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Introduction and Known Results
Let X = (x1, . . . , xn) ∈ Cn.

We consider the following 1st order PDE; n∑
i,j=1

aijxi∂xj + c

u(X)(1)

=
n∑

i=1

bjxj + f2(X,u, ∂Xu)

u(0) = 0,
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where aij , bj , c ∈ C, f2(tX, tξ, η) = O(t2).
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Let A = (aij)i,j=1,...,n and {λj}j=1,...,n be the

eigenvalues of A. We know the following results;

Theorem 1� �
(i) {λj} satisfy the Poincaré condition, then the

formal solution u(X) converges in a neighborhood

of the origin.

(ii) Assume λj = 0 for all j = 1, . . . , n. If c ̸= 0,

then the formal solution u(X) exists uniquely, and

it belongs to the Gevrey class of order at most 2n.� �
Problem In Theorem 1 (ii), if λj = 0 (∀j) and c = 0

⇒ Is u(X) convergent?



A Typical Example
Let X = (x, y, z) ∈ C3. We consider the following simple

operator of nilpotent type;

P := y∂x − z∂y = (x, y, z)

 0 0 0
1 0 0
0 −1 0

 ∂x
∂y
∂z

 .



A Typical Example
Let X = (x, y, z) ∈ C3. We consider the following simple

operator of nilpotent type;

P := y∂x − z∂y = (x, y, z)

 0 0 0
1 0 0
0 −1 0

 ∂x
∂y
∂z

 .

For this operator, we research on the conditions of the

mapping on the convergent power series of the form

u(X) =
∞∑

i,j=0

uij(x)y
izj ∈ Ox{y, z} (or OX).
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Namely, we research of the mapping

P : OX → OX .

We put

Ox[y, z]p =

 ∑
i+2j=p

fij(x)y
izj ; fij(x) ∈ Ox

 .

(The set of quasi-homogeneous polynomials w.r.t. (y, z))

Remark The degree i+ 2j is important.

y∂x : uij(x)y
izj 7→ u′

ij(x)y
i+1zj (deg= i+ 2j + 1)

z∂y : uij(x)y
izj 7→ iuij(x)y

i−1zj+1 (deg= i+ 2j + 1)

P : Ox[y, z]p → Ox[y, z]p+1, p = 0, 1, 2, . . . .



Result
For the mapping P : OX → OX , we have



Theorem 2� �
Pu(X) = f(X), we have
(i) f(X) ∈ Im(P ;OX) ⇔ f(x, 0, 0) ≡ 0 and

n+1∑
k=0

(2k − 1)!!

(2n + 1)!!
D

n+1−k
x f2k,n+1−k(x) ≡ 0

for n = 0, 1, 2, . . ., where
(2k − 1)!! = 1 · 3 · · · (2k − 1), (−1)!! := 1.

(ii) Ker(P ;OX) where

K :=

{
v(y, z) =

∞∑
n=0

m∑
k=0

C2n−2k,ky
2n−2k

z
k ∈ Oy,z

}

� �



Theorem 2� �
Pu(X) = f(X), we have
(i) f(X) ∈ Im(P ;OX) ⇔ f(x, 0, 0) ≡ 0 and

n+1∑
k=0

(2k − 1)!!

(2n + 1)!!
D

n+1−k
x f2k,n+1−k(x) ≡ 0

for n = 0, 1, 2, . . ., where
(2k − 1)!! = 1 · 3 · · · (2k − 1), (−1)!! := 1.

(ii) Ker(P ;OX) ∼= K where

K :=

{
v(y, z) =

∞∑
n=0

m∑
k=0

C2n−2k,ky
2n−2k

z
k ∈ Oy,z

}

� �



Remark Theorem 2 (i) ⇔

Coker(P ;OX) ∼= F :=

{
f(x, y) =

∞∑
n=0

f2n,0(x)y
2n

}
Define

g(X) =
∑

i+2j=even

gij(x)y
izj +

∑
i+2j=odd

gij(x)y
izj

=: ge(X) + go(X)

Remark The isomorphism for Ker(P ;OX) is given by

K ∋ v(y, z) 7→ u(X) =
∞∑

n=0

n∑
k=0

C2n−2k,k(y
2+2xz)n−kzk
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Theorem 2 will be proved by showing the unique

solvability of the following Cauchy problem.{
Pu(X) ≡ f(X) (mod F),

ue(0, y, z) = v(y, z) ∈ K.
(3)



Sketch of Proof
For P = y∂x − z∂y : u(X) 7→ f(X), since

P : Ox[y, z]p → Ox[y, z]p+1 (p = 0, 1, 2, . . .), we have

Ox[y, z]0 ∋ f(x, 0, 0) ≡ 0.

