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I am a researcher of partial differential equations in the
complex domain. Recently, | am very much interested in
applying complex method to problems in the real domain.



I am a researcher of partial differential equations in the
complex domain. Recently, | am very much interested in
applying complex method to problems in the real domain.

My intension is illustrated as follows.

There are many
good arguments Problems in PDEs

in PDEs in the in the real domain
complex domain Apply




In this talk, | will consider the equation

(E) 0] u = F (1, {Bgawa"}mwﬂ)

where v >0and L > m > 1



In this talk, | will consider the equation

(E) 0] u = F (1, {Bgawa"}mwﬂ)

where v > 0and L > m > 1
and | will present two results:

Part I: Maillet type theorem
- this is a model in the complex domain -

Part Il: Gevrey regularity in time of solutions of (E)
- this is a result in the real domain -



Part |
Maillet type theorem in the complex PDEs



0.1. Notations

t the time variable in Cq,
x = (1,...,%,) the space variables in C7,
Dr={zeC";|z;/ <R (¢=1,...,n) }.



0.1. Notations

t the time variable in Cq,
x = (1,...,%,) the space variables in C7,
Dr={zeC";|z;/ <R (¢=1,...,n) }.

We will use the following notations:

OpR : the set of all holomorphic functions in = on Dpg,
OR|[[t]] : the ring of formal power series in t with coefficients
in Op,
MR[[t] : the subset of all f(t,z) € Og|[[t]] satisfying
f(0,z) = 0.



0.2. Some definitions

Definition 0.1. For s > 1 we denote by O{t}; (or £{5})
the set of all formal power series > ;- ar(z)t* € Og|[[t]]
satisfying the following: there are C > 0 and h > 0 such

that
max |ag(z)| < ChFE!*~1, Vk € N.
x€EDR
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the set of all formal power series > ;- ar(z)t* € Og|[[t]]
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If f(t,z) € O{t}s (or € E15}), we say that f(t,x) is a
formal power series in the formal Gevrey class of order s.



0.2. Some definitions

Definition 0.1. For s > 1 we denote by O{t} (or £15})
the set of all formal power series > ;- ar(z)t* € Og|[[t]]
satisfying the following: there are C > 0 and h > 0 such
that

max |ag(z)| < ChFE!*~1, Vk € N.

x€EDR

If f(t,z) € O{t}s (or € E15}), we say that f(t,x) is a
formal power series in the formal Gevrey class of order s.

Definition 0.2. Let f(t,z) = Y ;>0 ax(z)tk € ORg[[t]]. We
define the valuation of f(¢,x) with respect to ¢ by

valy(f) = min{ k € N; ar(z) Z 0}

(if ax(x) = 0 for all k € N, we set vali(f) = 00).



0.3. Equation and assumption

Let v > 0 and 1 < m < L be integers, and let us consider

(E) 19" u = F(t, x, {8gagu}j+|a|§L>



0.3. Equation and assumption

Let v > 0 and 1 < m < L be integers, and let us consider
(E) O = F(t, x, {a{agu}j+|a|§L)

under the following assumptions:

c1) F(t,z, z) is a holomorphic function on (2,
c2) u(t,x) € Mg|[t]] is a formal solution of (E)
where 2 is a neighborhood of the origin.



0.3. Equation and assumption

Let v > 0 and 1 < m < L be integers, and let us consider
(E) O = F(t, x, {a{agu}j+|a|§L)

under the following assumptions:

c1) F(t,z, z) is a holomorphic function on (2,
c2) u(t,x) € Mg|[t]] is a formal solution of (E)
where 2 is a neighborhood of the origin. We set:

oF

7,

kj,cx = valy ( (ta 587Dﬁ’(t’ :I:))) , Du = {8{3§ﬂ}j+|a|§[n

and suppose

kj,a27_m+j7 if|a|:0,
C3)

kjo>v—m+j+1, if|al>0.



0.4. Maillet type theorem
Then, we have the following result:

Theorem 0.3 (Gérard-Tahara). Suppose the conditions c;),
c2) and c3): then, the formal solution 4 (¢, x) in c2) satisfies

a(t,z) € Oft}, (or € E15}) for any s > s

where

< j+laf—m >
so = 1+ max| 0, max - .
la|>0\ kj o —y+mMm—]

(Essentially, the proof was given in the book of Gérard-
Tahara.)



