denominators ~»
improvement of a rapidly convergent algorithm.

» Conjecture: ¢, h converge in general under diophantine conditions.

» Do normal forms converge? Perhaps not...
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A glimpse at the some proofs
A change of variables u = h(x,w) provides a linearization iff

(#x)  Okh+ dyh A(x)w = A(x)h + —— [f(x,w + h) — ¢(x,w + h)]

1
Q(x)
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|m|=n
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Power series in w: denote by h, the homogeneous part degree n of
h(x,w):
h,(x,w) = Z hm(x)W™,  (n>2), similarly f,, ¢,
Im[=n

(**) splits into blocks of systems of ordinary differential equations for
{hm}|m|:n:

Oxhy + dwh, A(x)w — A(x)h, = Ro(x,w), n>2

1
Q(x)
where R, = f, — ¢, + R,, with R, a polynomial in ¢, hpm, fm with
Im| < n, and Ry = 0.
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(+)  Och+ deh A(x)w = ACOh + Q(lx) [Fx, w + h) — (x, w + )]

Power series in w: denote by h, the homogeneous part degree n of
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h,(x,w) = Z hm(x)W™,  (n>2), similarly f,, ¢,

|m|=n

(**) splits into blocks of systems of ordinary differential equations for
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Oxhy + dwh, A(x)w — A(x)h, = Ro(x,w), n>2

1
Q(x)
where R, = f, — ¢, + R, with R, a polynomial in ¢, hm, fm with
Im| < n, and Ry, = 0.
Each h, and ¢,, are to be determined inductively on n.
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Difficulties

1
Q(x)

Each h, and ¢,, are to be determined from inductively on n.
Main difficulties
o For systems with 1 sing., or for scalar equations: proving convergence,
due to small denominators.
o For systems with two or more sing.: (*) cannot be solved explicitly in
the non-commutative case.
The second difficulty: we need to find conditions for (*) to have an
analytic solution.
Was tackled as follows.

(%) Oxhp, + dwh, A(x)w — A(x)h, = R,(x,w), n>2
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Tackling the recurrent Heun systems

S+1
(*) dchp+dwh, A(x)w—A(x)h, = M, (n>2), Qx) = [[(x—py)
Q(x) i

where h, = h,(x;w) € P, are C?-val. homog. polyn. in w, of degree n.
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Tackling the recurrent Heun systems

S+1
(¥) Oxhpt+dwh, A(x)w—A(x)h, = M, (n>2), Qx) = [[(x—py)
Q(x) i

where h, = h,(x;w) € P, are C?-val. homog. polyn. in w, of degree n.

Let B(x) be lin. op. on Pp: B(x)h, = dwh, A(x)w — A(x)h,

S+1 1 S5+1 1
A(x) = A = B(x)= B;
jZ_;X—Pj ’ = x—p

where
Bj € L(Pn), Bjgq=dwqAjw — Ajq

Systems (*) are non-homogeneous Fuchsian systems!
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A Fundamental Lemma

The results follow using iteratively:

Lemma
'(x) + B(x)y(x) = 8(x)
V() + By() = 555
a Fuchsian equation with a non-homogeneous term (y € CN) where
S+1
1
B(x)=)_ Xfp_sj, and Q(x) = [T (x — pj).  Let D> po,...psi1.
j=0 !

Assume non-resonance: k + B; are invertible for all j.
Then for any function g(x) analytic on D there exists a unique
@(x) € CV[x], degp < S so that the corrected equation

OR0

V() + Bl)y(x) = EXeS

has a solution y(x) analytic on D.
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The simplest case: scalar, two singularities:

O YW (g )=

(x+1)(x—1)
If g(x) = Pl(:"*l’dfl) then the unique analytic solutlon is y(x) = ,D/((“'*f)_
Then expand g(x) in Jacobi polynomials: g(x Zg ,D a-1,5-1)

Equation (*) has an analytic solution at both x = il iff gg=0
In this case, the analytic solution is

ngp F)

: use expansions in
Jacobi-Angelesco polynomials.

. appropriate generalizations to matrix-valued
polynomials is done!
R.D. Costin (OSU)
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|dea of the proof

The simplest case: scalar, two singularities:

) o B B g(x)
() Y9+ (x 1" x—+1> Y= o)

If g(x) = P,((a_l’ﬁ_l) then the unique analytic solution is y(x) = P,((o_"f).
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Idea of the proof

The simplest case: scalar, two singularities:

(*) y’(x)—|-< @ + B >y(x)—( g(x)

x—1 x+1 x+1)(x—1)

If g(x) = P,Sa_l’ﬂ_l) then the unique analytic solution is y(x) = Pl(("jf),
o0

Then expand g(x) in Jacobi polynomials: g(x) = ngpl((a—l,ﬁ—l)_
k=0

Equation (*) has an analytic solution at both x = L1 iff g = 0.
In this case, the analytic solution is

y(x) = &Py
k=1
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The simplest case: scalar, two singularities:

, @ B B g(x)
0 v+ ()= ey

If g(x) = P,Sa_l’ﬂ_l) then the unique analytic solution is y(x) = Pf(‘ff),
o0

Then expand g(x) in Jacobi polynomials: g(x) = ngpl((a—l,ﬁ—l)_
k=0

Equation (*) has an analytic solution at both x = L1 iff g = 0.
In this case, the analytic solution is

y(x) = &Py
k=1

For scalar equations, three singularities: use expansions in
Jacobi-Angelesco polynomials.
For higher dimensions: appropriate generalizations to matrix-valued

polynomials is done!
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Matrix-valued generalizations of Jacobi polynomials

S5+1 S5+1

Let B(x) = Z o p-Bj Fuchsian matrix. Denote Q(x) = H(x - pj)-
j=0 J Jj=0

Let W(x) be a fundamental matrix for W/(x) = W(x)B(x).
Theorem (RDC)

k .
Pr(x) = W(x)_1% (Q(x)kW(x)xJ> are matrix-valued polynomials.

Py(x), n=(S+1ym+i, meN, i=0,1,...,S forms a complete set in
M[x] and are independent over M.

Like classical orthogonal polynomials, they satisfy a three-term relation,
orthogonality-like relations, Rodrigues’ formula.
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Further questions

o Which linear equations are equivalent, in finite regions, to Fuchsian
ones?

o Classification of linear equations.

o Classification of nonlinear perturbations of second order, and higher,
differential equations.

o Study the Henon-Heiles system and other Hamiltonian systems with
polynomial potential: for which parameters can they be linearized in
selected regions?
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