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We construct formal series solutions of linear PDE as linear combinations of
powers of solutions of a first order nonlinear ODE : the fanh method.

Initiated by W. Malfliet : an effective algebraic method for exact solutions for
nonlinear PDEs
H (u,atu,axu,aﬁu, .. ) =0

using finite expansions

u(t,x) = Y w; (p(r(x —wr)y

jel
where ¢ is a solution of a Ricatti equation

¢ =a+bp+ cp’.



We will consider special solutions of a linear PDE

BXe)= Y at )oK ()
k:(ko,kl)GJ

in the form

X(tv Z) — ZX]'([, Z)(¢(Z)>/

>0

where ¢(7) is a solution of some nonlinear first order ODE

¢'(t) = P(1,0(1)) -

with
- P(t,X) € C{t} [X]
- ag(t,z) € O[D(19) x D(0)]
- afinite set 7 C {k = (ko,k;) € N*| k; < S —1}.

Our problem.



Motivations
« existence of such a formal solutions

- sufficient conditions for which this formal solutions are holomorphic in
some punctured polydiscs of C?

- rate of growth of this solutions near the singularities
(example : P(t,X) = X2, ¢/ = ¢?, ¢(t) = —1\(t + 19))
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Schedule
+ Formal solutions.

+ Majorant series method.

An auxiliary linear Cauchy problem.

Banach space of entire functions with exponential growth.
A Cauchy-Kowalevskii theorem.

Classification of singularities for first order ODEs.

Main result.
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We look for transseries solutions X(t, 7)
: $(1) 27
X(l, Z) = Z ZXE"B(I)TE‘
B=0£20 -
An induction relation for the coefficients Xy 5(r)
Xepis = R((Xe,5,)0r,51)
is obtained by the Faa di Bruno formula

w (DO m () 0\
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Proposition

Formal solutions



Let
Vno,0,3 *— Sup |3;10Xg,g(l‘)|.

[t—10|<r
As Xy g(t) satisfies Xy g5 = R ((X¢,,8,)¢,,8,)> Vno ¢, Satisfies
Vg £,8+8 < R ((vnl,flﬁl )n1 N2 ,/5'1)-
‘We define the formal series

o Tt 78
UaD) =YY imes o
B>0 £>0 ny>0 -

where uy, ¢ 5 is the unique solution of u,, ¢ 545 = R ((ny 01,8 )n1,1,81)-

Proposition




* Gy (01,02; 0) : subspace of the vector space of entire functions / to T and
holomorphic / to (z,z) :

B
V(I7Z7T): Z Vn,ﬁ( ) 'B‘ qu(517527 )7

n,20
519,
such that Z an,ﬂ(T)Hg;g nt A) < +o0, where
1,520 '

140,51l 55 = 59 [vnp(T)] (1 + T1) ™" exp (=om(B)ITI7).

H'Hél 0050

818y
V(t,z, T = v
V(2. T)lls, 5050 = %Hw Moo G g1

Banach space of entire functions with exponential growth.



Theorem

For the proof, we need
” (Tsa;jagaz—sv) (t’ <, T)||51,52;0 < C(Sl_y 5||V(t7 <, T)”51,52;Ua

we have to estimate || (T°0fvutv.5—s) (T)|| 8,05



we use the Cauchy-integral formula

: k! T°v _s
T50%v, ., 5-5) (T) = —— B
( Tvl"rlj,ﬁ S) ( ) 2l7T /gT:a (é‘ _ T)I{+l é

to obtain our result, we use a good choice for the radius a (introduced by Y.
Dubinski)
a=(IT|+1)"/4 - T]
and we yield the conditions
b(s + k(g — 1))
q

+v<S.

A Cauchy-Kowalevskii theorem.



For
¢'(t) = P(1,6(1))

by P. Painlevé, the only movable sigularities in C of ¢(¢) are poles and /or
algebraic branch points.

We define Dy(to, r) = D(to, )\ [to, ).
Let ¢(¢) solution on Dy(1y, ro), there can be represented by a Puiseux series

o) = Y fult —10)"*

n=—ng

where p, ng € N*etf_,, # 0.

Classification of singularities for first order ODEs.



Theorem

Sketch of proof :

 U(t,z,T) solution of the auxiliary problem belongs to G, (91, d2; o)
(Cauchy-Kowalevskii)

Main result.



¢ B
Wes ) = 5 Kol

sup sup [W(z,z, T)| < |U(0,6, [T[)| < C(1 +[T|)" exp (o¢(b)[T]%)
|z|]<d teD

W(t,z,T) is holomorphic / ¢, z and at most of exponential growth / T
Therefore X(t,z) = W(t,z, ¢(z)) is holomorphic solution.

Main result.



¢ = ¢* Ricatti equation
92X = 9,X heat equation

Auxiliary equation : 92U = 9,U + T?0rU.

The condition from Cauchy-Kowalevskii theorem for 720y :

b2+ 1(g—1)

b
<2&-+4+b<2 (b>1)
q q

holds for g large enough.

Example.
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S. Malek, C. Stenger : On complex singularity analysis of holomorphic
solutions of linear partial differential equations, to appear in Advances in
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