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We study middle convolution for systems of linear differ-
ential equations with irregular singular points;

)
v (S S5 A Yy ee
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Middle convolution =
Euler’s integral transformation / f(w)(z —w)" dw

+ trasformation of vector spaces and matrices.

First we consider systems of Fuchsian differential equa-

tions:;
dY A A A,
- = < 1 4+ 2 R ) Y.

dz z—1t  Z—1y z— 1y




1 Deligne-Simpson problem (DSP)

Co, ...,C,: conjugacy classes of n X n matrix.
C; ={P'D;P;| P, € GL(n)}, D; : Jordan normal forms

Additive Deligne-Simpson problem (aDSP):
Find a condition for existence of (or solution for) Ag, ..., A,
s.t. irreducible and

AO—I—A1—|—"'—|—A7~:O, AZECZ

System of Fuchsian differential equations

dy A A A,
—( — )Y. (1)

E_ z2—11 z—19 z— T,

The residue matrix about z = ¢;: A;.
The residue matrix about z = co: Ag = —(A; +---+ A,).



Symbol (m, \)

(m;, A;) & Conjugacy class C; (Jordan normal form)
A= (N1, i, ) € C™: eigenvalues

m,; — (mi71, ce ,mi,ni) c (ZZl)niZ mlﬂtlpllCltleS

(Mg 4+ My, =1y M1 2> 00 2 Myy,),

It Ai1,..., Ain, are mutually distinct, then

i1, |
/ 1 )\i,2[m¢2 \
Ci — | . g (mia Az)a

Conjugacy classse (C4,...C,,Cy) < (m, A)
A

m — (mla”')mram())a A: (Ala'”a r)AO)'



Index of rigidity

A = (Ag, A1, ..., A): n X n matrices.
Define

idx(A ZdlmZ — (r — 1)n?,

Z(A;) ={X eC" | A, X = XA},

dim Z(A;) = > 5 (miy)?, (A ~ (my, A)).
A: irred. = idx(A) < 2, even.
e idx(m) is defined by idx(A).

If aDSP has a solution, then

the number of accessory parameters = 2] index of rigidity).



Addition
Addition w.r.t. the parameter (uq,...,u,) € C":

(Al,...,Ar,a) = (Al +,u1]n,...,Ar—|—uT]n)

AoiAo—(,u1+—|—,uT)]n

On Fuchsian system (1), it corresponds to
Y= (z—t)" ... (2 —t.)"Y.

Index of rigidity is preserved by addition.



2 Middle convolution

Middle convolution was introduced by Katz (1996) in ”Rigid
local systems”.

We explain the version for Fuchsian differential systems
given by Dettweiler and Reiter (2000,2007).

Given data: n,r € Z>1, A1, Ay, ..., At n X n matrices.
Fuchsian differential system

dy A A A,
—( — et )Y.

dz z—11 z—19 z— 1,




v € C, convolution matrices B, B, ..

(Al -+ V]n AQ
0 0
By = . .

.. A,
O\

7B2

0
(Al A

. Br c Cnrxnr

0

+vl, ...




Proposition 1. [Dettweiler € Reiter/
Let'Y be a solution of

Yy _ (A A A
dz \z—1t; z—t z— 1,

) Y (Y :size n).

Then the function U of size nr defined by
U1 (w)

Y
U=| : , Uj(w) = / ( (wt) | (z —w)"dw
w P .
Ur(w) C J
d B B B,
z'sasolutionof—U:< T )U.
dz z—1t  z—1 z —t,

C': an appropriate contour
(e.g. Pochhammer contour [a,, ay,] around z and t; in w-plane).



We are going to pick up an irreducible part by a quotient.

(Kafa)) (0

O .
Klz . 7"'7’CT: . )
: 0

\ 0 ) \ Ker(4,) )

K=Ki® -0k, L(v)=Ker(By)N---NKer(B,).

We denote matrices By on C™ /(K 4 L(v)) ~ C™ by By,.