Part Il
Gevrey regularity in time in the real domain



In this PART II, | will consider the equation

(E) 70 u = F<t’ s {agagu}jﬂalg,xm)

where vy >0and L >m >1

in Gevrey classes,



In this PART II, | will consider the equation

(E) 70 u = F<t’ s {agagu}jﬂalg,xm)

where vy >0and L > m > 1

in Gevrey classes, and give an answer to the following
problem on time regularity:

Problem. Let u(t,z) € C*([0,T], L} (V)) (with o > 1)
be a solution of (E); then can we have the property:

u(t,z) € 7} ([0,T] x V)

for some s > 17



The plan of part Il is as follows:

» 1. Notations, Definitions of Gevrey classes, etc
» 2. Problem and examples

» 3. Main theorems
- sufficient condition for time regularity -

» 4. Necessity of the condition



§1. Notations, definitions, etc



1.1. Notations

t the time variable in Ry,

x = (x1,...,%,) the space variables in R7,
N={0,1,2,...}, N*={1,2,...}

a=(ary...,an) EN*, |a|=a1+ -+ an,

Or = (0pys+++,0z,) with 9,, =8/0xz; (1 =1,...,n),

o al... QAn
8% = 8o .. 9o



1.2. Functions in Gevrey class (1)

Let 0 > 1 and V be an open subset of R”.

(1) We denote by £17}(V) the set of all functions
f(x) € C*>°(V) satisfying the following: for any compact
subset K of V there are C > 0 and h > 0 such that

gcneaéc yagf(ac)‘ < Ch|a||a|!", Va € N™.
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1.2. Functions in Gevrey class (1)

Let 0 > 1 and V be an open subset of R”.

(1) We denote by £17}(V) the set of all functions
f(x) € C*>°(V) satisfying the following: for any compact
subset K of V there are C > 0 and h > 0 such that

gcneaéc yagf(ac)‘ < Ch|a||a|!", Va € N™.

A function in £17}(V) is called a function of Gevrey class of
order o. If 1 < 51 < 83 < oo we have

AWV) = elll(v) c glsl(v) c gls21(v) c = (V).

By this, we can say that functions in £{51}(V) is more
regular than those in £{s2}(V).



1.3. Functions in Gevrey class (2)

(2) We denote by C>°([0,T], E7}(V)) the set of all
infinitely differentiable functions in ¢ € [0, T'] with values in
17} (V) equipped with the usual local convex topology.



1.3. Functions in Gevrey class (2)

(2) We denote by C>°([0,T], E7}(V)) the set of all
infinitely differentiable functions in ¢ € [0, T'] with values in
17} (V) equipped with the usual local convex topology.

It is easy to see that C*°([0,T], £17}(V)) is the set of all
functions u(t,x) € C°°([0,T] x V) satisfying the following:
for any compact subset K of V and any k£ € N there are
Cr > 0 and hg, > 0 such that

[OmT]a)z(K AFou(t,x)| < Ckhlkal|a|!", Va € N".



1.4. Functions in Gevrey class (3)

(3) Let s > 1: we denote by £{7}([0,T] x V) the set of all
functions u(t,z) € C*°([0,T] x V) satisfying the following:
for any compact subset K of V thereare C > 0and h > 0
such that

[Or%axK AFou(t,x)| < ChFFlel 18| a1,
,T] %
V(k,a) € N x N™.
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(3) Let s > 1: we denote by £{7}([0,T] x V) the set of all
functions u(t,z) € C*°([0,T] x V) satisfying the following:
for any compact subset K of V thereare C > 0and h > 0
such that

" k
V(k,a) € N x N,
This means that u(t, x) is a function of the Gevrey class of

order s in t and of the Gevrey class of order o in . We
often write £{7}([0,T] x V) = £loo}([0,T] x V).



1.4. Functions in Gevrey class (3)

(3) Let s > 1: we denote by £{7}([0,T] x V) the set of all
functions u(t,z) € C*°([0,T] x V) satisfying the following:
for any compact subset K of V thereare C > 0and h > 0

such that

max_|9Fa%u(t, z)| < Ch*FIlE1®|alte,
[0, T]xK
V(k,a) € N x N™.
This means that u(t, x) is a function of the Gevrey class of

order s in t and of the Gevrey class of order o in . We
often write £{7}([0,T] x V) = £loo}([0,T] x V).

