Introduction to middle convolution for differential equations with irregular singularities

Kouichi TAKEMURA Chuo University, JAPAN

References

Middle convolution and Heun's equation, SIGMA, 2009, 040

Introduction to middle convolution for differential equations with irregular singularities, arXiv:1002.2535

Middle convolution for systems of linear differential equations with irregular singularities, in preparation. We study middle convolution for systems of linear differential equations with irregular singular points;

$$\frac{dY}{dz} = \left(-\sum_{j=1}^{m_0} A_j^{(0)} z^{j-1} + \sum_{i=1}^r \sum_{j=0}^{m_i} \frac{A_j^{(i)}}{(z - t_i)^{j+1}}\right) Y, \ Y \in \mathbb{C}^n$$

Middle convolution =

Euler's integral transformation $\int_C f(w)(z-w)^{\mu}dw$

+ transformation of vector spaces and matrices.

First we consider systems of Fuchsian differential equations;

$$\frac{dY}{dz} = \left(\frac{A_1}{z - t_1} + \frac{A_2}{z - t_2} + \dots + \frac{A_r}{z - t_r}\right) Y.$$

1 Deligne-Simpson problem (DSP)

 C_0, \ldots, C_r : conjugacy classes of $n \times n$ matrix. $C_i = \{P_i^{-1}D_iP_i \mid P_i \in GL(n)\}, D_i$: Jordan normal forms

Additive Deligne-Simpson problem (aDSP):

Find a condition for existence of (or solution for) A_0, \ldots, A_r s.t. irreducible and

$$A_0 + A_1 + \dots + A_r = 0, \ A_i \in C_i.$$

System of Fuchsian differential equations

$$\frac{dY}{dz} = \left(\frac{A_1}{z - t_1} + \frac{A_2}{z - t_2} + \dots + \frac{A_r}{z - t_r}\right) Y. \tag{1}$$

The residue matrix about $z = t_i$: A_i .

The residue matrix about $z = \infty$: $A_0 = -(A_1 + \cdots + A_r)$.

Symbol $(m, \underline{\lambda})$

 $(\mathbf{m}_i, \underline{\lambda}_i) \Leftrightarrow \mathbf{Conjugacy\ class}\ C_i\ (\mathbf{Jordan\ normal\ form})$ $\underline{\lambda}_i = (\lambda_{i,1}, \dots, \lambda_{i,n_i}) \in \mathbb{C}^{n_i}$: eigenvalues $\mathbf{m}_i = (m_{i,1}, \dots, m_{i,n_i}) \in (\mathbb{Z}_{\geq 1})^{n_i}$: multiplicities $(m_{i,1} + \dots + m_{i,n_i} = n, m_{i,1} \geq \dots \geq m_{i,n_i}),$

If $\lambda_{i,1}, \ldots, \lambda_{i,n_i}$ are mutually distinct, then

$$C_{i} = \begin{pmatrix} \lambda_{i,1} I_{m_{i,1}} & & & \\ & \lambda_{i,2} I_{m_{i,2}} & & \\ & & \ddots & \\ & & & \lambda_{i,n_{i}} I_{m_{i,n_{i}}} \end{pmatrix} \Leftrightarrow (\mathbf{m}_{i}, \underline{\lambda}_{i}),$$

Conjugacy classse $(C_1, \dots C_r, C_0) \Leftrightarrow (\mathbf{m}, \underline{\lambda})$ $\mathbf{m} = (\mathbf{m}_1, \dots, \mathbf{m}_r, \mathbf{m}_0), \ \underline{\lambda} = (\underline{\lambda}_1, \dots, \underline{\lambda}_r, \underline{\lambda}_0).$

Index of rigidity

 $\mathbf{A} = (A_0, A_1, \dots, A_r)$: $n \times n$ matrices.

Define

$$idx(\mathbf{A}) = \sum_{i=0}^{r} \dim Z(A_i) - (r-1)n^2,$$

$$Z(A_i) = \{ X \in \mathbb{C}^{n \times n} \mid A_i X = X A_i \},$$

$$\dim Z(A_i) = \sum_{j=1}^{n_i} (m_{i,j})^2, \quad (A_i \sim (\mathbf{m}_i, \underline{\lambda}_i)).$$

A: irred. \Rightarrow idx(**A**) \leq 2, even.

• $idx(\mathbf{m})$ is defined by $idx(\mathbf{A})$.

If aDSP has a solution, then

the number of accessory parameters = 2—(index of rigidity).

Addition

Addition w.r.t. the parameter $(\mu_1, \ldots, \mu_r) \in \mathbb{C}^r$:

$$(A_1, \dots, A_r) \Rightarrow (A_1 + \mu_1 I_n, \dots, A_r + \mu_r I_n)$$
$$A_0 \Rightarrow A_0 - (\mu_1 + \dots + \mu_r) I_n.$$

On Fuchsian system (1), it corresponds to

$$Y \mapsto (z - t_1)^{\mu_1} \dots (z - t_r)^{\mu_r} Y.$$

Index of rigidity is preserved by addition.

2 Middle convolution

Middle convolution was introduced by Katz (1996) in "Rigid local systems".

We explain the version for Fuchsian differential systems given by Dettweiler and Reiter (2000,2007).

Given data: $n, r \in \mathbb{Z}_{>1}, A_1, A_2, \ldots, A_r$: $n \times n$ matrices.

Fuchsian differential system

$$\frac{dY}{dz} = \left(\frac{A_1}{z - t_1} + \frac{A_2}{z - t_2} + \dots + \frac{A_r}{z - t_r}\right) Y.$$

 $\nu \in \mathbb{C}$, convolution matrices $B_1, B_2, \dots, B_r \in \mathbb{C}^{nr \times nr}$

$$B_{1} = \begin{pmatrix} A_{1} + \nu I_{n} & A_{2} & \dots & A_{r} \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}, B_{2} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ A_{1} & A_{2} + \nu I_{n} & \dots & A_{r} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix},$$

.....,
$$B_r = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ A_1 & A_2 & \dots & A_r + \nu I_n \end{pmatrix},$$

$$\frac{dU}{dz} = \left(\frac{B_1}{z - t_1} + \frac{B_2}{z - t_2} + \dots + \frac{B_r}{z - t_r}\right)U.$$

Proposition 1. [Dettweiler & Reiter] Let Y be a solution of

$$\frac{dY}{dz} = \left(\frac{A_1}{z - t_1} + \frac{A_2}{z - t_2} + \dots + \frac{A_r}{z - t_r}\right) Y \quad (Y : \text{size } n).$$

Then the function U of size nr defined by

$$U = \begin{pmatrix} U_1(w) \\ \vdots \\ U_r(w) \end{pmatrix}, \quad U_j(w) = \int_C \frac{Y(w)}{(w - t_j)} (z - w)^{\nu} dw$$

is a solution of
$$\frac{dU}{dz} = \left(\frac{B_1}{z - t_1} + \frac{B_2}{z - t_2} + \dots + \frac{B_r}{z - t_r}\right)U$$
.

