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Some History

e The relationship between semi-classical orthogonal polynomials and integrable equa-
tions dates back to Shohat [1939], Freud [1976], Bonan & Nevai [1984].

e Subsequently Fokas, Its & Kitaev [1991, 1992] identified these integrable equations
as discrete Painlevé equations.

e Magnus [1995] considered the Freud weight

w(x;t) = exp (—%x‘l — t:z:2) : x,t € R,

and showed that the coefficients in the three-term recurrence relation can be ex-
pressed in terms of solutions of

qn(Q?’L—l + qp T C_In+1) + Qth — N
which is discrete P; (dP;), as shown by Bonan & Nevai [1984], and
d?q 1 (dqg 23 5 5 o n?
no_ n e 4 9 1 . — —
dz?  2qy ( dz ) T TR T SR 24y
which is Py with A = —in and B = —in?.
e Filipuk, van Assche & Zhang [2012] commented

“We note that for classical orthogonal polynomials (Hermite, Laguerre, Jacobi)
one knows these recurrence coefficients explicitly in contrast to non-classical
weights".
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Painlevé Equations

d2

d—ZZ:6Q2+Z

d2

d—;zl:2q3+zq+A

2¢ 1/dq\* 1dg A¢+ B D

L _Z(=2) -2 Ca® + =

dz? q(dz) zdzJr 2 i Q+q

2 1 [(dg\’ 3 5 5 5 B
- SR A 220 — A)g+ =

2 Zq(dz) +50" 4z + (2 )q+q

2 1 1 dg\> 1d —1)? B
Co_ (1, 1 \(da) _1dg (g=17(, B
dz 2 q—1)\dz zdz 2? q
Cq , Dq(g+1)

_|_
z q—1

1+1+1dq2 L, 1 1 \dg
g q—1 qg—2z)\dz z z—1 q—z/)dz

q(q—1>(q—2){A+Bz Clz—1) DZ(Z—U}

Z (q=12 " (g—2p

with A, B, C and D arbitrary constants.
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Painlevé o-Equations

(dizf +4 (j—j)g — ZZj—Z — 20 =10 Sy

(G () o )1

(z?;; — 32)2 +4 (j{:)Z (zj—z — 20> + 4219003—2 = 2° (Zj—z — 20 + 2190) St

((12;)2 — 4 (zj—z — 0)2 + 43—2 (i—z + 2190> (i—z + 21900) =0 Stv
2

(zjiif_ 2(3_2>2_zj—z+0 +4jf[1<jlz+/<oj> Sv

do 261°  [do do 2 A do 5
@ [Z(Z — 1)F] + [E {20_ — <2Z — 1)@} + /"61/‘4}2/{/3/{/4] — H (@ + K’j) SVI

where 3, ¥y, ¥ and K1, . . ., k4 are arbitrary constants.
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Theorem
The Painlevé equations are special functions

Proof

de Gruyter _
Studiesin Mathematics

23

Valerii I. Gromak - Ilpo Laine - Shun Shimomura

Painlevé Differential
Equations m the
Complex Plane

“Formal and Analytic Solutions of Differential, Difference and Discrete Equations", Bedlewo, Poland, August 2013



Motivation
Monic orthogonal polynomials satisfy the three-term recurrence relation of the form
rP,(x) = P,i1(x) + a, Py(x) + B, P-1(x)
e Recurrence coefficients for the weight
w(x;t) = exp (%x?’ + t:z:) : 23 < 0
are expressed in terms of solutions of Py (Magnus [1995]).
e Recurrence coefficients for the weight
w(z;t) = 2" texp(—x — t/x), reR, v>0
are expressed in terms of solutions of Py (Chen & Its [2010]).
e Recurrence coefficients for the weight
w(z;t) = 2" texp (—:132 + t:z:) : reRT, v>0
are expressed in terms of solutions of Pry (Filipuk, van Assche & Zhang [2011]).
e Recurrence coefficients for the weights

w(x;t) = (1 —2)*(1 +z)exp(—tx), x€[-1,1, a,b>0

w(x;t) = 291 — x)’exp(—t/x), re 0,1, a,b>0

w(z;t) =2 o + ) te™?, r e RT, a,b>0
are expressed in terms of solutions of Py (Basor, Chen & Ehrhardt [2010], Chen
& Dai [2010], Chen & McKay [2012], Forrester & Witte [2007]).