The following is clear:

g7} (0, T] x V) € €= ([0, T], €} (V).



§2. Problem and examples



2.1. Equation and problem

From now, | will consider the following nonlinear partial
differential equation

(B) 0w =F(t,@,{0{05u}; jaj<t,i<m)

where v > 0 and L > m > 1 are integers, and
F(t,z,{zj,a}j+|a|<L,j<m) is a suitable function in a Gevrey
class.



2.1. Equation and problem

From now, | will consider the following nonlinear partial
differential equation

(B) 0w =F(t,@,{0{05u}; jaj<t,i<m)

where v > 0 and L > m > 1 are integers, and
F(t,z,{zj,a}j+|a|<L,j<m) is a suitable function in a Gevrey
class. And, we will consider the following problem on Gevrey
regularity in time:

Problem 1.1. Let u(t,z) € C*([0,T],E%}(V)) be a
solution of (E); can we have the result

u(t,z) € 270, T] x V)

for some s > 17



2.2. Example (1)

Let us give three examples.
Example 2.1. Let us consider the periodic KdV equation:

(2.1)  Ou+ d3u + 6udyu =0, u(0,z) = p(z) on T

where () is an analytic function on the torus T.



2.2. Example (1)

Let us give three examples.
Example 2.1. Let us consider the periodic KdV equation:

(2.1)  Ou+ d3u + 6udyu =0, u(0,z) = p(z) on T

where () is an analytic function on the torus T.
The following results are known:
(1) This problem (2.1) is well-posed in H*(T) for s > 1.
(2) Gorsky-Himonas showed:
u(t,@) € C=((—3,3), EUH(T)).
(3) Hannah-Himonas-Petronilho showed:
u(t,x) € E31}((=5,8) x T).

The proof of (3) just gives an answer to our problem in the
KdV case.



2.3. Example (2)

Example 2.2. Let @ > 0, k € N* and let us consider

(2.2) (tdy + a)?®u — t*92u = f(t,x).



2.3. Example (2)

Example 2.2. Let @ > 0, k € N* and let us consider
(2.2) (tdy + a)?®u — t*92u = f(t,x).

The following results are known:

(1) (2.2) is uniquely solvable in C*>°([0, T], £1°}(R)) for any
o> 1.

(2) In the case f(t,z) € £17}([0,T] x R), we have the time
regularity:

(2.3) u(t,x) € £} ([0, T] x R), if k > 2,
| u(t,z) € E29-Lo9}([0,T] x R), ifk =1.

The result (2.3) gives an answer to our problem in the case
(2.2).



2.4. Example (3)

Example 2.3. Recently, Kinoshita-Taglialatela (Arkiv for
Matematik, 49 (2011), 109-127) discussed time regularity
problem for the following hyperbolic Cauchy problem:

(2.4) { dfu — a(t)d2u = b(t)dyu + c(t)dyu,

u(0,x) = ug(x), hu(0,r = ui(x).



2.4. Example (3)

Example 2.3. Recently, Kinoshita-Taglialatela (Arkiv for
Matematik, 49 (2011), 109-127) discussed time regularity
problem for the following hyperbolic Cauchy problem:

(2.4) { dfu — a(t)d2u = b(t)dyu + c(t)dyu,

u(0,x) = ug(x), hu(0,r = ui(x).
And they showed under a suitable assumption that the

problem (2.4) is well-posed in £{7} ([0, T] x R) for
0<o—-1<(s—1)/s.



2.4. Example (3)

Example 2.3. Recently, Kinoshita-Taglialatela (Arkiv for
Matematik, 49 (2011), 109-127) discussed time regularity
problem for the following hyperbolic Cauchy problem:

(2.4) { dfu — a(t)d2u = b(t)dyu + c(t)dyu,

u(0,x) = ug(x), hu(0,r = ui(x).

And they showed under a suitable assumption that the
problem (2.4) is well-posed in £{7} ([0, T] x R) for
0<o—-1<(s—1)/s.

This result can be improved to 1 < o < s by solving our
problem on time regularity.



2.5. Motivation

By looking at these examples, | have come to think that the
mechanism of Gevrey regularity in time is very close to that
of Maillet type theorem in the book of Gérard-Tahara.