Middle convolution
mcy(Al, AQ, ce ,Ar) = (Bl, BQ, c ooy BT)

Proposition 2. [DR] Assume that A = (Ay,..., A,) is irred.
(i) mey,(A): irred. and idx(mc,(A)) = idx(A), i.e.

the index of mgidity s preserved by middle convolution.

(1) mcyy,(A) = mey,(mey(A)) and meg(A) = A

In particular mc_,, o me, = id.



3 Fuchsian differential system of size 2 x 2

Three singularities {0, 1,00}
We use A, Ao, A1: 2 X 2 matrices instead of Ay, A1, As.

Assumption

The eigenvalues of Ay: 0, 6
The eigenvalues of Ay: 0, 64

AOO:—(A0+A1):<*51 U >

K9

e aDSP form = (1,1; 1,1; 1,1), A = (0,60q; 0,01; K1, k2)



Set
A — ug + 6o —Wo A — [ W + 61 — W
0 UO(UO + (90)/?1}0 —UQ 7 L (V] (U1 + (91)/11]1 —Uq 7
If Og+01+K1+r2=0(< > trA; = 0), then we have solutions:

Wy = k /{2(/62—|—81) _/432(/%2—|—(91) _/{2(/432—|—@0)

wlz_k7 2/%2+(90—|—91 Ko — K1 ’ Ko — K1 ’

k is absorbed by diagonal conjugation.
Hence aDSP has a unique solution. (Rigid)

On this case,
1dx(A) = dim Z(As ) +dim Z(Ap)+dim Z(A;)—(2—1)2% = 2.



2x2 Fuchsian system with singularities {0, 1, 00}

%:(AO+ 4 )Y, Y:(y1(2>>. (2)

z z—1 y2(z)

y = y1(2) satisfies Gauss hypergeometric differential equation
2(1=2)y" + (v —(a+ 8+ 1)2)y —afy =0,
Y= 1 — (907 {CY?ﬁ} — {/{17/{’2 T 1}

e aDSP for Ao, Al, Aoo c CQXZ
< Gauss hypergeometric differential equation; rigid

Other examples of rigid differential equations (idx= 2)
Jordan-Pochhammer differential equation,
Generalized hypergeometric differential equation.



Middle convolution for 2 x 2 Fuchsian system with
three singularities
The convolution matrices are 4 x 4

. Ao—l—V]Q Al o 0 0
BO_( 0 0 )7 Bl_(AO A1—|—V]2).

Since Ag and A; have 0-eigenvalues,

dim Iy = dim Iy = 1.
v #0,Kk1, ko = L(v) = {0},
vV = Ky, ke = dim L(v) = 1.

We only consider the case v = k.
The size of mc,, (A) is 1.



The differential equation after applying mc,;, is

aj(z) (00 TR, Ot ) 0(2). (3)

dz z z—1

Solutions are written as
g(z) _ 02901%1 (Z L 1)91+/<a1

Thinking of mc_,,mc,, = id, we apply mc_,, to Eq.(3).

AW (1[0 6 +nr 1 0 0
dz_<z(0 0 )+z—1(90+/€1 91))”/7

The integral representation of solution given by Proposition 1

1S
fC 90-|—F61 1)91-|—/<61 (Z - w)—/ﬂ dw
fc — 1w90+"’1 (w — 1) (2 — w)Fidw )




By diagonalizing the matrix about z = oo, we have

N rotbo kN "1 dW A A ~
Wz( ) _2) W, :(—"+ 1)W

E Z z—1

K1—K9 Ko
and we recover Eq.(2).

It follows from taking the first component of the integral
representation of W that the functions

y(z) = /Cwo"y(w — 1)z — w) Ydw

are solutions of Gauss hypergeometric differential equation.