C: an appropriate contour (e.g. Pochhammer contour $[\alpha_z, \alpha_{t_i}]$ around z and t_i in w-plane).

We are going to pick up an irreducible part by a quotient.

$$\mathcal{K}_{1} = \begin{pmatrix} \operatorname{Ker}(A_{1}) \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \mathcal{K}_{r} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \operatorname{Ker}(A_{r}) \end{pmatrix}, \\
\mathcal{K} = \mathcal{K}_{1} \oplus \dots \oplus \mathcal{K}_{r}, \quad \mathcal{L}(\nu) = \operatorname{Ker}(B_{1}) \cap \dots \cap \operatorname{Ker}(B_{r}).$$

We denote matrices B_k on $\mathbb{C}^{nr}/(\mathcal{K} + \mathcal{L}(\nu)) \simeq \mathbb{C}^m$ by \tilde{B}_k .

Middle convolution

$$mc_{\nu}(A_1, A_2, \dots, A_r) = (\tilde{B}_1, \tilde{B}_2, \dots, \tilde{B}_r)$$

Proposition 2. [DR] Assume that $\mathbf{A} = (A_1, \dots, A_r)$ is irred. (i) $mc_{\nu}(\mathbf{A})$: irred. and $idx(mc_{\nu}(\mathbf{A})) = idx(\mathbf{A})$, i.e. the index of rigidity is preserved by middle convolution. (ii) $mc_{\nu+\mu}(\mathbf{A}) = mc_{\nu}(mc_{\mu}(\mathbf{A}))$ and $mc_0(\mathbf{A}) = \mathbf{A}$. In particular $mc_{-\nu} \circ mc_{\nu} = id$.

3 Fuchsian differential system of size 2×2

Three singularities $\{0, 1, \infty\}$

We use A_{∞} , A_0 , A_1 : 2 × 2 matrices instead of A_0 , A_1 , A_2 .

Assumption

The eigenvalues of A_0 : 0, θ_0 The eigenvalues of A_1 : 0, θ_1 $A_{\infty} = -(A_0 + A_1) = \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$.

• aDSP for $\mathbf{m} = (1, 1; 1, 1; 1, 1), \underline{\lambda} = (0, \theta_0; 0, \theta_1; \kappa_1, \kappa_2)$

Set

$$A_0 = \begin{pmatrix} u_0 + \theta_0 & -w_0 \\ u_0(u_0 + \theta_0)/w_0 & -u_0 \end{pmatrix}, A_1 = \begin{pmatrix} u_1 + \theta_1 & -w_1 \\ u_1(u_1 + \theta_1)/w_1 & -u_1 \end{pmatrix},$$

If $\theta_0 + \theta_1 + \kappa_1 + \kappa_2 = 0 \iff \sum \operatorname{tr} A_i = 0$, then we have solutions:

k is absorbed by diagonal conjugation.

Hence aDSP has a unique solution. (Rigid)

On this case,

$$\operatorname{idx}(\mathbf{A}) = \dim Z(A_{\infty}) + \dim Z(A_{0}) + \dim Z(A_{1}) - (2-1)2^{2} = 2.$$

2×2 Fuchsian system with singularities $\{0,1,\infty\}$

$$\frac{dY}{dz} = \left(\frac{A_0}{z} + \frac{A_1}{z - 1}\right)Y, \quad Y = \begin{pmatrix} y_1(z) \\ y_2(z) \end{pmatrix}. \tag{2}$$

 $y = y_1(z)$ satisfies Gauss hypergeometric differential equation

$$z(1-z)y'' + (\gamma - (\alpha + \beta + 1)z)y' - \alpha\beta y = 0,$$
$$\gamma = 1 - \theta_0, \ \{\alpha, \beta\} = \{\kappa_1, \kappa_2 + 1\}.$$

- aDSP for $A_0, A_1, A_{\infty} \in \mathbb{C}^{2\times 2}$
- ⇔ Gauss hypergeometric differential equation; rigid

Other examples of rigid differential equations (idx= 2) Jordan-Pochhammer differential equation, Generalized hypergeometric differential equation.

Middle convolution for 2×2 Fuchsian system with three singularities

The convolution matrices are 4×4

$$B_0 = \begin{pmatrix} A_0 + \nu I_2 & A_1 \\ 0 & 0 \end{pmatrix}, \quad B_1 = \begin{pmatrix} 0 & 0 \\ A_0 & A_1 + \nu I_2 \end{pmatrix}.$$

Since A_0 and A_1 have 0-eigenvalues,

$$\dim \mathcal{K}_0 = \dim \mathcal{K}_1 = 1.$$

$$\nu \neq 0, \kappa_1, \kappa_2 \Rightarrow \mathcal{L}(\nu) = \{0\},$$

$$\nu = \kappa_1, \kappa_2 \Rightarrow \dim \mathcal{L}(\nu) = 1.$$

We only consider the case $\nu = \kappa_1$. The size of $mc_{\kappa_1}(\mathbf{A})$ is 1. The differential equation after applying mc_{κ_1} is

$$\frac{d\tilde{y}(z)}{dz} = \left(\frac{\theta_0 + \kappa_1}{z} + \frac{\theta_1 + \kappa_1}{z - 1}\right)\tilde{y}(z),\tag{3}$$

Solutions are written as

$$\tilde{y}(z) = Cz^{\theta_0 + \kappa_1} (z - 1)^{\theta_1 + \kappa_1}$$

Thinking of $mc_{-\kappa_1}mc_{\kappa_1}=\mathrm{id}$, we apply $mc_{-\kappa_1}$ to Eq.(3).

$$\frac{dW}{dz} = \begin{pmatrix} \frac{1}{z} \begin{pmatrix} \theta_0 & \theta_1 + \kappa_1 \\ 0 & 0 \end{pmatrix} + \frac{1}{z - 1} \begin{pmatrix} 0 & 0 \\ \theta_0 + \kappa_1 & \theta_1 \end{pmatrix} \end{pmatrix} W,$$

The integral representation of solution given by Proposition 1 is

$$W = \left(\int_C \frac{1}{w} w^{\theta_0 + \kappa_1} (w - 1)^{\theta_1 + \kappa_1} (z - w)^{-\kappa_1} dw \right).$$

By diagonalizing the matrix about $z = \infty$, we have

$$\tilde{W} = \begin{pmatrix} \frac{\kappa_2 + \theta_0}{\kappa_1 - \kappa_2} & -\frac{k}{\kappa_2} \\ -\frac{\kappa_2 + \theta_1}{\kappa_1 - \kappa_2} & -\frac{k}{\kappa_2} \end{pmatrix}^{-1} W, \quad \frac{d\tilde{W}}{dz} = \left(\frac{A_0}{z} + \frac{A_1}{z - 1}\right) \tilde{W}$$

and we recover Eq.(2).