“Formal and Analytic Solutions of Differential, Difference and Discrete Equations", Bedlewo, Poland, August 2013 8



Orthogonal Polynomials

e Monic orthogonal polynomials

e Semi-classical orthogonal polynomials
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Monic Orthogonal Polynomials

Let P,(x), n = 0,1,2,..., be the monic orthogonal polynomials of degree n in z,
with respect to the positive weight w(x), such that

b
/ P,(z)P,(v)w(z)dr = hydmp, hy >0, m,n=20,1,2,...

One of the important properties that orthogonal polynomials have is that they satisfy the
three-term recurrence relation

xpn@j) — Pn—|—1(x) -+ Oénpn(x> + 6npn—1<x)

where the recurrence coefficients are given by

~ ~

An—H An An—HAn—l
@n p— — , 671 p—
An—l—l An A%
with
Ho M1 o--. Hn-—1 Ho M1 --- Hn—2  fn
A — M1 H2 ... Hn ﬁ _ | M1 f2 e fp—1 fngd
Hn—1 Hn ... H2p—2 Mn—-1 Mn -« H2n—-3 H2n—1

b
and i, = / 2" w(x) dx are the moments of the weight w(z).
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Further Properties

e The Hankel determinant
Ho M1 ... Hn-—1 A
Ay = /fl /fz ,LLn : Mk::/ v w(r) dz

Mn—1 Hp - H2n—2
also has the integral representation

1 b N
An:—'/'ﬁ'/llw<$g> II (:Izj—:vk)2dx1...d:1:n, n>1
n!
a agl

= 1<yj<k<n

e The monic polynomials P,(x) can be uniquely expressed as

Ho  H1o-.- Hp
1 S R !
Pn<x> — A— : T .. :

Mn—1 Hp -« H2n—1
1z ... 2"

e The normalization constants can be expressed as

An—H
hn — ’ h — A —
A 0 1 = Ho
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Example — Hermite polynomials

Hermite polynomials are orthogonal with respect to the weight
w(z) = exp(—x?), reR

In this case

> T (2k)! >
o = / 2% exp(—a?) do = \/Q;Ek') Mokt :/ 2 exp(—2?) dz = 0

o0 oo

SO
Ho M1 ... Hn—1

n—1
k=1

Hn—1 Hn ... H2p—2

and therefore

An—l—lAn—l 1
= 3N

Oén — 07 671 — AQ 2

which gives the three-term recurrence relation

Poii(z) = 2Py (x) — 3nP,_1(x)

where
P,(x) =2""Hy,(x)
with H,(z) the Hermite polynomial.
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Example — Associated Laguerre polynomials

Associated Laguerre polynomials are orthogonal with respect to the weight
w(z) = z" exp(—1), reR", v>-1
In this case
Ly = /OO " exp(—z)de =T (k+v + 1)
0

SO
An=TlG-DITw+5),  Av=nmn+v)[](G- DT +5)
j=1 j=1
and therefore

~

A, A, A, A,
an:Ani—An:2n+1+u, 3, = Zg L= nn+v)

which gives the three-term recurrence relation

Po(r)=(x—2n—1—v)P,(x) —n(n+v)P,_1(z)

where
Py(z) = (—1)"nILY)(z)

with L (x) the associated Laguerre polynomial.
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Semi-classical Orthogonal Polynomials

Consider the Pearson equation satisfied by the weight w(x)

d

T o(@w(z)] = 7(z)w(z)

e Classical orthogonal polynomials: o(z) and 7(x) are polynomials with deg(o) < 2

and deg(7) = 1

w(z) o(z) 7(2)
Hermite exp(—z?) 1 —2x
Associated Laguerre x’ exp(—x) T l+v—zx
Jacobi (1—2)Q+2) | 1—-2? | B—a—2+a+ P

e Semi-classical orthogonal polynomials: o () and 7(x) are polynomials with either

deg(o) > 2 ordeg(7) > 1

w(z) o(z) 7(z)
semi-classical Laguerre | z”exp(—z%+tx) | x | 1+v+tx — 222
Freud exp(—jxt — ta?) 1 —2tx — 27
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If the weight has the form
w(x;t) = wo(x)exp(tx)