2x2 - 1x1 - 2x2, integral representation

mc . mcC
solution



2x2 system with four singularities {0, 1,%, 00}

Assumption

The eigenvalues of Ay: 0, 6
The eigenvalues of Ay: 0, 64
The eigenvalues of A;: 0, 6,

K1 0
0 )

Aoo:—(Ao+A1+At):< ); K1 — Kg = O,

e aDSP form = (1,1;1,1;1,1;1,1), A = (0,00; 0, 601; 0, 0;; k1, ka).

idx(m) = 0 = # of accessory parameters = 2.
Accessory parameters A, p.

The elements of Ay, A; and A; are determined uniquely by
fixing A(¢ {0,1,¢,00}), u, k.



We denote Fuchsian differential system

dY Ao Al At
oo (22 Y
dz <z+z—1+z—t>
by DY(607917 Htpeoo; )‘nu? k)
Painlevé VI is obtained by monodromy preserving deformation.
By eliminating y2(z), we have

d2y1(z)+<1—00+1—91+1—9t 1 ) dyl(z)

dz? z z—1 r—t  z—\ dz

k1(k2 + 1) AMA=Dp it -1)H ) —
( 1) =1z —N z(z—l)(z—t))yl( ) =0,
H = t(tl—l) A= DA — ) — {00(A — (A — 1) + 1A\ — 1)

+ (0 — DA =D} + ra(k2 +1)(A = 1)),

which we denote by Dy, (60,601, 0:,000; A\, 11).

z = A\: apparent singularity with exponents 0, 2.



By suitable limits A — 0, 1,¢, oo from

d2 1(2:) 1—@0 1—91 1—(975 1 d 1(21)
322 +( 2 +z—1+z—t_z—)\) ydz
k1(ka + 1) AMA-=Dp @t -1)H ) —
( =1 " 2z=Dz-N z(z—l)(z—t))yl() 0

we obtain Heun’s differential equation:

d*y Y d € dy afz —q
“y (7 &y — 0
d22+<z+z—1+z—t>dz+z(z—1)(z—t)y ’

(Yy+o+e=a+[+1).

To obtain precise statement, the space of initial conditions
for Painlevé VI appears naturally (T. SIGMA 2009).



Middle convolution for 2 x 2 Fuchsian system with
four singularities

We consider middle convolution for Dy (6y, 01, 0;, 00; A, 15 k)

dY Ag Ay Ay y1(2)
dz <z+z—1+z—t> ’ (y2(2)

The convolution matrices are 6 X 6.

The rank of Fuchsian differential system of mc,(A):

v#0,k, ke =rank =3, v =0= mcy=1d.
v =0,K1, ke = rank = 2,

If v = Ky, then mc,, (A) was calculated by Filipuk (Kumamoto
J. Math. 2006) and a relationship to Backlund transformation
of Painlevé VI was studied.

We can also calculate the integral transformation explicitly
(c.f. T. JMAA 2008)).



For the case v = k2, we have
Theorem 3. [T. SIGMA 2009] Set

- + 0 Ko + 6 Ko + 6 K
e e e o+ S

kA=D1 =) W) g (w) o dys (w) 2
U2(z) = EOr— ) /C{ S +/€1 Jw }( )2 dw.

satisfy Dy (k2 + 00, ka2 + 01, k2 + 01, k2 + 0o N, 13 k).
Corollary 4. [Novikov 2007] If y1(z) satisfies Dy, (60,01, 0t,000; \, 1), then
i) = [ () - w)™dw.
C

satisfies Dy, (k2 + 0o, k2 + 01, k2 + 01, ko + Ooo; 5\,,&).



By taking a suitable limit of A and u, we have integral transformation of

Heun’s equation, which was essentially obtained by Kazakov and Slavyanov
(1996) by another method.

Theorem 5. Set

p=oa, v =v9+1l—-a, 6 =6+1—a, € =e+1—aq,

o« =2-a, ' =-a+f+1 ¢ =qg+(1—a)(e+dt+(y—a)t+l))
Let v(w) be a solution of Heun’s differential equation

d2v_|_ ’y_’_l_ 6 N € dv_l_ o B'w — ¢
dw? w w—1 w-—t/)dw ww-1)(w-—1t)

v =0.