Therefore, we put

f(X) =
∞∑
p=1

fp(x, y, z), fp(x, y, z) ∈ Ox[y, z]p.

where fp(x, y, z) =
∑

i+2j=p

fij(x)y
izj ∈ Ox[y, z]p.



By substituting u(X) =
∑

p≥0
up(X) and

f(X) =
∑

p≥1
fp(X) into Pu(X) = f(X), we have the

following recurrence formula:

u′
i,j(x)− (i+ 2)ui+2,j−1(x) = fi+1,j(x).(4)

This recurrence formula is expressed by using the matrix

as follows;



The case for p = 2n,
Dx 0 · · · · · · 0
−2n Dx 0 · · · 0

−2n + 2 Dx 0

. . .
. . .

.

.

.
−2 Dx




u2n,0

u2n−2,1

u2n−4,2

.

.

.
u0,n



=


f2n+1,0

f2n−1,1

.

.

.
f1,n
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Dx 0 · · · · · · 0
−2n Dx 0 · · · 0

−2n + 2 Dx 0

. . .
. . .

.

.

.
−2 Dx




u2n,0

u2n−2,1

u2n−4,2

.

.

.
u0,n



=


f2n+1,0

f2n−1,1

.

.

.
f1,n


This is uniquely solvable if we give initial values

{u2n−2k,k(0)}. (We put Cij = uij(0))



The case for p = 2n+ 1,

Dx 0 · · · · · · 0
−2n − 1 Dx 0 · · · 0

−2n + 1 Dx 0

. . .
. . .

.

.

.
−3 Dx

−1





u2n,0

u2n−2,1

u2n−4,2

.

.

.
u3,n−1

u1,n



=


f2n+2,0

f2n,1

.

.

.
f2,n

f0,n+1





The case for p = 2n+ 1,

Dx 0 · · · · · · 0
−2n − 1 Dx 0 · · · 0

−2n + 1 Dx 0

. . .
. . .

.

.

.
−3 Dx

−1





u2n,0

u2n−2,1

u2n−4,2

.

.

.
u3,n−1

u1,n



=


f2n+2,0

f2n,1

.

.

.
f2,n

f0,n+1


The coefficient of above equation
is (n + 2, n + 1)-rectangle matrix.
→ We need some conditions.



Compatibility condition

In order that f(X) (= Pu(X)) belongs to Im(P ;OX),

the given function f(X) must satisfy the following

compatibility conditions for n = 0, 1, 2, . . . from the

bottom side.

n+1∑
k=0

(2k − 1)!!

(2n+ 1)!!
Dn+1−k

x f2k,n+1−k(x) ≡ 0(5)

This is Theorem 2 (i) in formal sense.
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Next we research on Ker(P ;OX), that is, we consider

the equation

Pu(X) = 0 ⇔ Pup(X) = 0 for p = 0, 1, . . . .

In the case p = odd, by the matrix representation, we

obtain
u2n+1(X) ≡ 0 for all n.

Because, we can solve the system of equation from the

bottom side step by step.



In the case p = even, we calculate carefully from the top

side, we have the following relations.

u2n,0(x) = C2n,0

u2n−2,1(x) = C2n−2,1 + 2nC2n,0x

　　　　　　
...

u2n−2k,k(x) =

k∑
ℓ=0

C2n−2ℓ,ℓ
(n− ℓ)!

(n− k)!(k − ℓ)!
(2x)k−ℓ

　　↑
The coefficient of y2n−2kzk.



Therefore,

u2n(X)

=
n∑

k=0

u2n−2k,k(x)y
2n−2kzk

=

n∑
k=0

k∑
ℓ=0

C2n−2ℓ,ℓ
(n− ℓ)!

(n− k)!(k − ℓ)!
(2x)k−ℓy2n−2kzk

= careful calculation

=
n∑

ℓ=0

C2n−2ℓ,ℓ(y
2 + 2xz)n−ℓzℓ.



Hence, the basis of Ker(P ;OX) is

{(y2 + 2xz)n−ℓzℓ ; 0 ≤ ℓ ≤ n, n = 0, 1, . . .}.

This implies that the kernel of P is given by

u(X) =
∞∑

n=0

n∑
ℓ=0

C2n−2ℓ,ℓ(y
2 + 2xz)n−ℓzℓ.

This is Theorem 2 (ii) in formal sense.
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We put U(X) = u(X)− v(y, z) as a new unknown
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Ue(0) = 0
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Convergence of u(X)

We put U(X) = u(X)− v(y, z) as a new unknown

function.

U(X) satisfies the following equation:{
PU(X) ≡ F (X) (mod F)
Ue(0) = 0

(7)

Remark v(y, z) is any convergent even function. Then

Pv is an odd function. The compatibility conditions for

f(X) are the conditions for the even part. Therefore, in

this equation, the compatibility conditions for F (X) are

the same one as the original equation.