It follows from taking the first component of the integral representation of \tilde{W} that the functions

$$y(z) = \int_C w^{\alpha - \gamma} (w - 1)^{\gamma - \beta - 1} (z - w)^{-\alpha} dw$$

are solutions of Gauss hypergeometric differential equation.

$$2 \times 2 \xrightarrow[mc]{} 1 \times 1 \xrightarrow[mc^{-1}]{} 2 \times 2$$
, integral representation

2×2 system with four singularities $\{0,1,t,\infty\}$

Assumption

The eigenvalues of A_0 : 0, θ_0 The eigenvalues of A_1 : 0, θ_1 The eigenvalues of A_t : 0, θ_t

$$A_{\infty} = -(A_0 + A_1 + A_t) = \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}, \quad \kappa_1 - \kappa_2 = \theta_{\infty},$$

• aDSP for $\mathbf{m} = (1, 1; 1, 1; 1, 1; 1, 1), \underline{\lambda} = (0, \theta_0; 0, \theta_1; 0, \theta_t; \kappa_1, \kappa_2).$

 $idx(\mathbf{m}) = 0 \Rightarrow \# \text{ of accessory parameters} = 2.$ Accessory parameters λ , μ .

The elements of A_0 , A_1 and A_t are determined uniquely by fixing $\lambda (\not\in \{0, 1, t, \infty\})$, μ , k.

We denote Fuchsian differential system

$$\frac{dY}{dz} = \left(\frac{A_0}{z} + \frac{A_1}{z - 1} + \frac{A_t}{z - t}\right)Y$$

by $D_Y(\theta_0, \theta_1, \theta_t, \theta_\infty; \lambda, \mu; k)$.

Painlevé VI is obtained by monodromy preserving deformation.

By eliminating $y_2(z)$, we have

$$\frac{d^{2}y_{1}(z)}{dz^{2}} + \left(\frac{1-\theta_{0}}{z} + \frac{1-\theta_{1}}{z-1} + \frac{1-\theta_{t}}{z-t} - \frac{1}{z-\lambda}\right) \frac{dy_{1}(z)}{dz}
+ \left(\frac{\kappa_{1}(\kappa_{2}+1)}{z(z-1)} + \frac{\lambda(\lambda-1)\mu}{z(z-1)(z-\lambda)} - \frac{t(t-1)H}{z(z-1)(z-t)}\right) y_{1}(z) = 0,
H = \frac{1}{t(t-1)} [\lambda(\lambda-1)(\lambda-t)\mu^{2} - \{\theta_{0}(\lambda-1)(\lambda-t) + \theta_{1}\lambda(\lambda-t) + (\theta_{t}-1)\lambda(\lambda-1)\}\mu + \kappa_{1}(\kappa_{2}+1)(\lambda-t)],$$

which we denote by $D_{y_1}(\theta_0, \theta_1, \theta_t, \theta_\infty; \lambda, \mu)$.

 $z = \lambda$: apparent singularity with exponents 0, 2.

By suitable limits $\lambda \to 0, 1, t, \infty$ from

$$\frac{d^2y_1(z)}{dz^2} + \left(\frac{1-\theta_0}{z} + \frac{1-\theta_1}{z-1} + \frac{1-\theta_t}{z-t} - \frac{1}{z-\lambda}\right) \frac{dy_1(z)}{dz} + \left(\frac{\kappa_1(\kappa_2+1)}{z(z-1)} + \frac{\lambda(\lambda-1)\mu}{z(z-1)(z-\lambda)} - \frac{t(t-1)H}{z(z-t)}\right) y_1(z) = 0,$$

we obtain **Heun's differential equation**:

$$\frac{d^2y}{dz^2} + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-t}\right) \frac{dy}{dz} + \frac{\alpha\beta z - q}{z(z-1)(z-t)} y = 0,$$

$$(\gamma + \delta + \epsilon = \alpha + \beta + 1).$$

To obtain precise statement, the space of initial conditions for Painlevé VI appears naturally (T. SIGMA 2009).

Middle convolution for 2×2 Fuchsian system with four singularities

We consider middle convolution for $D_Y(\theta_0, \theta_1, \theta_t, \theta_\infty; \lambda, \mu; k)$

$$\frac{dY}{dz} = \left(\frac{A_0}{z} + \frac{A_1}{z - 1} + \frac{A_t}{z - t}\right)Y, \quad Y = \begin{pmatrix} y_1(z) \\ y_2(z) \end{pmatrix}.$$

The convolution matrices are 6×6 .

The rank of Fuchsian differential system of $mc_{\nu}(\mathbf{A})$:

$$\nu \neq 0, \kappa_1, \kappa_2 \Rightarrow \text{rank} = 3, \quad \nu = 0 \Rightarrow mc_0 = id.$$

$$\nu = 0, \kappa_1, \kappa_2 \Rightarrow \text{rank} = 2,$$

If $\nu = \kappa_1$, then $mc_{\kappa_1}(\mathbf{A})$ was calculated by Filipuk (*Kumamoto J. Math.* 2006) and a relationship to Bäcklund transformation of Painlevé VI was studied.

We can also calculate the integral transformation explicitly (c.f. T. $JMAA\ 2008$)).

For the case $\nu = \kappa_2$, we have

Theorem 3. /T. SIGMA 2009/ Set

$$\tilde{\lambda} = \lambda - \frac{\kappa_2}{\mu - \frac{\theta_0}{\lambda} - \frac{\theta_1}{\lambda - 1} - \frac{\theta_t}{\lambda - t}}, \quad \tilde{\mu} = \frac{\kappa_2 + \theta_0}{\tilde{\lambda}} + \frac{\kappa_2 + \theta_1}{\tilde{\lambda} - 1} + \frac{\kappa_2 + \theta_t}{\tilde{\lambda} - 1} + \frac{\kappa_2}{\tilde{\lambda} - t} + \frac{\kappa_2}{\lambda - \tilde{\lambda}}.$$

If $Y = {}^{t}(y_1(z), y_2(z))$ satisfies $D_Y(\theta_0, \theta_1, \theta_t, \theta_\infty; \lambda, \mu; k)$, then the function $\tilde{Y} = {}^{t}(\tilde{y}_1(z), \tilde{y}_2(z))$ defined by

$$\tilde{y}_1(z) = \int_C \frac{dy_1(w)}{dw} (z - w)^{\kappa_2} dw,$$

$$\tilde{y}_2(z) = \frac{\kappa_2 \lambda(\lambda - 1)(\lambda - t)}{k(\lambda - \tilde{\lambda})} \int_C \left\{ \frac{\frac{dy_1(w)}{dw} - \mu y_1(w)}{\lambda - w} + \frac{\mu}{\kappa_1} \frac{dy_1(w)}{dw} \right\} (z - w)^{\kappa_2} dw.$$

satisfy $D_Y(\kappa_2 + \theta_0, \kappa_2 + \theta_1, \kappa_2 + \theta_t, \kappa_2 + \theta_\infty; \tilde{\lambda}, \tilde{\mu}; k)$.