Then the function y(z) = / v(w)(z — w) Pdw satisfies
C

d?y v ) € dy afBz —q
- g L = 0.
dz? +<z+z—1+z—t) dz—l_z(z—l)(z—t)y



Integral transformation: o/, 5,7, ¢", €', ¢ = a, 3,7, 0, ¢€,q.

We can obtain new solutions by using known solutions of
different parameters.

e Finite-gap solutions (7', ¢, €, 6 —a’ € Z+ %, q': general)
= The case v,6,e,a+1/2,8+ 1/2 € Z, q: general.

e Polynomial-type solutions =
The case that one of the singularities {0, 1,%, 00} is apparent
(non-logarithmic). (T., arXiv:1008.4007)



4 Simplification by middle convolution

(Ag, A1, ..., A,): given.

To simplity the system of diff’l equations, we want to de-
crease the size of matrices by addition and middle convolution.

By addition, we adjust the dimensions of IC;(~ KerA4;) (1 =
1,...,7) to be maximum. We choose v s.t. the rank of Ag—v1
1s minimum, and we apply middle convolution mc,.

In some cases we cannot decrease the size. (terminal cases)

Theorem 6. /[Oshima (c.f. Kostov)]
Assume (Ao, A1, ..., A,) is irreducible.

By applying addition and middle convolution repeatedly, we
can reduce to the terminal pattern m described as follows:

(1) ide =2 = m = (1).



(2) deE:O:> HdEZZl

[ (d,d; d,d; d,d; d.,d) D" case, (r = 3)

m ] (ddd; dod d; d dd) ESV case, (r = 2)
(2d,2d; d,d,d,d; d,d,d,d) EWY case, (r = 2)
\(3d,3d; 2d,2d,2d; d,d,d,d,d,d) E" case, (r = 2)

(3) If idx < 0, then the number of the terminal patterns m
s finite for each idx. If idx = —2, then we have 13 patterns.

Note that Theorem 6 does not assert solvability of DSP.

Crawley-Boevey solved aDSP by using data of a root sys-
tem determined by (m, A).

idx = 0 = d = 1 is the condition for solvability (irreducibil-
ity) of aDSP.

D{": 2 x 2, sing. {0,1,¢, 00}, E: 3 x 3, sing. {0,1, 00}



5 Middle convolution for linear differential
system with irregular singularities

We consider middle convolution for

m; )
(S S5 A Yrver-e

1=1 7=0

m; = 0 = z =1, is regular singularity.

Kawakami (IMRN 2010) considered it for the case myq, ..., m,:
arbitrary, mg = 0 by using (generalized) Okubo normal form.
Yamakawa (Math. Ann. 2011) studied it for the case
mo < 1 by applying symplectic geometry (Harnad duality).
Boalch, Hiroe, Oshima . ..

In this talk, we introduce middle convolution including the
case mg > 2 directly. (T. arXiv:1002.2535)



Convolution

Write A = (A%, ..., A AR AL, (AY € End(V)).
Set V! = VM =C"M M =r+>"_ m,.
We define ¢, (A) = A = (A, ... A0 AR .. A,
(n e C, }igz) e End(V’) = C"MxnM)) a5 follows:

0 0 0 1 1 T
{Aq(n()) ---Ag)Aﬁ)A%bi ---AS)A% ...... Aé)
A0 _
mo )
I |
e > Mo —j
10 — pd
AJ A(O) o A(O) A(O) ’ A(l) A(l) A(Q) ...... A(T) ’
mo 2 1 mi 0 m2 0




mo+(mi1+1)+---+(m;—1+1)

A9 AP L AGE AP

}mo+(m1+1)+---+(mz'—1—|-1) \

> M —j

AP AD L ur A A




Euler’s integral tranformation

Convolution of matrices corresponds to Euler’s integral tran-
formation for solutions of lienar differential system.

y1(2)

Proposition 7. Assume that Y = : satisfies
Yn(2)

)
T (-Sare S )

zle




The function U defined by

/ qugg (z

\ U0

satisfies

du
dz

)

)/

for appropriate contours .