By the matrix representation, we have

U2n(X)

=

n∑
k=0

k∑
ℓ=0

2
k−ℓ (n − ℓ)!

(n − k)!
D

ℓ−k−1
x F2(n−ℓ)+1,ℓ(x)y

2n−2k
z
k
.



By the matrix representation, we have

U2n(X)

=

n∑
k=0

k∑
ℓ=0

2
k−ℓ (n − ℓ)!

(n − k)!
D

ℓ−k−1
x F2(n−ℓ)+1,ℓ(x)y

2n−2k
z
k
.

We remark that F (X) is holomorphic in a neighborhood

of the origin. Therefore,

sup|x|≤r|Fjk(x)| ≤ CAj+2k (∃C,A > 0)

In this case, we have∣∣∣Dℓ−k−1
x F2(n−ℓ)+1,ℓ(x)

∣∣∣ ≤ CA2n+1 |x|k−ℓ+1

(k − ℓ+ 1)!



By using this estimate, we obtain

|U2n(X)| ≤ CA2n+1|x|(|y|2 + 2|xz|+ |z|)n.

Hence, Ue(X) =
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U2n(X) is convergent in a

neighborhood of the origin.



By using this estimate, we obtain

|U2n(X)| ≤ CA2n+1|x|(|y|2 + 2|xz|+ |z|)n.

Hence, Ue(X) =

∞∑
n=0

U2n(X) is convergent in a

neighborhood of the origin.

Remark The estimate of even part Ue(X) is dominated

by the integrations of the coefficients of F (X).



For the odd part, we have

U2n+1(X)

=

n∑
k=0

k∑
ℓ=0

(2(k − ℓ) − 1)!!

(2k + 1)!!
D

ℓ
xF2(k−ℓ),n−k+ℓ+1(X)y

2k+1
z
n−k

By sup|x|≤r |Fij(x)| ≤ CAi+2j , for r′ < r, we have∣∣∣Dℓ
xF2(k−ℓ),n−k+ℓ+1(x)

∣∣∣
=

∣∣∣∣∣ ℓ!

2πi

∮
|z−x|=r−r′

F2(k−ℓ),ℓ(ξ)

(ξ − x)ℓ+1
dξ

∣∣∣∣∣
≤ CA2n+2Bℓℓ! (where B = 1/(r − r′)).
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By using this estimate, we obtain

|U2n+1(X)|

=

∣∣∣∣∣
n∑

k=0

k∑
ℓ=0

(2(k − ℓ) − 1)!!

(2k + 1)!!
D

ℓ
xF2(k−ℓ),n−k+ℓ+1(X)y

2k+1
z
n−k

∣∣∣∣∣
≤

n∑
k=0

k∑
ℓ=0

(2k − 2ℓ − 1)!!ℓ!

(2k + 1)!!

CA2n+2Bk+1

B − 1
|y|2k+1|z|n−k

≤
n∑

k=0

CA2n+2Bk+1

B − 1
|y|2k+1|z|n−k

=
CA2n+2B|y|

B − 1
(B|y|2 + |z|)n



Therefore, Uo(X) =
∞∑

n=0

U2n+1(X) is convergent in a

neighborhood of the origin.



Therefore, Uo(X) =
∞∑

n=0

U2n+1(X) is convergent in a

neighborhood of the origin.

Remark The estimate of odd part Uo(X) is dominated

by the differentiations of the coefficients of F (X). This

is quite different situation of the case for even part.



Problem
We consider the following operator with perturbation

terms;

P̃ = (y + a(X))∂x + (z + b(X))∂y + c(X)∂z ,

where a(X), b(X) and c(X) are holomorphic in a

neighborhood of the origin, and assume

a(X), b(X), c(X) = O(|X|2).



Moreover, we assume that

σ(a) ≥ 1, σ(b) ≥ 2, σ(c) ≥ 3.

where σ(f) is defined as follows:

f(X) =
∑

fij(x)y
izj ⇒ σ(f) := min{i+2j ; fij(x) ̸≡ 0}.



Moreover, we assume that

σ(a) ≥ 1, σ(b) ≥ 2, σ(c) ≥ 3.

where σ(f) is defined as follows:

f(X) =
∑

fij(x)y
izj ⇒ σ(f) := min{i+2j ; fij(x) ̸≡ 0}.

Under these conditions, we have the following results:
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For Ker(P̃ ,Ox[[y, z]]) → similar conditions.
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I can prove that these conditions hold only for the formal

power series category, not for the case of convergent

power series.



For Im(P̃ ,Ox[[y, z]]) → similar compatibility conditions.

For Ker(P̃ ,Ox[[y, z]]) → similar conditions.

I can prove that these conditions hold only for the formal

power series category, not for the case of convergent

power series.

I am not successful to prove convergence yet.

I am trying now.

Thank you.


