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1. Motivation

Hamiltonian. For n ≥ 2 let q = (q1, . . . , qn) ∈ Rn, p = (p1, . . . , pn) ∈ Rn

( or C
n). For a Hamiltonian function H = H(q, p) we consider a Hamiltonian

system

q̇ = ∇pH, ṗ = −∇qH,(1.1)
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or a Hamiltonian vector field

χH := {H, ·} =
n∑
j=1

(
∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj

)
,(1.2)

where {·, ·} denotes the Poisson bracket.
φ is called the first integral of χH if χHφ = 0. Eq. (1.1) is said to be Cω-

Liouville integrable if there exist first integrals, ∃φj ∈ Cω (j = 1, . . . , n)
being functionally independent (on an open dense set) and Poisson commuting,
i.e., {φj, φk} = 0, {H, φk} = 0. If ∃φj ∈ C∞ (j = 1, . . . , n), then we say C∞-
Liouville integrable.
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or a Hamiltonian vector field

χH := {H, ·} =
n∑
j=1

(
∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj

)
,(1.3)

where {·, ·} denotes the Poisson bracket.
φ is called the first integral of χH if χHφ = 0. Eq. (1.1) is said to be Cω-

Liouville integrable if there exist first integrals, ∃φj ∈ Cω (j = 1, . . . , n)
being functionally independent (on an open dense set) and Poisson commuting,
i.e., {φj, φk} = 0, {H, φk} = 0. If ∃φj ∈ C∞ (j = 1, . . . , n), then we say C∞-
Liouville integrable.
In the paper

Integrable geodesic flows with positive topological entropy. Invent Math.
140 (3), 639-650 (2000)
Bolsinov and Taimanov showed that there exists a Hamiltonian related
with geodesic flow on a Riemannian manifold which is C∞-integrable and not
Cω-integrable. Then in the paper
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Analytic-non-integrability of an integrable analytic Hamiltonian system.
Differ. Geom. Appl. 22, 287-296 (2005)
Gorni, G. and Zampieri, G. showed that the following Hamiltonian has
similar properties in some neighborhood of the origin of (q1, q2, p1, p2) ∈ R4

H = −q2p2∂q1r + (r2 + q2∂q2r)p1,

where r = q2
1 + q2

2.
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Analytic-non-integrability of an integrable analytic Hamiltonian system.
Differ. Geom. Appl. 22, 287-296 (2005)
Gorni, G. and Zampieri, G. showed that the following Hamiltonian has
similar properties in some neighborhood of the origin of (q1, q2, p1, p2) ∈ R4

H = −q2p2∂q1r + (r2 + q2∂q2r)p1,

where r = q2
1 + q2

2.
Resonances. For the Hamiltonian function H we may assume that the

Taylor expansion at the origin starts from terms of order 2. Let λj (j =
1, 2, . . . , n) be the eigenvalues of the bilinear form H2 corresponding to H =
H2 +H3 + · · · , where Hj is homogeneous degree j. In G-Z’s example we have
H2 = 0, namely the Hamiltonian has a resonance dimension 2.
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Analytic-non-integrability of an integrable analytic Hamiltonian system.
Differ. Geom. Appl. 22, 287-296 (2005)
Gorni, G. and Zampieri, G. showed that the following Hamiltonian has
similar properties in some neighborhood of the origin of (q1, q2, p1, p2) ∈ R4

H = −q2p2∂q1r + (r2 + q2∂q2r)p1,

where r = q2
1 + q2

2.
Resonances. For the Hamiltonian function H we may assume that the

Taylor expansion at the origin starts from terms of order 2. Let λj (j =
1, 2, . . . , n) be the eigenvalues of the bilinear form H2 corresponding to H =
H2 +H3 + · · · , where Hj is homogeneous degree j. In G-Z’s example we have
H2 = 0, namely the Hamiltonian has a resonance dimension 2.
We expect that Taimanov’ theorem could be understood from the singular

structure of Hamiltonian ODE (1.1). Because n–parameter family of solutions
of (1.1) corresponds to an n functionally independent first integrals by implicit
function theorem we study singularity sturucture of (1.1) from the
viewpoint of nonintegrable structure.
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We study (1.1) with Hamiltonians with 1– resonance, λ1 = 0. The case
with resonance dimension ≥ 2 will be a future problem. (See also a jointwork
with W. Balser in Math. Z. 2011.)
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We study (1.1) with Hamiltonians with 1– resonance, λ1 = 0. The case
with resonance dimension ≥ 2 will be a future problem. (See also a jointwork
with W. Balser in Math. Z. 2011.)