Corollary 4. [Novikov 2007] If $y_1(z)$ satisfies $D_{y_1}(\theta_0, \theta_1, \theta_t, \theta_\infty; \lambda, \mu)$, then

$$\tilde{y}(z) = \int_C y_1(w)(z-w)^{\kappa_2 - 1} dw,$$

satisfies $D_{y_1}(\kappa_2 + \theta_0, \kappa_2 + \theta_1, \kappa_2 + \theta_t, \kappa_2 + \theta_\infty; \tilde{\lambda}, \tilde{\mu}).$

By taking a suitable limit of λ and μ , we have integral transformation of Heun's equation, which was essentially obtained by Kazakov and Slavyanov (1996) by another method.

Theorem 5. Set

$$\mu = \alpha, \ \gamma' = \gamma + 1 - \alpha, \ \delta' = \delta + 1 - \alpha, \ \epsilon' = \epsilon + 1 - \alpha,$$
 $\alpha' = 2 - \alpha, \ \beta' = -\alpha + \beta + 1, \ q' = q + (1 - \alpha)(\epsilon + \delta t + (\gamma - \alpha)(t + 1)).$

Let v(w) be a solution of Heun's differential equation

$$\frac{d^2v}{dw^2} + \left(\frac{\gamma'}{w} + \frac{\delta'}{w-1} + \frac{\epsilon'}{w-t}\right)\frac{dv}{dw} + \frac{\alpha'\beta'w - q'}{w(w-1)(w-t)}v = 0.$$

Then the function $y(z) = \int_C v(w)(z-w)^{-\mu} dw$ satisfies

$$\frac{d^2y}{dz^2} + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-t}\right)\frac{dy}{dz} + \frac{\alpha\beta z - q}{z(z-1)(z-t)}y = 0.$$

Integral transformation: $\alpha', \beta', \gamma', \delta', \epsilon', q' \Rightarrow \alpha, \beta, \gamma, \delta, \epsilon, q$.

We can obtain new solutions by using known solutions of different parameters.

- Finite-gap solutions $(\gamma', \delta', \epsilon', \beta' \alpha' \in \mathbb{Z} + \frac{1}{2}, q')$: general) \Rightarrow The case $\gamma, \delta, \epsilon, \alpha + 1/2, \beta + 1/2 \in \mathbb{Z}, q$: general.
- Polynomial-type solutions \Rightarrow The case that one of the singularities $\{0, 1, t, \infty\}$ is apparent (non-logarithmic). (T., arXiv:1008.4007)

4 Simplification by middle convolution

 $(A_0, A_1, ..., A_r)$: given.

To simplify the system of diff'l equations, we want to decrease the size of matrices by addition and middle convolution.

By addition, we adjust the dimensions of $\mathcal{K}_i(\simeq \operatorname{Ker} A_i)$ $(i = 1, \ldots, r)$ to be maximum. We choose ν s.t. the rank of $A_0 - \nu I$ is minimum, and we apply middle convolution mc_{ν} .

In some cases we cannot decrease the size. (terminal cases)

Theorem 6. [Oshima (c.f. Kostov)]

Assume (A_0, A_1, \ldots, A_r) is irreducible.

By applying addition and middle convolution repeatedly, we can reduce to the terminal pattern **m** described as follows:

(1)
$$idx = 2 \Rightarrow \mathbf{m} = (1)$$
.

(2)
$$idx = 0 \Rightarrow \exists d \in \mathbb{Z}_{\geq 1}$$

$$\mathbf{m} = \begin{cases} (d, d; d, d; d, d; d, d) & D_4^{(1)} \text{ case, } (r = 3) \\ (d, d, d; d, d, d; d, d, d) & E_6^{(1)} \text{ case, } (r = 2) \\ (2d, 2d; d, d, d, d; d, d, d, d) & E_7^{(1)} \text{ case, } (r = 2) \\ (3d, 3d; 2d, 2d, 2d; d, d, d, d, d, d) & E_8^{(1)} \text{ case, } (r = 2) \end{cases}$$

(3) If idx < 0, then the number of the terminal patterns \mathbf{m} is finite for each idx. If idx = -2, then we have 13 patterns.

Note that Theorem 6 does not assert solvability of DSP.

Crawley-Boevey solved aDSP by using data of a root system determined by $(\mathbf{m}, \underline{\lambda})$.

 $idx = 0 \Rightarrow d = 1$ is the condition for solvability (irreducibility) of aDSP.

$$D_4^{(1)}$$
: 2 × 2, sing. $\{0, 1, t, \infty\}$, $E_6^{(1)}$: 3 × 3, sing. $\{0, 1, \infty\}$

5 Middle convolution for linear differential system with irregular singularities

We consider middle convolution for

$$\frac{dY}{dz} = \left(-\sum_{j=1}^{m_0} A_j^{(0)} z^{j-1} + \sum_{i=1}^r \sum_{j=0}^{m_i} \frac{A_j^{(i)}}{(z - t_i)^{j+1}}\right) Y, \ Y \in V = \mathbb{C}^n$$

 $m_i = 0 \Rightarrow z = t_i$ is regular singularity.

Kawakami (*IMRN* 2010) considered it for the case m_1, \ldots, m_r : arbitrary, $m_0 = 0$ by using (generalized) Okubo normal form.

Yamakawa (*Math. Ann.* 2011) studied it for the case $m_0 \leq 1$ by applying symplectic geometry (Harnad duality). Boalch, Hiroe, Oshima . . .

In this talk, we introduce middle convolution including the case $m_0 \ge 2$ directly. (T. arXiv:1002.2535)

Convolution

Write $\mathbf{A} = (A_{m_0}^{(0)}, \dots, A_1^{(0)}, A_{m_1}^{(1)}, \dots, A_0^{(r)}), (A_i^{(i)} \in \text{End}(V)).$ Set $V' = V^{\oplus M} = \mathbb{C}^{nM}$, $M = r + \sum_{i=0}^{r} m_i$. We define $c_{\mu}(\mathbf{A}) = \tilde{\mathbf{A}} = (\tilde{A}_{m_0}^{(0)}, \dots, \tilde{A}_1^{(0)}, \tilde{A}_{m_1}^{(1)}, \dots, \tilde{A}_0^{(r)}),$ $(\mu \in \mathbb{C}, \tilde{A}_j^{(i)} \in \text{End}(V') = \mathbb{C}^{nM \times nM})$ as follows: $\tilde{A}_{m_0}^{(0)} = \begin{pmatrix} A_{m_0}^{(0)} & \cdots & A_2^{(0)} & A_1^{(0)} & A_{m_1}^{(1)} & \cdots & A_0^{(1)} & A_{m_2}^{(2)} & \cdots & \cdots & A_0^{(r)} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ $\tilde{A}_{j}^{(0)} = \begin{pmatrix} \mu_{I} & & & \\ & \ddots & & \\ & & \mu_{I} \\ A_{m_{0}}^{(0)} & \cdots & A_{2}^{(0)} & A_{1}^{(0)} & A_{m_{1}}^{(1)} & \cdots & A_{0}^{(1)} & A_{m_{2}}^{(2)} & \cdots & A_{0}^{(r)} \end{pmatrix},$