J, wi g (w) (2 = w)tdw

Jo Wy (w )(z

Y1 (w)

f'v(

w—t; )J+1

Yn (W)

fv(

’w—ti)j‘l'l

(2 =

(2 -

)

ZA(OxJ 1_|_ZZ x_t 9+1

zle

— w)*dw
w)Hdw

w)Hdw

)



Subspaces on convolution

We define subspaces of V! = VM = C"M a5 follows:

) ’
0
v AR AY AP\ v 0
K@ — qu?i_l ( 0 A%,)il Agi)\ (vai)i—l 0
(i=1,..., 7‘)< : 0 0 . : — : &
0 [[No oA\ ) o
0
N\ ,




TECR

<'o> r

K=Pc®, co=4] "4 S ADL =
= Uma i=0 j=6, ¢

N\ o )

(0) ;
’Umo\ o) =0 (i #0,#0)
oD = =D =y,
0 0 0
Llp) = (0) (A { (0) A() A( <)o>u\( o
(Iu;é()) 'U7(”'”1&i 0 Amo A _
: O . : (0)
, (0)
A\ JINo 0 AR |
Proposition 8. K and L(p) are (A)-invariant.

Namely flgi)/C C K and flj L(p) C L(w) for alli,j.




Middle convolution

Convolution ¢, (A) = A= (21522), . 714(10)7 A%, . ,A(()T)) is
well-defined on V' /(IKC 4+ L(u)).

mc,(A): middle convolution A
on the space mec, (V) =V'/(K+ L(1)).

Proposition 9. V: irred. = mc,(V): irred.,
V o~ mco(V) >~ me_,(me,(V)).

Conjecture 1. V: irred. = mc,,1,,(V) ~ mc,,(mc,, (V)).



Addition

(() (0) (1) (T))ECM

1= (fanos -5 Hy s Hongs - -+ 5 Mg

Mz(A) = A+ 7L, = (AQ + 4O 1 A% 1d7T,)

mo =T

On solutions of linear differential system,
addition corresponds to multiplying the function;

S |

21]1




Index of rigidity

A=(AD A9 AD

AW —

( Ag?i)i A(’i)

mi—l

0 AW

0 0
\ 0

A = —(AY .. Al

i

Cc) — ) () —

(e ot

7

0 Cﬁ?

0 0
\ 0

€ End(V®(mit+l))
(t=0,...,7)

AD @ — o) 70

Ve
.




Define the index of rigidity by

idx(A) = Z dim(C" <<Z mz> +r - 1) (dim(V))*.

The condition ADC® = C® A® is equivalent to

k
%) (4) (4) (4) _ _

[=0

Proposition 10. Index of rigidity is preserved by addition,
i.e. idx(Mz(A)) = idx(A).

Conjecture 2. If V 1is irred., then the index of rigidity s
preserved by middle convolution, i.e. idx(mc,(A)) =idx(A).



The case m; =1

The condition ADCH = C®OA® for m; = 1 is equivalent to

A101 =

ClAh

Here we ignore the superscript ().
Assume that A; is semisimple. Then 3P € GL(n),

P lA P =

M,
[

0

\ 0

0
)\2]77,2

0

) )

0 AL )

(A, -

Alco — C()Al —|— A()Cl — ClAO — O

., A @ distinct).



It follows from A;C7 = C1A; that Cy is written as

: )

)

( C(gl’l]
C([)Q,l]

i

(i#35). Ag"Cy =

[ o
0 0[2]
PO P = !
0 0 .
\ 0 0
Write 11 LA
(Ag™ . A
[2,1] [2,K]
Al LAG )
P lAP= , , PlCyP=
1 ek
LAl Al
It follows from A1C0 — C()Al —+ A()Ol — ClAO = 0 that
il _ Aoy — ol ag)
0 i — N

Elements of C'([)i’i] are not restricted by relations.