2. Cω nonintegrablility

Hamiltonians. We consider the Hamiltonian H := H0 +H1 where

H0 = q2σ
1 p1 +

n∑
j=2

λjqjpj,(2.1)

H1 =

n∑
j=2

q2
jBj(q1, q

2σ
1 p1, q), q = (q2, . . . , qn),(2.2)

where Bj(q1, s, t) are holomorphic at the origin with respect to (q1, s, t) ∈
C×C×Cn−1. (This Hamiltonian is similar to the one studied by Taimanov.)
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Monodromy condition.

(M) For k = 2, 3, . . . , n the equation

q2σ
1

dv

dq1
+ 2λkv = Bk(q1, 0, 0)(2.3)

has no analytic solution v at the origin.

We have (cf. Lemma 6 of [3])

(M) is equivalent to that the monodoromy of an analytic continuation of the
solution along a path encircling the origin does not vanish. (open condition)
Then we have
Theorem 1. Assume (M) and suppose that λj (j = 2, . . . , n) are

linearly independent over Z. Then χH has no Cω first integral
which is functionally independent of H. Especially χH is not
Cω-Liouville integrable.
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3. Singular integrability

Introduction of log-exponential series As for the general reference we
refer
W. Balser, Existence and structure of complete formal solutions of non-linear
meromorphic systems of ordinary differential equations. Asymptot. Anal., 15
(1997).
O. Costin, Asymptotics and Borel summability, Chapman Hall/CRC Mono-

graphs and Surveys in Pure and Applied Mathematics, 141 (2009).
We change the notation a little bit in the following in order to indicate the

resonance variable q1 and p1. We write the variables in the form

(q1, q2, q3, · · · , qn) = (q1, q), (p1, p2, p3, · · · , pn) = (p1, p).
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3. Singular integrability

Introduction of log-exponential series As for the general reference we
refer
W. Balser, Existence and structure of complete formal solutions of non-linear
meromorphic systems of ordinary differential equations. Asymptot. Anal., 15
(1997).
O. Costin, Asymptotics and Borel summability, Chapman Hall/CRC Mono-

graphs and Surveys in Pure and Applied Mathematics, 141 (2009).
We change the notation a little bit in the following in order to indicate the

resonance variable q1 and p1. We write the variables in the form

(q1, q2, q3, · · · , qn) = (q1, q), (p1, p2, p3, · · · , pn) = (p1, p).

Construction of formal first integrals. Let H0 and H1 be given by
(2.1) and (2.2), respectively. Define H = H0 +H1.
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Assume that H1 =
∑n

j=2 q
2
jBj satisfy

Bj = Bj(q1, q
2σ
1 p1, q) = Bj,0(q1, q) + q2σ

1 p1Bj,1(q1, q),(3.1)

where 2 ≤ j ≤ n, Bj,0 and Bj,1 are analytic at q1 = 0, q = 0. Moreover, we
suppose

λj (j = 2, 3, . . . , n) are linearly independent over Z.(3.2)

Set p0
1 = q2σ

1 p1 and

Ec ≡ Ec(q1) = exp

(
cq−2σ+1

1

(2σ − 1)

)
.(3.3)
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Assume that H1 =
∑n

j=2 q
2
jBj satisfy

Bj = Bj(q1, q
2σ
1 p1, q) = Bj,0(q1, q) + q2σ

1 p1Bj,1(q1, q),(3.4)

where 2 ≤ j ≤ n, Bj,0 and Bj,1 are analytic at q1 = 0, q = 0. Moreover, we
suppose

λj (j = 2, 3, . . . , n) are linearly independent over Z.(3.5)

Set p0
1 = q2σ

1 p1 and

Ec ≡ Ec(q1) = exp

(
cq−2σ+1

1

(2σ − 1)

)
.(3.6)

We will construct a formal first integral v in the form

v =
∑
α≥0

v(α)(q1, p1, q, p)E
α,(3.7)

where Eα = Eα2
λ2
· · ·Eαn

λn
, q = (q2, . . . , qn), and v(α)(q1, p1, q, p) is a formal

power series of q1, q, p1 and p. We say that v is the formal integral of the
Hamiltonian vector field χH if χHv = 0 as a formal power series.
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By definition we have, for L := {H0, ·} and R := {H1, ·},