$$\tilde{A}_{m_i}^{(i)} = \begin{pmatrix} A_{m_0}^{(0)} & \cdots & A_{m_i}^{(i)} & \cdots & A_1^{(i)} & A_0^{(i)} + \mu I & A_{m_{i+1}}^{(i+1)} & \cdots & A_0^{(r)} \\ A_{m_i}^{(0)} & \cdots & A_{m_i}^{(i)} & \cdots & A_1^{(i)} & A_0^{(i)} + \mu I & A_{m_{i+1}}^{(i+1)} & \cdots & A_0^{(r)} \\ A_{m_i}^{(i)} & \cdots & A_{m_i}^{(i)} & \cdots & A_1^{(i)} & A_0^{(i)} + \mu I & A_{m_{i+1}}^{(i+1)} & \cdots & A_0^{(r)} \\ A_{m_i}^{(i)} & \cdots & \cdots & A_1^{(i)} & \cdots & A_1^{(i)} & \cdots & A_1^{(i)} & \cdots & A_1^{(i)} \\ A_{m_i}^{(i)} & \cdots & \cdots & \cdots & A_1^{(i)} & \cdots & \cdots & A_1^{(i)} & \cdots & \cdots \\ A_{m_i}^{(i)} & \cdots & \cdots & \cdots & \cdots & \cdots & A_1^{(i)} & \cdots & \cdots \\ A_{m_i}^{(i)} & \cdots & \cdots & \cdots & \cdots & \cdots \\ A_{m_i}^{(i)} & \cdots & \cdots & \cdots & \cdots \\ A_{m_i}^{(i)} & \cdots & \cdots & \cdots & \cdots \\ A_{m_i}^{(i)} & \cdots & \cdots \\ A_{$$

$$\tilde{A}_{j}^{(i)} = \begin{pmatrix} & & & \\ & \mu I & \\ & & \ddots & \\ & & \mu I \end{pmatrix} m_{0} + (m_{1}+1) + \dots + (m_{i-1}+1) \\ & & \mu I \\ & & \mu I \\ & & \mu I \end{pmatrix} A_{m_{0}}^{(i)} \cdots A_{m_{i}}^{(i)} \cdots A_{1}^{(i)} A_{0}^{(i)} + \mu I A_{m_{i+1}}^{(i+1)} \cdots A_{0}^{(r)} \end{pmatrix}.$$

Euler's integral tranformation

Convolution of matrices corresponds to Euler's integral tranformation for solutions of lienar differential system.

Proposition 7. Assume that
$$Y = \begin{pmatrix} y_1(z) \\ \vdots \\ y_n(z) \end{pmatrix}$$
 satisfies

$$\frac{dY}{dz} = \left(-\sum_{j=1}^{m_0} A_j^{(0)} z^{j-1} + \sum_{i=1}^r \sum_{j=0}^{m_i} \frac{A_j^{(i)}}{(z - t_i)^{j+1}}\right) Y.$$

The function U defined by

$$U = \begin{pmatrix} U_{m_0}^{(0)}(z) \\ \vdots \\ U_1^{(0)}(z) \\ U_{m_1}^{(1)}(z) \\ \vdots \\ U_0^{(r)}(z) \end{pmatrix}, \quad U_j^{(0)}(z) = -\begin{pmatrix} \int_{\gamma} w^{j-1} y_1(w)(z-w)^{\mu} dw \\ \vdots \\ \int_{\gamma} w^{j-1} y_n(w)(z-w)^{\mu} dw \\ \int_{\gamma} \frac{y_1(w)}{(w-t_i)^{j+1}} (z-w)^{\mu} dw \\ \vdots \\ \int_{\gamma} \frac{y_n(w)}{(w-t_i)^{j+1}} (z-w)^{\mu} dw \end{pmatrix},$$

satisfies

$$\frac{dU}{dz} = \left(-\sum_{j=1}^{m_0} \tilde{A}_j^{(0)} x^{j-1} + \sum_{i=1}^r \sum_{j=0}^{m_i} \frac{\tilde{A}_j^{(i)}}{(x - t_i)^{j+1}}\right) U.$$

for appropriate contours γ .

Subspaces on convolution

We define subspaces of $V' = V^{\oplus M} = \mathbb{C}^{nM}$ as follows:

$$\mathcal{K}^{(i)} = \begin{cases} \begin{pmatrix} \vdots \\ 0 \\ v_{m_i}^{(i)} \\ v_{m_i-1}^{(i)} \\ \vdots \\ v_0^{(i)} \\ 0 \\ \vdots \end{pmatrix} \begin{pmatrix} A_{m_i}^{(i)} & A_{m_i-1}^{(i)} & \dots & A_0^{(i)} \\ 0 & A_{m_i}^{(i)} & \dots & A_1^{(i)} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & A_{m_i}^{(i)} \end{pmatrix} \begin{pmatrix} v_{m_i}^{(i)} \\ v_{m_i-1}^{(i)} \\ \vdots \\ v_0^{(i)} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \end{cases},$$

$$\mathcal{K} = \bigoplus_{i=1}^{r} \mathcal{K}^{(i)}, \quad \mathcal{L}(0) = \left\{ \begin{pmatrix} v_{m_0}^{(0)} \\ \vdots \\ v_1^{(0)} \\ v_{m_1}^{(1)} \\ \vdots \\ v_0^{(r)} \end{pmatrix} \middle| \sum_{i=0}^{r} \sum_{j=\delta_{i,0}}^{m_i} A_j^{(i)} v_j^{(i)} = 0 \right\},$$

$$\mathcal{L}(\mu) = \begin{cases} \begin{pmatrix} v_{m_0}^{(0)} \\ \vdots \\ v_1^{(0)} \\ v_{m_1}^{(1)} \\ \vdots \\ v_0^{(r)} \end{pmatrix} & \begin{pmatrix} v_j^{(i)} = 0 & (i \neq 0, j \neq 0), \\ v_0^{(1)} = \cdots = v_0^{(r)} = -\ell, \\ \begin{pmatrix} A_{m_0}^{(0)} & \dots & A_1^{(0)} & A_0^{(0)} - \mu \\ 0 & A_{m_0}^{(0)} & \dots & A_1^{(0)} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & A_{m_0}^{(0)} \end{pmatrix} \begin{pmatrix} v_{m_0}^{(0)} \\ \vdots \\ v_1^{(0)} \\ \ell \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \end{cases}.$$

Proposition 8. K and $\mathcal{L}(\mu)$ are $\langle \tilde{\mathbf{A}} \rangle$ -invariant. Namely $\tilde{A}_{j}^{(i)}K \subset K$ and $\tilde{A}_{j}^{(i)}\mathcal{L}(\mu) \subset \mathcal{L}(\mu)$ for all i, j.