©9)

where w(x) is a classical weight with finite moments and / r*wo(z) exp(tz) dx exists

for all £ > 0. Then:
e the recurrence coefficients a,(t) and (3,(t) satisfy the Toda system

e the £th moment is given by

pilt) = /_OO > un(z) expltz) dz = 3 (/_OO wo(z) exp(t) dx) -

- dt” ~ dt”

—00
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o Since i (t) = —2, then A,(¢) and A,(¢) can be expressed as Wronskians

po(t)  pa(t) oo () q Jn-1
A, () = le(t> N2:<t) 'u”:(t> :W<M07 (ﬁo : 7dtn_ﬁ10)

tins(8) pialt) - ot

po(t)  pilt) ..o pn—o(t)  pa(t)
Zn@) :ulz(t> ,u25<t) Nn:l(t) qutsl(t)
pin—1(t) pnlt) ... pon—3(t) pon—1(¢)

VY dMo dn_2M0 d"po) _ d
RO mqe T2 e at

dMo dn_lﬂo)

W(MO: dt : ,dtn_l

An(t)  d dpo 4" o
= = —1 ey T T
A am (“ TaE T e
e the Hankel determinant A, (t) satisfies the Toda equation
d? A 1(0) A1 (t)
—InA,(t) =
g2 1 Aalh AZ(1)
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Some Properties of the Fourth Painlevé Equation
and the Fourth Painlevé o-Equation

42 1 /dg\° 3 B

dZZ — 2q (d;]) + §q3 + 4zq2 + 2(22 — A)q + E PIV
LA WY (LA I (PR W LI N S
dz* Zdz ? dz \ dz 0 dz i v

e Hamiltonian Representation

e Parabolic Cylinder Function Solutions
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Hamiltonian Representation of Py,
Py can be written as the Hamiltonian system

= =A4qp — ¢~ — 22q — 20
1 op qp —4q Zq 0
d 9,
L HIV:—2p2+2pq+22p—19oo
dz J0q

where Hiv(q, p, z; Uy, ¥ ) is the Hamiltonian defined by
Hiv(g, p, 290, Voo) = 2qp° — (¢ + 22q + 200)p + Vg

Eliminating p then q satisfies

d?q 1 [(dqg : 3 3 5 5 219%
—=—| — 2 4 2 Yo — 20 — 1)g — —
2 (dz) +5¢° + 4zq” + 2(2" + Yo )q p
which is Pry with A = 1 — 9y + 20, and B = —29%, whilst eliminating ¢ then p satisfies
d>» 1 [dq ’ 92
L =—(= 6p° — 82p” + 2(2% — 20 + Voo + 1)p — =2
2 2 (d;;) + 6p° — 82p° +2(2 0+ Voo + 1)p 2

and letting p = —%q gives Pry with A = 29y — 9, — 1 and B = —202_.
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Theorem (Okamoto [1986])

The function
0 (2,00, 9o0) = Hiv = 2qp° — (¢ + 22q + 290)p + Vg

where q and p satisfy the Hamiltonian system

d d
—q:4qp—q2—22q—2190, —p:—2p2+2pq+22p—1900
dz dz

satisfies the second-order, second-degree equation

d%o . do 2 do (do do
— | —4| z— — d—~ | — 4+ 20 — 4+ 20 | =0
<dz2) (Zdz “) L (dz+ ”) (dz+ )

Conversely, if o(z; 0y, V) is a solution of Syy, then

B o’ — 220"+ 20 o +2z0" — 20

are solutions of the Hamiltonian system Hiy.