L = q2σ
1

∂

∂q1
− 2σq2σ−1

1 p1
∂

∂p1
+

n∑
j=2

λj

(
qj
∂

∂qj
− pj

∂

∂pj

)
,(3.8)

R =(3.9)
n∑
j=2

(
−2qjBj

∂

∂pj
+ q2

j (∂p1Bj)
∂

∂q1
− q2

j (∂q1Bj)
∂

∂p1
− q2

j∇qBj · ∂
∂p

)
.
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By definition we have, for L := {H0, ·} and R := {H1, ·},

L = q2σ
1

∂

∂q1
− 2σq2σ−1

1 p1
∂

∂p1
+

n∑
j=2

λj

(
qj
∂

∂qj
− pj

∂

∂pj

)
,(3.10)

R =(3.11)
n∑
j=2

(
−2qjBj

∂

∂pj
+ q2

j (∂p1Bj)
∂

∂q1
− q2

j (∂q1Bj)
∂

∂p1
− q2

j∇qBj · ∂
∂p

)
.

By using the formula

∂p1Bj = Bj,1q
2σ
1 , q2σ

1 (∂/∂q1)E
α = −(

n∑
j=2

λjαj)E
α = −〈λ, α〉Eα,
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we have

L(v(α)Eα) = Eα

(
q2σ
1

∂

∂q1
− 2σq2σ−1

1 p1
∂

∂p1
(3.12)

+
n∑
j=2

λj

(
qj
∂

∂qj
− pj

∂

∂pj
− αj

)⎞
⎠ v(α),

and

R(v(α)Eα) = Eα

⎛
⎝−〈λ, α〉

n∑
j=2

q2
jBj,1 +R

⎞
⎠ v(α).(3.13)
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It follows that if v is a formal first integral of χH , then every v(α) satisfies⎛
⎝q2σ

1

∂

∂q1
− 2σq2σ−1

1 p1
∂

∂p1
+

n∑
j=2

λj

(
qj
∂

∂qj
− pj

∂

∂pj
− αj

)⎞
⎠ v(α)(3.14)

+

⎛
⎝−

n∑
j=2

〈λ, α〉q2
jBj,1 +R

⎞
⎠ v(α) = 0.
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It follows that if v is a formal first integral of χH , then every v(α) satisfies⎛
⎝q2σ

1

∂

∂q1
− 2σq2σ−1

1 p1
∂

∂p1
+

n∑
j=2

λj

(
qj
∂

∂qj
− pj

∂

∂pj
− αj

)⎞
⎠ v(α)(3.15)

+

⎛
⎝−

n∑
j=2

〈λ, α〉q2
jBj,1 +R

⎞
⎠ v(α) = 0.

Expand v(α) into the formal power series

v(α) =
∑
ν,k,	

v
(α)
ν,k,	(q1)p

ν
1p

kq	,(3.16)

then, insert the expansion into (3.15) and compare the coefficients of pν1p
kq	.

One can easily see that the first term of the left-hand side of (3.15) yields(
q2σ
1

∂

∂q1
− 2σq2σ−1

1 ν + λ · (	− k − α)

)
v

(α)
ν,k,	(q1).(3.17)
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Hence we obtain the recurrence relation(
q2σ
1

∂

∂q1
− 2σq2σ−1

1 ν + λ · (	− k − α)

)
v

(α)
ν,k,	(q1) = F,(3.18)

where F denotes terms which appear from the second term of the left-hand
side of (3.15). (We omit the detailed inductive arguments.) In this way, one
can construct the formal first integral. In fact we have
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Hence we obtain the recurrence relation(
q2σ
1

∂

∂q1
− 2σq2σ−1

1 ν + λ · (	− k − α)

)
v

(α)
ν,k,	(q1) = F,(3.19)

where F denotes terms which appear from the second term of the left-hand
side of (3.15). (We omit the detailed inductive arguments.) In this way, one
can construct the formal first integral. In fact we have
Theorem 2. Assume (3.4), (3.5). Then the Hamiltonian system

with the Hamiltonian H = H0 +H1 given either by (2.1)-(2.2) has
2(n−1) functionally independent formal first integrals of the form
(3.7) being a polynomial of p1 and p.
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Hence we obtain the recurrence relation(
q2σ
1

