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We construct formal series solutions of linear PDE as linear combinations of
powers of solutions of a first order nonlinear ODE : the tanh method.

Initiated by W. Malfliet : an effective algebraic method for exact solutions for
nonlinear PDEs

H
(
u, ∂tu, ∂xu, ∂2

x u, . . .
)
= 0

using finite expansions

u(t, x) =
∑
j∈J

uj (ϕ(κ(x− wt)))j

where ϕ is a solution of a Ricatti equation

ϕ′ = a + bϕ+ cϕ2.



We will consider special solutions of a linear PDE

∂S
z X(t, z) =

∑
k=(k0,k1)∈J

ak(t, z)∂
k0
t ∂

k1
z X(t, z)

in the form
X(t, z) =

∑
j≥0

Xj(t, z)(φ(t))j

where φ(t) is a solution of some nonlinear first order ODE

φ′(t) = P (t, φ(t)) .

with

P(t,X) ∈ C {t} [X]
ak(t, z) ∈ O [D(t0)×D(0)]
a finite set J ⊂

{
k = (k0, k1) ∈ N2 | k1 ≤ S− 1

}
.

Our problem.



Motivations

existence of such a formal solutions

sufficient conditions for which this formal solutions are holomorphic in
some punctured polydiscs of C2

rate of growth of this solutions near the singularities
(example : P(t,X) = X2, φ′ = φ2, φ(t) = −1\(t + t0))

Schedule

Formal solutions.
Majorant series method.

I An auxiliary linear Cauchy problem.
I Banach space of entire functions with exponential growth.
I A Cauchy-Kowalevskii theorem.
I Classification of singularities for first order ODEs.
I Main result.
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We look for transseries solutions X̂(t, z)

X̂(t, z) =
∑
β≥0

∑
`≥0

X`,β(t)
φ(t)`

`!

zβ

β!
.

An induction relation for the coefficients X`,β(t)

X`,β+S = R ((X`1,β1)`1,β1)

is obtained by the Faa di Bruno formula

∂m
t

(
φ(t)`

`!

)
=

∑
(p1, . . . , pm) ∈ Nm

p1 + 2p2 + . . . + mpm = m

m!

p1! . . . pm!

φ(t)`−|p|

(`− |p|)!

m∏
k=1

(
φ(k)(t)

k!

)pk

Proposition
Let X`,β(t) ∈ O (D(t0)), ` ≥ 0, 0 ≤ β ≤ S− 1.
Then, there exists a formal solution X̂(t, z) of the PDE for the given initial
conditions

(∂j
zX̂)(t, 0) =

∑
`≥0

X`,j(t)
φ(t)`

`!
, 0 ≤ j ≤ S− 1.

Formal solutions



Let
vn0,`,β := sup

|t−t0|≤r
|∂n0

t X`,β(t)| .

As X`,β(t) satisfies X`,β+S = R ((X`1,β1)`1,β1), vn0,`,β satisfies
vn0,`,β+S ≤ R̃ ((vn1,`1,β1)n1,`1,β1).

We define the formal series

U(t, z,T) =
∑
β≥0

∑
`≥0

∑
n0≥0

un0,`,β
tn0

n0!

T`

`!

zβ

β!

where un0,`,β is the unique solution of un0,`,β+S = R̃ ((un1,`1,β1)n1,`1,β1).

Proposition
The formal series U(t, z,T) is the unique solution of the Cauchy problem

∂S
z U(t, z,T) =

∑
q=(q0,q1,q2)∈Q

Bq(t, z,T)∂
q0
t ∂

q1
T ∂

q2
z U(t, z,T)

for the given initial conditions (∂j
zU)(t, 0,T) =

∑
`≥0
∑

n0≥0 vn0,`,j
tn0
n0!

T`

`!
0 ≤ j ≤ S− 1.

An auxiliary linear Cauchy problem.