Middle convolution

Convolution $c_{\mu}(\mathbf{A}) = \tilde{\mathbf{A}} = (\tilde{A}_{m_0}^{(0)}, \dots, \tilde{A}_1^{(0)}, \tilde{A}_{m_1}^{(1)}, \dots, \tilde{A}_0^{(r)})$ is well-defined on $V'/(\mathcal{K} + \mathcal{L}(\mu))$.

 $mc_{\mu}(\mathbf{A})$: middle convolution $\tilde{\mathbf{A}}$ on the space $mc_{\mu}(V) = V'/(\mathcal{K} + \mathcal{L}(\mu))$.

Proposition 9. $V: irred. \Rightarrow mc_{\mu}(V): irred.,$ $V \simeq mc_{0}(V) \simeq mc_{-\mu}(mc_{\mu}(V)).$

Conjecture 1. $V: irred. \Rightarrow mc_{\mu_1+\mu_2}(V) \simeq mc_{\mu_2}(mc_{\mu_1}(V)).$

Addition

$$\overline{\mu} = (\mu_{m_0}^{(0)}, \dots, \mu_1^{(0)}, \mu_{m_1}^{(1)}, \dots, \mu_0^{(r)}) \in \mathbb{C}^M,$$

$$M_{\overline{\mu}}(\mathbf{A}) = \mathbf{A} + \overline{\mu}I_n = (A_{m_0}^{(0)} + \mu_{m_0}^{(0)}I_n, \dots, A_0^{(r)} + \mu_0^{(r)}I_n)$$

On solutions of linear differential system, addition corresponds to multiplying the function;

$$Y \mapsto \exp\left(-\sum_{j=1}^{m_0} \frac{\mu_j^{(0)}}{j} z^j - \sum_{i=1}^r \sum_{j=1}^{m_i} \frac{\mu_j^{(i)}}{j(z-t_i)^{j+1}}\right) \prod_{i=1}^r (z-t_i)^{\mu_0^{(i)}} Y.$$

Index of rigidity

$$\mathbf{A} = (A_{m_0}^{(0)}, \dots, A_1^{(0)}, A_{m_1}^{(1)}, \dots, A_0^{(r)}), (A_j^{(i)} \in \text{End}(V)).$$
 Set

$$A^{(i)} = \begin{pmatrix} A_{m_i}^{(i)} & A_{m_i-1}^{(i)} & \dots & A_0^{(i)} \\ 0 & A_{m_i}^{(i)} & \dots & A_1^{(i)} \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & A_{m_i}^{(i)} \end{pmatrix} \in \operatorname{End}(V^{\oplus (m_i+1)}), \quad (i = 0, \dots, r),$$

$$A_0^{(0)} = -(A_0^{(1)} + \dots A_0^{(r)})$$

$$C^{(i)} = \left\{ C^{(i)} = \begin{pmatrix} C_{m_i}^{(i)} & C_{m_i-1}^{(i)} & \dots & C_0^{(i)} \\ 0 & C_{m_i}^{(i)} & \dots & C_1^{(i)} \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & C_{m_i}^{(i)} \end{pmatrix} \middle| A^{(i)}C^{(i)} = C^{(i)}A^{(i)} \right\}.$$

Define the index of rigidity by

$$idx(\mathbf{A}) = \sum_{i=0}^{r} \dim(\mathcal{C}^{(i)}) - \left(\left(\sum_{i=0}^{r} m_i\right) + r - 1\right) (\dim(V))^2.$$

The condition $A^{(i)}C^{(i)} = C^{(i)}A^{(i)}$ is equivalent to

$$\sum_{l=0}^{k} \left(A_{m_i-l}^{(i)} C_{m_i-(k-l)}^{(i)} - C_{m_i-(k-l)}^{(i)} A_{m_i-l}^{(i)} \right) = 0, \quad k = 0, \dots, m_i.$$

Proposition 10. Index of rigidity is preserved by addition, i.e. $idx(M_{\overline{\mu}}(\mathbf{A})) = idx(\mathbf{A})$.

Conjecture 2. If V is irred., then the index of rigidity is preserved by middle convolution, i.e. $idx(mc_{\mu}(\mathbf{A})) = idx(\mathbf{A})$.

The case $m_i = 1$

The condition $A^{(i)}C^{(i)} = C^{(i)}A^{(i)}$ for $m_i = 1$ is equivalent to

$$A_1C_1 = C_1A_1$$
, $A_1C_0 - C_0A_1 + A_0C_1 - C_1A_0 = 0$.

Here we ignore the superscript (i).

Assume that A_1 is semisimple. Then $\exists P \in GL(n)$,

$$P^{-1}A_{1}P = \begin{pmatrix} \lambda_{1}I_{n_{1}} & 0 & \dots & 0 \\ 0 & \lambda_{2}I_{n_{2}} & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_{k}I_{n_{k}} \end{pmatrix}, (\lambda_{1}, \dots, \lambda_{k} : \text{distinct}).$$

It follows from $A_1C_1 = C_1A_1$ that C_1 is written as

$$P^{-1}C_1P = \begin{pmatrix} C_1^{[1]} & 0 & \dots & 0 \\ 0 & C_1^{[2]} & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & C_1^{[k]} \end{pmatrix}.$$

Write

$$P^{-1}A_0P = \begin{pmatrix} A_0^{[1,1]} & \dots & A_0^{[1,k]} \\ A_0^{[2,1]} & \dots & A_0^{[2,k]} \\ \vdots & \ddots & \vdots \\ A_0^{[k,1]} & \dots & A_0^{[k,k]} \end{pmatrix}, \ P^{-1}C_0P = \begin{pmatrix} C_0^{[1,1]} & \dots & C_0^{[1,k]} \\ C_0^{[2,1]} & \dots & C_0^{[2,k]} \\ \vdots & \ddots & \vdots \\ C_0^{[k,1]} & \dots & C_0^{[k,k]} \end{pmatrix}.$$

It follows from $A_1C_0 - C_0A_1 + A_0C_1 - C_1A_0 = 0$ that

$$C_0^{[i,j]} = -\frac{A_0^{[i,j]}C_1^{[j]} - C_1^{[i]}A_0^{[i,j]}}{\lambda_i - \lambda_j} \ (i \neq j), \quad A_0^{[i,i]}C_1^{[i]} = C_1^{[i]}A_0^{[i,i]}.$$

Elements of $C_0^{[i,i]}$ are not restricted by relations.