∂

∂q1
− 2σq2σ−1

1 ν + λ · (	− k − α)

)
v

(α)
ν,k,	(q1) = F,(3.20)

where F denotes terms which appear from the second term of the left-hand
side of (3.15). (We omit the detailed inductive arguments.) In this way, one
can construct the formal first integral. In fact we have
Theorem 2. Assume (3.4), (3.5). Then the Hamiltonian system

with the Hamiltonian H = H0 +H1 given either by (2.1)-(2.2) has
2(n−1) functionally independent formal first integrals of the form
(3.7) being a polynomial of p1 and p.
Remark. We have 2(n−1)+1 ≥ n if n ≥ 1. (2 =1+1= formal power series

+ exponential series, 1, resonance dimension; 1, First integral H). In case of
time dependent Hamiltonians (after some reductions) we need 2(n− 1) + 1 ≥
n + 1 for the integrability. This explains that the exponential term is natural
in the resonance case.
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Hence we obtain the recurrence relation(
q2σ
1

∂

∂q1
− 2σq2σ−1

1 ν + λ · (	− k − α)

)
v

(α)
ν,k,	(q1) = F,(3.21)

where F denotes terms which appear from the second term of the left-hand
side of (3.15). (We omit the detailed inductive arguments.) In this way, one
can construct the formal first integral. In fact we have
Theorem 2. Assume (3.4), (3.5). Then the Hamiltonian system

with the Hamiltonian H = H0 +H1 given either by (2.1)-(2.2) has
2(n−1) functionally independent formal first integrals of the form
(3.7) being a polynomial of p1 and p.
Remark. We have 2(n−1)+1 ≥ n if n ≥ 1. (2 =1+1= formal power series

+ exponential series, 1, resonance dimension; 1, First integral H). In case of
time dependent Hamiltonians (after some reductions) we need 2(n− 1) + 1 ≥
n + 1 for the integrability. This explains that the exponential term is natural
in the resonance case.
Summability of formal integrals. We will study the summability of

(3.7) with (3.16) constructed in Theorem 2. For every α in (3.16) we shall show
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the (2σ − 1)- summability of v(α). We define the set of singular directions

S0 := {z ∈ C;∃ν ≥ 0, k ≥ 0, 	 ≥ 0, α ≥ 0(3.22)

(2σ − 1)z2σ−1 + λ · (	− α − k) = 0; v
(α)
ν,k,	 
= 0, 	− α − k ≥ 0} \ 0.

For a neighborhood Ω0 of the origin and the convex cone Ω1 with vertex at the
origin, we define Σ0 := Ω0∪Ω1. Then we assume that there exists Σ0 such that
the closure S0 satisfies

S0 ∩ Σ0 = ∅.(3.23)
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the (2σ − 1)- summability of v(α). We define the set of singular directions

S0 := {z ∈ C;∃ν ≥ 0, k ≥ 0, 	 ≥ 0, α ≥ 0(3.24)

(2σ − 1)z2σ−1 + λ · (	− α − k) = 0; v
(α)
ν,k,	 
= 0, 	− α − k ≥ 0} \ 0.

For a neighborhood Ω0 of the origin and the convex cone Ω1 with vertex at the
origin, we define Σ0 := Ω0∪Ω1. Then we assume that there exists Σ0 such that
the closure S0 satisfies

S0 ∩ Σ0 = ∅.(3.25)

Theorem 3. Assume (3.4), (3.5) and (3.25). Let v be a formal
first integral given in Theorem 2 which is a polynomial in p and
p1. Then, for each α ≥ 0 in (3.7) v(α) is (2σ − 1)-summable in
every direction of Ω1 with respect to q1 such that for every ξ ∈ Ω1

there exists a neighborhood V0 of the origin q = 0 such that v(α)

is analytic in q ∈ V0 and (2σ − 1)-summable with respect to q1 in
the direction ξ.
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Before proving Theorem 3 we give a corollary, in which we have global exis-
tence in q and p.