Gq (δ1, δ2;σ) : subspace of the vector space of entire functions / to T and
holomorphic / to (t, z) :

V(t, z,T) =
∑

n,β≥0

vn,β(T)
tn

n!
zβ

β!
∈ Gq (δ1, δ2;σ) ,

such that
∑

n,β≥0

||vn,β(T)||β;σ
δn

1δ
β
2

(n + β)!
< +∞, where

||vn,β(T)||β;σ = sup
T∈C
|vn,β(T)| (1 + |T|)−m exp (−σrb(β)|T|q) .

||.||δ1,δ2;σ
:

||V(t, z,T)||δ1,δ2;σ
=
∑

n,β≥0

||vn,β(T)||β;σ
δn

1δ
β
2

(n + β)!
.

Banach space of entire functions with exponential growth.



Theorem
If

∂S
z U(t, z,T) =

∑
q∈Q

Bq(t, z,T)∂
q0
t ∂

q1
T ∂

q2
z U(t, z,T)

satisfies some conditions and if for all 0 ≤ j ≤ S− 1,(
∂j

zU
)
(t, 0,T) = ψj(t,T) ∈ Gq (δ1,0, δ2,0;σ0) .

Then, there exists δ1, δ2, σ > 0, such that the Cauchy problem has a unique
solution U(t, z,T) ∈ Gq (δ1, δ2;σ).

For the proof, we need

‖
(
Ts∂νt ∂

κ
T∂
−S
z V

)
(t, z,T)‖δ1,δ2;σ ≤ Cδ−ν1 δs

2‖V(t, z,T)‖δ1,δ2;σ,

we have to estimate ‖ (Ts∂κT vn+ν,β−S) (T)‖β,σ,

A Cauchy-Kowalevskii theorem.



we use the Cauchy-integral formula

(Ts∂κT vn+ν,β−S) (T) =
κ!

2iπ

∫
|ξ−T|=a

Tsvn+ν,β−S

(ξ − T)κ+1 dξ

to obtain our result, we use a good choice for the radius a (introduced by Y.
Dubinskï)

a = (|T|q + 1)1/q − |T|

and we yield the conditions

b(s + κ(q− 1))
q

+ ν < S.

A Cauchy-Kowalevskii theorem.



For
φ′(t) = P (t, φ(t)) ,

by P. Painlevé, the only movable sigularities in C of φ(t) are poles and /or
algebraic branch points.

We define Dθ(t0, r) = D(t0, r)\
[
t0, reiθ) .

Let φ(t) solution on Dθ(t0, r0), there can be represented by a Puiseux series

φ(t) =
∑

n≥−n0

fn(t − t0)n/µ

where µ, n0 ∈ N∗ et f−n0 6= 0.

Classification of singularities for first order ODEs.



Theorem
Under some conditions, the formal series

X(t, z) =
∑
β≥0

∑
`≥0

X`,β(t)
φ(t)`

`!

zβ

β!

defines a holomorphic function on Dθ(t0, r0)× D (0, δ).
Moreover, there exists C1, C2 such that

sup
|z|≤δ
|X(t, z)| ≤ C1|t − t0|−n0m/µ exp

(
C2|t − t0|−n0q/µ

)
for all t ∈ Dθ(t0, r0).

Sketch of proof :

U(t, z,T) solution of the auxiliary problem belongs to Gq (δ1, δ2;σ)
(Cauchy-Kowalevskii)

Main result.



W(t, z,T) =
∑
β≤0

∑
`≤0

X`,β(t)
T`

`!

zβ

β!

sup
|z|<δ

sup
t∈D
|W(t, z,T)| ≤ |U(0, δ, |T|)| ≤ C(1 + |T|)m exp (σζ(b)|T|q)

W(t, z,T) is holomorphic / t, z and at most of exponential growth / T .
Therefore X(t, z) = W(t, z, φ(z)) is holomorphic solution.

Main result.



{
φ′ = φ2 Ricatti equation
∂2

z X = ∂tX heat equation

Auxiliary equation : ∂2
z U = ∂tU + T2∂TU.

The condition from Cauchy-Kowalevskii theorem for T2∂T :

b(2 + 1(q− 1)
q

< 2⇔ b
q
+ b < 2 (b > 1)

holds for q large enough.

S. Malek, C. Stenger : On complex singularity analysis of holomorphic
solutions of linear partial differential equations, to appear in Advances in
Dynamical Systems and Applications.

Example.
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