And so, by applying the argument in the proof of Maillet type
theorem we will be able to solve time regularity problem.



§3. Main theorems
- sufficient condition for time regularity -
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3.1. Equation and assumptions

We will consider

(B)  ¢9;"u=F(t,,Du), Du={8{0u}; jn<z
j<m

Let ©2 be an open subset of R; X R” x RZ, and let F(t,x, 2)
be a C°° function on . Let s; > 1,0 > 1 and s > 1, let
T > 0, and let V be an open subset of R".



3.1. Equation and assumptions

We will consider

(B)  ¢9;"u=F(t,,Du), Du={8{0u}; jn<z
j<m

Let ©2 be an open subset of R; X R” x RZ, and let F(t,x, 2)
be a C°° function on . Let s; > 1,0 > 1 and s > 1, let
T > 0, and let V be an open subset of R".

The main assumptions are as follows.

a;) Yy >0and L > m > 1 are integers.

az) s1 > 1 and o > sz > 1 are real numbers.

as) F(t,x,z) € Elsvos2}(Q),

ay) u(t,z) € C>([0,T], E7}(V)) is a solution of (E).



3.2. Additional assumption

Definition 3.1. For f(t,x) € C*°([0,T] X V') we define the
order of the zero of f(t,x) at t = 0 by

ordi(f,V) = min{k € N; (8ff)(0,z) Z 0 on V}.



3.2. Additional assumption

Definition 3.1. For f(t,x) € C*°([0,T] X V') we define the
order of the zero of f(t,x) at t = 0 by

ordi(f,V) = min{k € N; (8ff)(0,z) Z 0 on V}.

Under the conditions a;) ~ a4) we set

oF

kjo= ordt(a (t, z, Du(t, x)), V).

Zj,a

And we suppose

{ kjo >y —m+ j, if la| = 0,
a5)

kjo>v—m+35+1, if o > 0.



3.3. Main theorem (1)

The sufficient condition for the time regularity is as follows:

Theorem 3.2 (Gevrey regularity in time). Suppose the
conditions a;) ~ as): then, we have

u(t,z) € £173(0,T] x V)

for any s > max{sg, s1, s2} where

j+olal—m
sgo = 1 4+ max| 0, max - - - .
le|>0 \ min{kj o —v+m—3, m—j}




3.4. In the case of examples

Example 1. In the case of KdV equation:
Ou + 93u + 6udyu = 0, u(0,z) = ¢(z) on T

we have v =0, m =1, L = 3 and sg = 30.



3.4. In the case of examples

Example 1. In the case of KdV equation:
Ou + 93u + 6udyu = 0, u(0,z) = ¢(z) on T

we have v =0, m =1, L = 3 and sg = 30.

Example 2. In the case
(td; + a)?u — tk(?zu = f(t,x)
we have v =2, m =2, L = 2 and
20 — 2 { o, if k> 2,

=1 _—
So =1 in{k, 2} 20 —1, ifk=1.



3.4. In the case of examples

Example 1. In the case of KdV equation:
Ou + 93u + 6udyu = 0, u(0,z) = ¢(z) on T

we have v =0, m =1, L = 3 and sg = 30.

Example 2. In the case
(td: + a)?u — t*82u = f(t,x)
we have v =2, m =2, L = 2 and
—14 20-2 | o, if £ > 2,
0= ST min{k,2} )| 201, ifk=1.
Example 3. In the case
9%u — t*82u = b(t)Byu + c(t)dpu
we have v =0, m =2, L = 2 and sy = 0.



3.5. Formal solution

If we have a solution u(t,z) € C>([0,T], E{7}(V)), by the
formal Taylor expansion at ¢t = 0 we have a formal solution

a(t,x) = > up(z)th € EVIV)[[H].
k=0



3.5. Formal solution
If we have a solution u(t,z) € C>([0,T], E{7}(V)), by the
formal Taylor expansion at ¢t = 0 we have a formal solution

a(t,x) = > up(z)th € EVIV)[[H].
k=0

We will write a(t, z) € E{59}({t}; V) if the following
property holds: for any compact subset K of V there are
C > 0 and h > 0 such that

max |97 uk ()| < ChFFlelg1s=a)17, V(k,a) € N x N™.
EAS



3.5. Formal solution
If we have a solution u(t,z) € C>([0,T], E{7}(V)), by the
formal Taylor expansion at ¢t = 0 we have a formal solution

a(t,x) = > up(z)th € EVIV)[[H].
k=0

We will write a(t, z) € E{59}({t}; V) if the following
property holds: for any compact subset K of V there are
C > 0 and h > 0 such that

max |97 uk ()| < ChFFlelg1s=a)17, V(k,a) € N x N™.
EAS

By Theorem 3.2 we have the result:
a(t,x) € 187 ({t}; V) for any s > max{sg, 51, 52}.