Corollary 4. Suppose (3.5). Assume

Bj = Bj,0(q1, q), 2 ≤ j ≤ n,(3.26)

where Bj,0 is analytic at q1 = 0 and polynomial in q = (q2, . . . , qn).
Let v =

∑
α≥0 v

(α)Eα be the formal first integral as in Theorem ??
which is a polynomial in p and p1. Then the set of singular
directions S0 is a finite set, and for each α v(α) is a polynomial in
q and (2σ − 1)-summable with respect to q1. More precisely, for
every ξ 
∈ S0 v

(α) is (2σ − 1)-summable with respect to q1 in the
direction ξ.
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4. C∞-integrability

Let v =
∑

α≥0 v
(α)Eα be the first integral given by (3.7). By Theorem 3 every

v(α) is (2σ − 1)-summable in every direction of Ω1 ≡ Ω1(v
(α)). Hence we write

the summed one with the same letter for the sake of simplicity. We define

Σv =

{
z ∈ C; | arg z − arg ξ| < π

2(2σ − 1)
, ξ ∈ Ω1

}
.(4.1)

Let ej (j = 2, 3, . . . , n) be the j-th unit vector.For direction θ, let Rθ :=
{tθ; t > 0} be a ray. Then we have
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Theorem 5. Assume (3.4), (3.5) and (3.25). Then we have
(i) Suppose Ω1(v

(α)) 
= ∅. Then there exists an ε0 > 0 and a
sector S1 ⊂ Σv such that the summed v = v(α) in Theorem ?? is
holomorphic and is the first integral of χH in the domain

q1 ∈ Σv, |q1| < ε0, p1 ∈ C, pj ∈ C, |qj| < ε0, j = 2, . . . , n(4.2)

as well as is C∞ at q1 = 0 when q1 ∈ S1, q1 → 0.
(ii) Assume either the Poincaré condition or that ∃v(ej) and ∃v(2ej)

for which S0 are finite set. Set v = v(ej) or v = v(2ej) and let Σv and
S1 ⊂ Σv be given in (i) and let θ ∈ S1. Then we have Ω1(v) 
= ∅,
and v is extended as a C∞ first integral with respect to q1 on
Rθ ∪ −Rθ ∪ {0} being analytic in q ∈ R

n−1 at q = 0. Moreover,
there exists a neighborhood of the origin U in R such that χH is
C∞–integrable when q1 ∈ (Rθ ∪−Rθ ∪ {0})∩U , p1, pj, qj ∈ R, |qj| < ε0

(j ≥ 2).
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Ω1

S1

Σv

series is small
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5. Connection of first integrals -example -

In this section we study first integrals obtained in Corollary 4. We assume
σ = 1. We recall that the set of singular directions S0 is a finite set. Let Ω1

and Ω2 be the adjacent sectors in the Borel plane and let Σ1 and Σ2 be the
corresponding sectors in q1 plane. Let

φ := (φ1, φ2, . . . , φn), ψ := (ψ1, ψ2, . . . , ψn)

be summed first integals in Σ1 and Σ2, respectively.

Ω1

Ω2

Borel plane

branch cut
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By what we have proved before, φ and ψ are polynomials of p1, p, q in each
sector. ( cf. normalized n paremeter solutions in Balser’s talk) We
recall that these Borel summed system of first integrals are constructed by the
Laplace transforms of the corresponding first integrals φ̂ and ψ̂ on the path C1

and C2.
Clearly, every direction in S0 is the Stokes direction. We first consider (local)

connection of solutions which do not contain exponential factors. (α = 0.) In
the intersecting sector Σ1 ∩ Σ2 we shall look for monodromy

φ(x) = ψ(x) +m(x).(5.1)

In order to study m(x) we use moment Borel-Laplace summability method (for
PDE). (See Balser’s book for the definition and some properties. We note that
we need to extend the moment functions with singularities at the origin.)
Moment summability method Let τ ≥ 1/2 and ν ∈ N be given. We define

kernel functions of order τ , e(x) and E(x) (x ∈ C) by

e(x) := τx−2σνexp (−xτ) , E(x) :=
∑
j≥2σν

x−jΓ(
j − 2σν

τ
).(5.2)
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Then the moment Borel transform and moment Laplace transform are defined,
respectively, by

B(f)(z) := − 1

2πi

∫
γτ (θ)

E(z/t)f(t)
dt

t
,(5.3)

γτ(θ)

L(g)(t) :=

∫ ∞(d)