[4,7]
o -



If

[Nk, 0 0
1] 0 )\l,anl’Q ... 0 | |
Ay~ , . ;AL FE A (EF# ),
0 0 . :
\ 0 0 Npln, )

then the dimension of solutions of A1C7 = C1A; and A1Cy — CpAq +
AOC’1 — ClAO =01s

kK DI

DD () + ) ().

=1 j=1 =1
We denote the type of multiplicities of the matrices (A;, Ag)
by

(nl,ng, .. ,nk)—

((711’1, c. ,nljpl), (ng’l, c. 7n2,p2), C e (nkjl, ce ,nk’pk)).



Unramified tuple (A,,, A,,_1, ..
. Ap) is unramified <y, ¢

(Amy A1, - -
/ P

Pml
4P =

P—l

L0

D, ...

P
o)

P/
A
i)

i

P =

, D1, Dy: mutually commuting, D,,,

A

Dy Dy,
( 0 Dy, 1

0

L

D
D,

0 D,

..., Dq: diagonal.



Type of multiplicity for (A,, A;, Ap)

(Al’llnl,l 0 0 \
D> = : ) » D= |
0 o M, ’ P R
\ o o)
(Mailua, 0 0 )
0 0 0
Doy = 7
0 0 )\1,1,201,1]”1,1,191,1

\ 0 0 )

M1+ 4+np=n,npg1+ - +Nkp, =Nk, Nki1+ -+ Nk,lpp; = Nk, ), then
we write the type of multiplicity as

(nl,ng, “e. ,np)

- ((nl,lv s 777’17291)7 (n271a s 7n27p2)7 s )

— (((7?,1,1,1, “ e ,n1,1,p1,1), (??,1,2,1, “ e ,nl,g,p172), “ e ), “ e )



We can define the type of multiplicity for (A,,, ..., Ag) sim-
ilarly:.

On the case m = 1, this definition coincides to the previous
one.

Proposition 11. We assume that {Aq(qi)i, . ,Aé’”} IS UNTami-
fied for i =0,...,r and (A) is irreducible.

(i) The index of rigidity can be written by using the type of
multiplicities.

(11) mc,(A) is also irreducible, unramified and the index of
rigidity 1s preserved by application of middle convolution, 1.e.

idx(mec,(A)) = idx(A) for all p € C.



Proposition 12. We assume that {Affﬁ)z, . ,Agi)> 1S UNTAMI-

fied for i =0,...,r and (A) is irreducible.

(1) If idx(A) = 2, then A is transformed to the rank one ma-
trices by applying addition and middle convolution repeatedly.
(i1) If idx(A) = 0, then A is transformed to one of the fol-
lowing cases by applying middle convolution and addition re-
peatedly, where d € Z>.

d), (d,d), (d,d), (d,d)},
), (d,d,d), (d,d,d)},

d), (

d), (d,d,d,d), (d,d,d,d)},

d), (2d,2d,2d), (d,d,d,d,d,d)},
(d

((d),(d)), (d,d), (d,d)},

Four singularities :  {(d,

Three singularities : {(d,d,
{(2d,2
{(3d, 3
(d,d) —



Two singularities :

) ((d7

2d, 2d) (

3d,3d,2d) — ((d,d,d), (d,d,d),(2d)), (4d,4d)},
5d,4d, 3d) — ((d,d,d,d,d), (2d,2d), (3d)), (6d,6d)},
bd, 4d) —
3d, 3d) —
bd, 3d) —
4d, 3d) —

d,d,d,d,d), (2d,2d)), (3d,3d,3d)},
d,d,d),(d,d,d)), (2d,2d,2d)},
d,d,d,d,d),(3d)), (2d,2d,2d,2d)},

(d,
(d,
(d,
(d,
1
1
{(2d 2d, 2d) — ((d, d), (d, ), (d, d)) (3d 3d)},
{(
{(
1
1
U
{( 2d,2d), (3d)), (d,d,d,d,d,d,d)},

N— N N NS
~ N N

(
(
(
(



N——"

N—"

N—"

/N

N—"