3.6. Main theorem (2)

But, in the case of formal solutions we have more:

Theorem 3.3 (Maillet type theorem). Suppose the conditions
ai) ~ as): then, the formal Taylor expansion u(t, x) satisfies
a(t,x) € £ ({t}; V) for any s > max{s, s1, s2} with

j+a|a|—m>].

|| >0

s¥ =1+ max| 0, max
0 + [ ’ (kj,a_7+m_j



3.6. Main theorem (2)

But, in the case of formal solutions we have more:

Theorem 3.3 (Maillet type theorem). Suppose the conditions
ai) ~ as): then, the formal Taylor expansion u(t, x) satisfies
a(t,x) € £ ({t}; V) for any s > max{s, s1, s2} with

N j+olal—m
8o = 1 + max| 0, max - .
la[>0\ kjo —y+m—j

We note that s; < sg holds: in general, the time regularity
in the case of formal solutions is better than the case of
actual solutions.



3.7. Example

Example. Let o > 1. We consider

(td: + a)’u — t*9%u = f(t,x) € 1[0, T] x R) :

let u(t,z) € C>([0,T],EL°}(R)) be the unique solution
and let 4 (t, ) be the formal Taylor expansion of u(t,x) at
t = 0. Then we have:



3.7. Example

Example. Let o > 1. We consider

(td: + a)’u — t*9%u = f(t,x) € 1[0, T] x R) :

let u(t,z) € C>([0,T],EL°}(R)) be the unique solution
and let 4 (t, ) be the formal Taylor expansion of u(t,x) at
t = 0. Then we have:

o} (0, T] x B), ik >2,
1 t, € _
W ulto) {s{%—w}([o,T] X R), ifk=1,



3.7. Example

Example. Let o > 1. We consider

(td: + a)’u — t*9%u = f(t,x) € 1[0, T] x R) :

let u(t,z) € C>([0,T],EL°}(R)) be the unique solution
and let 4 (t, ) be the formal Taylor expansion of u(t,x) at
t = 0. Then we have:

o} (0, T] x B), ik >2,
1 t, € _
W ulto) {s{%—w}([o,T] X R), ifk=1,

(2) a(t,x) € EL7}({t},R) for

<o, if k > 3,
— o, if k = 2,
=20 —1, ifk=1.

20 — 2
k

s=1+



54. Necessity of the condition



4.1. Fuchsian case (1)
Let us consideer the Fuchasian partial differential equation:
(4.1) C(t8;)u = F(t,x,Ou)

where Ou = {(tat)jagu}j+|a|g,j<m and
CA) = A"+ cma A" L+ o+ 1A+ co-



4.1. Fuchsian case (1)

Let us consideer the Fuchasian partial differential equation:
(4.1) C(t8;)u = F(t,x,Ou)

where Ou = {(tat)jagu}j+|a|g,j<m and
C(A) = A" 4+ 1 AL 4+ -+« + 1\ + co. We suppose:

bi) ¢; >0 (¢=0,1,...,m — 1);
b2) F(t,z,z) > 0 (at (¢, z,z) = (0,0,0)), and
F(1.80)(0.0,0)\ /18l
(FU000.0)
18]
bg) u(t, ) is a solution satisfying «(0,x) = 0, and
OF

0zj.a

lim inf
|B|—o0

(t, x, @u)‘t_o =0 on V for any (j, ).



4.2. Fuchsian case (2)

In this case, our indices sg and s; are written as

( jtolal—m H

so=1 —I—max[O, max

la|>0\min{g;,, m—j}
) + olal —m
sg =1+ maX[O, max('7||> }
|| >0 9j,c

with gj o = ordi((0F/0z;,4)(t, z, Ou(t,x)), V).