If

$$A_0^{[l,l]} \sim \begin{pmatrix} \lambda_{l,1} I_{n_{l,1}} & 0 & \dots & 0 \\ 0 & \lambda_{l,2} I_{n_{l,2}} & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_{l,p_l} I_{n_{l,p_l}} \end{pmatrix}, \quad \lambda_{l,i} \neq \lambda_{l,j} \ (i \neq j),$$

then the dimension of solutions of $A_1C_1 = C_1A_1$ and $A_1C_0 - C_0A_1 + A_0C_1 - C_1A_0 = 0$ is

$$\sum_{l=1}^{k} \sum_{j=1}^{p_l} (n_{l,j})^2 + \sum_{l=1}^{k} (n_l)^2.$$

We denote the type of multiplicities of the matrices (A_1, A_0) by

$$(n_1, n_2, \dots, n_k)$$
 - $((n_{1,1}, \dots, n_{1,p_1}), (n_{2,1}, \dots, n_{2,p_2}), \dots, (n_{k,1}, \dots, n_{k,p_k})).$

Unramified tuple $\langle A_m, A_{m-1}, \dots A_0 \rangle$ $\langle A_m, A_{m-1}, \dots A_0 \rangle$ is unramified \Leftrightarrow_{def}

$$\exists P = \begin{pmatrix} P_m & P_{m-1} & \dots & P_0 \\ 0 & P_m & \dots & P_1 \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & P_m \end{pmatrix},$$

$$P^{-1} \begin{pmatrix} A_m & A_{m-1} & \dots & A_0 \\ 0 & A_m & \dots & A_1 \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & A_m \end{pmatrix} P = \begin{pmatrix} D_m & D_{m-1} & \dots & D_0 \\ 0 & D_m & \dots & D_1 \\ 0 & 0 & \ddots & \vdots \\ 0 & \dots & 0 & D_m \end{pmatrix},$$

 D_m, \ldots, D_1, D_0 : mutually commuting, D_m, \ldots, D_1 : diagonal.

Type of multiplicity for $\langle A_2, A_1, A_0 \rangle$

$$D_{2} = \begin{pmatrix} \lambda_{1}I_{n_{1}} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{p}I_{n_{p}} \end{pmatrix}, D_{1} = \begin{pmatrix} \lambda_{1,1}I_{n_{1,1}} & 0 & \dots & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & 0 & \lambda_{1,p_{1}}I_{n_{1,p_{1}}} & \vdots \\ 0 & \dots & 0 & \ddots \end{pmatrix},$$

$$D_0 = \begin{pmatrix} \lambda_{1,1,1} I_{n_{1,1,1}} & 0 & \dots & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & 0 & \lambda_{1,1,p_{1,1}} I_{n_{1,1,p_{1,1}}} & \vdots \\ 0 & \dots & 0 & \ddots \end{pmatrix},$$

 $(n_1 + \cdots + n_p = n, n_{k,1} + \cdots + n_{k,p_k} = n_k, n_{k,l,1} + \cdots + n_{k,l,p_{k,l}} = n_{k,l})$, then we write the type of multiplicity as

$$(n_1, n_2, \dots, n_p)$$

 $-((n_{1,1}, \dots, n_{1,p_1}), (n_{2,1}, \dots, n_{2,p_2}), \dots)$
 $-(((n_{1,1,1}, \dots, n_{1,1,p_{1,1}}), (n_{1,2,1}, \dots, n_{1,2,p_{1,2}}), \dots), \dots).$

We can define the type of multiplicity for $\langle A_m, \ldots, A_0 \rangle$ similarly.

On the case m=1, this definition coincides to the previous one.

Proposition 11. We assume that $\langle A_{m_i}^{(i)}, \ldots, A_0^{(i)} \rangle$ is unramified for $i = 0, \ldots, r$ and $\langle \mathbf{A} \rangle$ is irreducible.

- (i) The index of rigidity can be written by using the type of multiplicities.
- (ii) $mc_{\mu}(\mathbf{A})$ is also irreducible, unramified and the index of rigidity is preserved by application of middle convolution, i.e. $idx(mc_{\mu}(\mathbf{A})) = idx(\mathbf{A})$ for all $\mu \in \mathbb{C}$.

Proposition 12. We assume that $\langle A_{m_i}^{(i)}, \ldots, A_0^{(i)} \rangle$ is unramified for $i = 0, \ldots, r$ and $\langle \mathbf{A} \rangle$ is irreducible.

(i) If $idx(\mathbf{A}) = 2$, then \mathbf{A} is transformed to the rank one matrices by applying addition and middle convolution repeatedly. (ii) If $idx(\mathbf{A}) = 0$, then \mathbf{A} is transformed to one of the following cases by applying middle convolution and addition repeatedly, where $d \in \mathbb{Z}_{\geq 1}$.

Four singularities: $\{(d,d),\ (d,d),\ (d,d),\ (d,d)\},$ Three singularities: $\{(d,d,d),\ (d,d,d),\ (d,d,d)\},$ $\{(2d,2d),\ (d,d,d,d),\ (d,d,d,d)\},$ $\{(3d,3d),\ (2d,2d,2d),\ (d,d,d,d,d,d)\},$ $\{(d,d)-((d),(d)),\ (d,d),\ (d,d)\},$

Two singularities: $\{(d,d) - ((d),(d)), (d,d) - ((d),(d))\},\$ $\{(d,d) - ((d),(d)) - (((d)),((d))), (d,d)\},\$ $\{(d,d,d)-((d),(d),(d)),(d,d,d)\},\$ $\{(d,d,d,d)-((d),(d),(d),(d)),(2d,2d)\},\$ $\{(2d,2d)-((d,d),(d,d)),(d,d,d,d)\},\$ $\{(3d,2d)-((d,d,d),(2d)), (d,d,d,d,d)\},\$ $\{(2d, 2d, 2d) - ((d, d), (d, d), (d, d)), (3d, 3d)\},\$ $\{(3d, 3d, 2d) - ((d, d, d), (d, d, d), (2d)), (4d, 4d)\},\$ $\{(5d, 4d, 3d) - ((d, d, d, d, d), (2d, 2d), (3d)), (6d, 6d)\},\$ $\{(5d,4d)-((d,d,d,d,d),(2d,2d)),(3d,3d,3d)\},\$ $\{(3d,3d)-((d,d,d),(d,d,d)),(2d,2d,2d)\},\$ $\{(5d,3d)-((d,d,d,d,d),(3d)), (2d,2d,2d,2d)\},\$ $\{(4d,3d)-((2d,2d),(3d)),(d,d,d,d,d,d,d,d)\},\$

 $\{(d,d)-((d),(d))-(((d)),((d)))-((((d))),(((d))))\},\$ One singularity: $\{(d,d,d)-((d),(d),(d))-(((d)),((d)),((d)))\},\$ $\{(2d,2d)-((d,d),(d,d))-(((d),(d)),((d),(d)))\},\$ $\{(3d,2d)-((d,d,d),(2d))-(((d),(d),(d)),((d,d)))\},\$ $\{(4d,3d)-((2d,2d),(3d))-(((d,d),(d,d)),((d,d,d)))\},\$ $\{(5d,4d)-((3d,2d),(4d))-(((d,d,d),(2d)),((d,d,d,d)))\},\$ $\{(6d,4d)-((3d,3d),(4d))-(((d,d,d),(d,d,d)),((d,d,d,d))\},\$ $\{(7d,6d)-((4d,3d),(6d))-(((2d,2d),(3d)),((d,d,d,d,d,d)))\},\$ $\{(8d, 6d) - ((5d, 3d), (6d)) - (((d, d, d, d, d), (3d)), ((2d, 2d, 2d)))\},\$ $\{(9d, 6d) - ((5d, 4d), (6d)) - (((d, d, d, d, d), (2d, 2d)), ((3d, 3d)))\}.$

We conjecture that d = 1 follows from irreducibility.