0

e(z/t)g(z)
dz

z
,(5.4)

where the path of integration is the straight line in the direction d. In the
following we take τ = 1 and σ = 1 for simplicity.
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where the path of integration is the straight line in the direction d. In the
following we take τ = 1 and σ = 1 for simplicity.
Local monodromy For the sake of simplicity, let us, for the moment, assume

that our moment Laplace transform behaves like a standard Laplace transform.
Ω1

Ω2

Borel plane
C1

C2
C3

We note that φ(x) and ψ(x) are constructed as the moment Laplace transforms
along the paths C1 and C2, respectively. We deform the path C1 such that
C1 = C3 + C2. It follows that

m(x) =

∫
C3

e(z/t)φ̂(z, p1, q, p)
dz

z
.(5.5)
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We have

Theorem 6. Assume that (M), (2.3) is verified. Then There
exists an analytic vector function of one variable λ(s) such that
m(x) = λ(H) in some neighborhood of the origin of q1 = 0, p1 = 0,
p = 0, q = 0.

6. Proof of Theorem 3

In order to prove Theorem 3 we prepare a lemma. Let κ > 0 and Bκ denotes
the Borel transform

(Bκf )(ζ) =
1

2πi

∫
γκ

tκf (t) exp
(
ζκt−κ

)
dt−κ,(6.1)

where γκ is an appropriate path of integration. Then, by simple computations
we have

Bκ(tκ+1 d

dt
f )(ζ) = κζκBκ(f)(ζ) − κBκ(tκf )(ζ).(6.2)
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Let c > 0. We define Hc(Ω) as the set of all f which is holomorphic and of
exponential growth of order c in Ω such that

‖f‖c := sup
z∈Ω

|f (z)e−cz
κ| <∞.(6.3)

The space Hc(Ω) is a Banach space with the norm (6.6). We have
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Let c > 0. We define Hc(Ω) as the set of all f which is holomorphic and of
exponential growth of order c in Ω such that

‖f‖c := sup
z∈Ω

|f (z)e−cz
κ| <∞.(6.4)

The space Hc(Ω) is a Banach space with the norm (6.6). We have

Lemma 1. Let λ > 0 be given. Then there exists K0 > 0 such that

‖Bκ(tλf )‖c ≤ K0‖Bκ(f)‖c, Bκ(f) ∈ Hc(Ω).(6.5)

Here K0 can be taken arbtrarily small if we take c > 0 sufficiently small.

For the proof we refer [1].
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Let c > 0. We define Hc(Ω) as the set of all f which is holomorphic and of
exponential growth of order c in Ω such that

‖f‖c := sup
z∈Ω

|f (z)e−cz
κ| <∞.(6.6)

The space Hc(Ω) is a Banach space with the norm (6.6). We have

Lemma 2. Let λ > 0 be given. Then there exists K0 > 0 such that

‖Bκ(tλf )‖c ≤ K0‖Bκ(f)‖c, Bκ(f) ∈ Hc(Ω).(6.7)

Here K0 can be taken arbtrarily small if we take c > 0 sufficiently small.

For the proof we refer [1].

Proof of Theorem 3. In view of the inductive definitions of v
(α)
ν,k,	’s with

respect to 	, the first non-vanishing term v
(α)
ν,k,	 is a polynomial of q1. Hence it is

(2σ − 1)-summable in q1. Therefore it is sufficient to show, by induction, that

if F in (3.21) is (2σ− 1)- summable, then v
(α)
ν,k,	 is (2σ− 1)- summable as well.

Set κ = 2σ − 1. In the following we omit the suffix (α) in v
(α)
ν,k,	 for the

sake of simplicity. We define Ω = Σ0. Suppose that there exists an integer N
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such that Bκ(vν,k,µ) ∈ Hc(Ω) for all ν, k and µ, |µ| ≤ N . We want to show
Bκ(vν,k,	) ∈ Hc(Ω), |	| = N + 1. Let ζ be the dual variable of q1. Let χλ(D)
be defined by

χλ(D)Bκ(f)(ζ) := Bκ(qλ1f )(ζ), Bκ(f) ∈ Hc(Ω).