4.2. Fuchsian case (2)

In this case, our indices sg and s; are written as

j+olal—m )}

min{g;,n, m—j} ’
| +olaf -

()]

dj,c

so=1 —I—max[O, max(
|ce|>0

sp=1 —I—maX[O, max
|o|>0

with gj o = ordi((0F/0z;,4)(t, z, Ou(t,x)), V).
Then we have the expression

oF
87(13, x, Ou(t,z)) = ajo(x)t¥> 4 O(tqj,a+1)

Zj,0

for some aj o (x) > 0 (at x = 0). We set

A(+) ={0, ) € A; a;a(0) > 0,|a| > 0}.



4.3. Necessity of the condition in Fuchsian case
Then, we have the necessity of the condition:

Theorem 4.1 (Fuchsian case). If u(t,z) € £{57}([0,T] x V)
or 4(t,z) € £57}({t}; V) holds for some s > 1, we have

) + o|la| —m
s > 1+ max|0, max ('Hll)}

(Fa)eA(+) 9j,a



4.3. Necessity of the condition in Fuchsian case
Then, we have the necessity of the condition:

Theorem 4.1 (Fuchsian case). If u(t,z) € £{57}([0,T] x V)
or 4(t,z) € £57}({t}; V) holds for some s > 1, we have
j+olal — m)}

s>1 —|—max[0, max (

(Fa)eA(+) 9j,a

Recall that the sufficient condition is s > sg or s > sg with

 + ool —
(m‘zn{;,z m:}) }7
(Frolelom)]

so=1 —l—max[O, max
|| >0

sp=1 —|-max[0, max
|| >0



4.4. Non-singular case (1)

Let us consider the initial value problem

(4.2) {

0f"u = F(t,x, Du) on [0,T] X V,

3Zu|t=0 =@i(x) onV, ¢=0,1,...

where Du = {Bfﬁgu}g+|a|§,;,3<m

,m—1,



4.4. Non-singular case (1)

Let us consider the initial value problem

0f"u = F(t,x, Du) on [0,T] X V,
(4.2)

3Zu|t=0 =@i(x) onV, ¢=0,1,...

_ 9 na
where Du = {8t 8$ u}j+|a|§L,j<m-
In this case, our indices sg and s; are written as

<j+cr|a| —m

30=1+max[0, max -
m—)

|| >0
j+olal—m

st=1 max[O max(
0 + s Kjo +m—j

|| >0

where k;j o = ordi((0F/0zj,q)(t, x, Du(t,x)),

,m—1,

)]
)]

V).



4.4. Non-singular case (2)
We set A = {(j,); j + |a| < L,j < m},
on@) — PO, {5 @)} Garen), and

a@) = 2 (o, w,{sog D (@)}Garen)

+Z

(J,a)EA

AL (@)} Gaen ) 9554 (@)-

We assume:
c1) F(t,xz,z) > 0 (at (¢, z,2) = (0,0,p));
c2) pi(x) >0 (atx=0), :=0,1,...,m — 13
cs) liminf(a®(0)/181°)"" > 0.
|B|—o0



4.6. Necessity of the condition in non-singular case

Let u(t,z) € C=([0,T],EL?}(V)) be a solution of (4.2).
We set kj o = ordi((0F/0zj,a)(t, z, Du(t,x)),V): then

oF
(@, Du(t, x)) = aja(x)te + O(t"=T)

Z.77a

for some aj o (x) > 0 (at * = 0). We set

A(+) ={0U,a) € A; a’j,a(o) > 0,|a| > 0}.



Theorem 4.2 (Non-singular case). If
u(t,z) € E17([0,T] x V) or a(t,x) € EL57({t}; V)
holds for some s > 1, we have

s > 1+ max [O, max
(J,0) EA(+)

| + ool —



Theorem 4.2 (Non-singular case). If
u(t,z) € E17([0,T] x V) or a(t,x) € EL57({t}; V)
holds for some s > 1, we have

321+max[0, max (

Jj+olal— m)}
(o) EA(+) '

k:j,a‘l_m_j

Recall that the sufficient condition is s > s9 or s > s with

<j+0|a| —m”’

sop =1 —|—max[0, max

|| >0 m—g
) + o|la| —m
s(")‘=1—|—max[0, max(M)].
la[>0\ kjo +m — j

where kj o = ordi((0F/0zj,a)(t, x, Du(t,x)), V).
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