Deligne-Arinkin Theorem

Theorem 13. [Arinkin, Compos. Math. 2010] If a system of differential equation is irreducible and rigid (i.e. idx = 2), then it is transformed to the rank one system by applying addition and Fourier-Laplace transformation repeatedly.

We do not need the assumption of unramification.

Euler transformation $\sim \mathcal{L}^{-1}x^{\mu}\mathcal{L}$, (\mathcal{L} : Fourier-Laplace transformation)

Examples for the case r = 1, $m_0 = 0$, $m_1 = 1$, z = 0: irreg., $z = \infty$: reg., size: 2×2

(i) The eigenvalues of $A_1^{(1)}$ are distinct

Index of rigidity = 2.

By diagonalizing $A_1^{(1)}$ and applying additions, we may set

$$A_1^{(1)} = \begin{pmatrix} 0 & 0 \\ 0 & \beta \end{pmatrix}, \quad A_0^{(1)} = \begin{pmatrix} 0 & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}.$$

$$\frac{dY}{dz} = \left(\frac{A_1^{(1)}}{z^2} + \frac{A_0^{(1)}}{z}\right) Y \Rightarrow \text{Kummer's confluent hypergeometric}$$

$$z = \frac{1}{z} \text{ differential equation}$$

$$A^{(1)} = \begin{pmatrix} A_1^{(1)} & A_0^{(1)} \\ 0 & A_1^{(1)} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & a_{1,2} \\ 0 & \beta & a_{2,1} & a_{2,2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \beta \end{pmatrix}$$

$$\Rightarrow \dim(\mathcal{K}) = \dim(\operatorname{Ker}(A^{(1)})) = 2.$$

If $\mu(\neq 0)$ is an eigenvalue of $-A_0^{(1)}$, then $\dim(\mathcal{K} + \mathcal{L}(\mu)) = 3$ and we have a differential equation of rank 1 by middle convolution mc_{μ} .

By applying $mc_{-\mu}$ to the differential equation of rank 1, we obtain an integral representation of solutions to the differential system of rank 2.

(ii) $A_1^{(1)}$ is nilpotent

Index of rigidity = 2.

Set

$$A_1^{(1)} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad A_0^{(1)} = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix},$$

$$\begin{pmatrix} A_1^{(1)} + \beta I_2 & A_0^{(1)} + \alpha I_2 \\ 0 & A_1^{(1)} + \beta I_2 \end{pmatrix} = \begin{pmatrix} \beta & 1 & a_{1,1} + \alpha & a_{1,2} \\ 0 & \beta & a_{2,1} & a_{2,2} + \alpha \\ 0 & 0 & \beta & 1 \\ 0 & 0 & 0 & \beta \end{pmatrix}$$

 $\Rightarrow \dim(\mathcal{K}) \leq 1 \ (a_{2,1} \neq 0)$ for any choice of addition.

Hence $\dim(\mathcal{K}+\mathcal{L}(\mu)) \leq 2$ and the rank of differential equation cannot be deduced to one.

 $a_{2,1} = 0 \Rightarrow \text{reducible.}$

This case is not covered by Proposition 12.

Summary

- DSP, Fuchsian differential system, middle convolution.
- Index of rigidity is preserved.
- Examples: Gauss hypergeometric equation, Heun's equation.
 - Simplification by addition and middle convolution.
- Middle convolution for linear differential system with irregular singularities.

Problems for linear differential system with irregular singularities

- Validity of definition the index of rigidity. (Compatibility with the definition by Bloch-Esnault, Invariance of the index of rigidity by middle convolution)
 - More examples. (confluent Heun equations . . .)
- Laplace transformation. (we may treat the case that $A_1^{(1)}$ is nilpotent).
- Crawley-Boevey type theorem for linear differential system with irregular singularities.

We hope that middle convolution is also applied for several topics in mathematics and physics.

References

- [1] Boalch P., From Klein to Painleve via Fourier, Laplace and Jimbo. *Proc. London Math. Soc.* (3) **90** (2005) 167–208.
- [2] Crawley-Boevey W., On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, *Duke Math. J.* **118** (2003) 339–352
- [3] Dettweiler M., Reiter S., An algorithm of Katz and its application to the inverse Galois problem. Algorithmic methods in Galois theory *J. Symbolic Comput.* **30** (2000), 761–798.
- [4] —, Middle convolution of Fuchsian systems and the construction of rigid differential systems, J. Algebra **318** (2007), 1–24.
- [5] Filipuk G., On the middle convolution and birational symmetries of the sixth Painleve equation, *Kumamoto J. Math.* **19** (2006), 15–23.
- [6] Hiroe K., Linear differential equations on \mathbb{P}^1 and root systems, arXiv:1010.2580.
- [7] Katz N.M., Rigid local systems, Princeton University Press, 1996.
- [8] Kazakov, A. Ya., Slavyanov, S. Yu., Integral relations for special functions of the Heun class. *Theoret. and Math. Phys.* **107** (1996) 733–739.

- [9] Kawakami H., Generalized Okubo systems and the middle convolution, *Int. Math. Res. Notices* (2010) 3394-3421.
- [10] Kostov V.P., The Deligne-Simpson problem: a survey. J. Algebra 281 83–108 (2004).
- [11] Novikov D.P., Integral transformation of solutions for a Fuchsian-class equation corresponding to the Okamoto transformation of the Painlevé VI equation. *Teoret. Mat. Fiz.* **146** (2006) 355–364.
- [12] Oshima T., Classification of Fuchsian systems and their connection problem, arXiv:0811.2916.
- [13] —, Fractional calculas of Weyl algebra and Fuchsian differential equations, arXiv:1102.2792.
- [14] Takemura K., Middle convolution and Heun's equation, SIGMA 5 (2009), 040, 22 pages.
- [15] —, Introduction to middle convolution for differential equations with irregular singularities, arXiv:1002.2535
- [16] —, Middle convolution for systems of linear differential equations with irregular singularities, in preparation.
- [17] Yamakawa D., Middle Convolution and Harnad Duality, Math. Annalen 349 (2011) 215–262