By Lemma 2 χλ(D) is a linear continuous operator on Hc(Ω). Moreover, by
taking c > 0 sufficiently large, we may assume that the norm can be made
sufficiently small.
We apply the (2σ− 1)-Borel transform to both sides of (3.21) with respect to
q1. Then we have

(
(2σ − 1)ζ2σ−1 − (2σ(ν + 1) − 1)χ2σ−1(D) + λ · (	− k − α)

)B2σ−1(v
(α)
ν,k,	) = g(ζ),

(6.8)

where g(ζ) is the partial Borel transform of F with respect to q1. We shall
show that g(ζ) ∈ Hc(Ω). Indeed, in view of the definition of R in (3.11) F
is the sum of products of some vν′,k′,µ and holomorphic functions of q1. This
implies that their Borel transforms are in Hc(Ω). Hence we have the assertion.
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We also note that the Borel transform of the differentiation q2σ
1 (∂/∂q1) in R is

equal to (2σ−1)ζ2σ−1−(2σ−1)χ2σ−1(D). In order to show that Bκ(vν,k,m+1) ∈
Hc(Ω) we may assume that 	−k−α 
= 0. Indeed, the number of terms satisfying
	 − k − α = 0 is finite in view of the finiteness of k, and, by definition, the
corresponding vν,k,m+1 is a polynomial of q1.
By (3.25) we see that ((2σ−1)ζ2σ−1+λ·(	−k−α))−1 exists for ζ ∈ Ω. Because

one can make the norm of χ2σ−1(D) arbitrarily small and ν runs in a finite set,
it follows that ((2σ − 1)ζ2σ−1 − (2σ(ν + 1) − 1)χ2σ−1(D) + λ · (	− k − α))−1

exists as a continuos operator onHc(Ω). This proves that Bκ(vν,k,m+1) ∈ Hc(Ω)
and its norm is bounded by constant times of vν,k,	 for 	 ≤ N + 1 which are
independent of ν, k and 	 and ζ ∈ Ω. Hence we have proved the (2σ − 1)
summability of every coefficient of our formal integral with respect to q1 as
desired. In view of the inductive estimate of vν,k,	 with respect to |	| we see
that v(α) is analytic with respect to q at the origin q = 0.
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7. Proof of Theorem 5

Proof of (i). Let v = v(α)Eα be the summed first integral (3.7). We will show
that every v(α) is holomorphic in the domain (4.2). Because v(α) is (2σ − 1)-
summable in every direction in Ω1, v

(α) is holomorphic in Σv. Clearly, Eα is
holomorphic in Σv. In order to show the smoothness we recall that every v(α)

is C∞ when q1 → 0, q1 ∈ Σv because v(α) has an asymptotic expansion. On
the other hand, in view of

Eα = exp

⎛
⎝q−2σ+1

1

2σ − 1

n∑
j=2

λjαj

⎞
⎠(7.1)

there exists a sum of sectors with opening π/(2σ− 1), on which Eα is bounded
when q1 → 0. Because the opening of Σv is larger than π/(2σ − 1), it follows
that there exists a sector S1 ⊂ Σv such that Eα is C∞ when q1 → 0, q1 ∈ S1.
Hence v is C∞ when q1 → 0, q1 ∈ S1 as desired.
Proof of (ii). First we show that there exists Ω1 such that Ω1 
= ∅. The

assertion is clear by definition if S0 is a finite set. Suppose now that the Poincaré
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condition is verified. It follows that λ · (	 − α − k) is contained in some half
plane in C for every 	, α, k with 	−α− k ≥ 0. In view of the definition of S0

one can choose Ω1 which satisfies (3.25). Then, by (i), for α = ej or α = 2ej
we have 2(n− 1) C∞ first integrals on (Rθ ∪ −Rθ ∪ {0}) ∩ U , p1, pj, qj ∈ R,
|qj| < ε0 with U ⊂ R being a neighborhood of the origin. For the sake of
simplicity we denote these integrals with the same letter.
In view of the definition of S1 and (7.1) we see that every derivative of Eα at
q1 = 0 when q1 ∈ Rθ, q1 → 0 vanishes, from which the same assertion holds for
v. Hence, by defining v = 0 on −Rθ, v can be extended as a smooth function
on Rθ ∪−Rθ ∪ {0}. In order to show the C∞–integrability it remains to show
that the 2(n−1) ≥ n smooth first integrals are functionally independent almost
everywhere. This is clear from the proof of Theorem 2 since we set α = ej or
α = 2ej. This ends the proof.
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Thank you very much

for your attention!

Very nice organization !!
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