One singularity :

)
,7@d23
=N~ N~ e~
}ddadan/damo\
-~ s S o S
—_, e~ 3 7d2\}7
R E S S T
\n/d./ 7d\}7d\)7
}\l/dd(\/.\\)((dd
e S N T~ J e BN
—~ — — 7)d7)((
- S~ T ~ N = -
SRR
~— D ~— — — -
7((Hd - - I
D -~ ~—~~ M~~~ I~ o« -
S TRRRRS S
~3 ~—~~ - ~ &N -
NS TS N S B BRI SIS
- -~ = - 3 -
S N~ =T « R« B o R« B
\/d(\(((\(\(\(
N O O — — — — — —
~ —_ — — — ~— ~— “—
—
~ _ | | | _ _ _
o~
" o~~~
= - T - R« B« B -
dd2344666
L~ ~— ~— ~— ~— ~— —
-~ S I 2 =2 = = =2 =
ST IR
/\\.d)d7223334
— - NN el ol o N
TR T AN MmN < 0 WO
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— N N N N N N N

A 7~ N 77N 77N 7SN -/N N /N /N

N— e e e e N N N N

{
{
{
{
{
1
{
{
{

We conjecture that d = 1 follows from wrreducibility.



Deligne-Arinkin Theorem

Theorem 13. [Arinkin, Compos. Math. 2010/

If a system of differential equation is irreducible and rigid (i.e.
ide = 2), then it is transformed to the rank one system by

applying addition and Fourier-Laplace transformation repeat-
edly.

We do not need the assumption of unramification.

Euler transformation ~ L7124 L,
(L: Fourier-Laplace transformation)



Examples for the case r =1, mg =0, m; = 1,
z=0:1rreg., z = 00 : reg., size: 2 X 2

(i) The eigenvalues of Agl) are distinct

Index of rigidity = 2.

By diagonalizing Agl) and applying additions, we may set
@ (0 0 (1) 0 ao
Al_(o 5)’ A0_<Cl2,1 CL2,2>°

day (Agl) A(()l)> v —  Kummer’s confluent hypergeometric
V4

dz \ 22 2 1

22 z = = differential equation



00 0 a

A AW /o 12 )

A1) — 1 0 _ B ax1 a2
0o AWM 00 0 0

\0 0 0 5 )

= dim(K) = dim(Ker(AW)) = 2.

If 1(s£ 0) is an eigenvalue of —AS"Y . then dim(K + £(p)) =
3 and we have a differential equation of rank 1 by middle
convolution mc,,.

By applying mc_, to the differential equation of rank 1,
we obtain an integral representation of solutions to the differ-
ential system of rank 2.



(ii) A" is nilpotent
Index of rigidity = 2.

Set
1w (0 1 (1) [ a11 Q1.2
Al ( O O ) ’ AO o < CL271 a/272 )
. . B 1 a1+« ai,2
AV 4L AP +al \ [ 0 8 an  apta
0 AWM 4+ 81, 00 g 1
0 O 0 I}

= dim(K) <1 (ag,1 # 0) for any choice of addition.

Hence dim(K+L(u)) < 2 and the rank of differential equation cannot
be deduced to one.

az,1 = 0 = reducible.
This case is not covered by Proposition 12.



Summary

e DSP, Fuchsian differential system, middle convolution.
e Index of rigidity is preserved.

e Examples: Gauss hypergeometric equation, Heun’s equa-
tion.

e Simplification by addition and middle convolution.

e Middle convolution for linear differential system with ir-
regular singularities.



Problems for linear differential system with
irregular singularities

e Validity of definition the index of rigidity.
(Compatibility with the definition by Bloch-Esnault, Invari-
ance of the index of rigidity by middle convolution)

e More examples. (conluent Heun equations ... )

e Laplace transformation.
(we may treat the case that Agl) is nilpotent).

e Crawley-Boevey type theorem for linear differential sys-
tem with irregular singularities.

We hope that middle convolution is also applied for
several topics in mathematics and physics.
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