“Formal and Analytic Solutions of Differential, Difference and Discrete Equations", Bedlewo, Poland, August 2013
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Parabolic Cylinder Function Solutions of Py,
Theorem

Suppose T,,(z; €) is given by

Ton(z;6) =W (%(za e), (26, ..., ol V(2 6)) , n>1

where 7,0(z;¢) = 1 and ,(2; €) satisfies

d*p, dpy 2
7 2525 + 2evp, = 0, e”=1

Then solutions of Pry

d’¢ 1 [dg 3 3 2 N B
— P Azt 22— A+ 2
2 2q<dz) + 50" 4z + (2 )q + .

are given by

(e(2n —v), —2(v + 1)?)

d . Tyni(z€)
1 (2) = -2 |p L Ay, B
C]m(z) z+5dz n Ty7n<2;5> ; ( 15 1)

2)(2) = e i Dt

z Tyrin(z€)

(AQ, BQ) ( — 8(71 -+ V), —2<V —n + 1>2>

d . Tuiin(z€)
3] _ l v+1n\~;
Qi) gdz . Tun(Z;€)

, (Ag, Bg) = (€<2V — N + 1), —2n2)
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Parabolic Cylinder Function Solutions of Sty

Theorem
Suppose T,,(z; €) is given by
Tun(2:6) =W (%(z; e), 0, (z:€), ..., o0 V(7 6)) ;o on>1
where T,0(z;¢) = 1 and ,(z; €) satisfies
d2901/ dSOV 9
2 2525 + 2evp, = 0, e”=1

Then solutions of Sty

120\ do : do (do do
— | -4 z— — 4— [ — + 20 — 4+ 20 | =
() 1 (T o) +AE (From) (Froe) -0

are given by
d

oyn(2) = o InT7,,(2;¢), (Yo, V) = (e(v —n + 1), —en)

“Formal and Analytic Solutions of Differential, Difference and Discrete Equations", Bedlewo, Poland, August 2013 21



d*p, de,
d; — Qe:z% + 2evp, = 0, =1 (%)

olf v &7

(o) = | {ODAV22) + CaDu(—V22)} e (327). it =1
e {ClD—v—l(\/§ z) + C2D—u—1(—\/§ z)} exp (—%22) : if e=-—1

oelfvr=neZ withn >0

( n
C1H,(z) + C exp(z%% {erfi(z) exp(—27) }, if e=1

Spn<z3 5) = 4

C1H,(iz) + C exp(—zQ)% {erfe(z) exp(z7) } if e=-1
\

olfv=-—neZ withn>1

( _
dr 1
CH,—1(iz) exp(z*) + Co—— {erfe(z) exp(2) } , if e=1
Qp—n(z; 5) = 4 dzd”_l
C1H,_1(2)exp(—2%) + ng —— {erfi(z) exp(—27) }, if e=-1
\ z

with C and C5 arbitrary constants, D,(() the parabolic cylinder function, H,(z) the
Hermite polynomial, erfc(z) the complementary error function and erfi(z) the imag-
inary error function.
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Plots of Bounded Rational Solutions of Sty

Omn(2) = —ImW(H,(2), Hys1(2), - .., Hypgn—1(2))

O'ng(Z), ] = 1,2,3,4 O'ngj(Z), ] = 1,2,3,4 03’2]'(2), ] = 1,2,3,4

0'472]'(2), ]: 1727374 0_5,23'(25)7 ]: 1727374 010,2j<z)7 ]: 1727374
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Plots of Bounded Special Function Solutions of Sty

d
O'y,n<Z> — —2nz + & 1HW(S0V, Sp/w . Sp(yn_l)>

ou(2) = {CiD_,(V22) + CoD L (~ V22) bew (32), CiCy >0, v >0
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01/2,3(Z>

03/2,3(2’)
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Plots of Error Function Solutions of Sty

dm
Ommn — l W Sﬁmﬂ&/ 7-”795(”_1)
; dz I < m m

04,3(2) 05,4(Z>

“Formal and Analytic Solutions of Differential, Difference and Discrete Equations", Bedlewo, Poland, August 2013

), Om = exp(—zz)dz—m {C) + Cyerfe(2)} exp(2?)

26



Semi-classical Laguerre Weight

w(z;t) = o¥ exp(—a* + tx), r € R, v > —1

e P A Clarkson & K Jordaan, “The relationship between semi-classical Laguerre

polynomials and the fourth Painlevé equation”, Constr. Approx., to appear
[arXiv:1301.4134]
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Semi-classical Laguerre weight

Consider monic orthogonal polynomials with respect to the semi-classical Laguerre
weight

w(z;t) = z¥ exp(—a* + tx), r € R, v > —1 (1)
which satisfy the three-term recurrence relation

rP,(x;t) = Po(x;t) + an(t)Pu(x; t) + Bu(t) Po_1(x; 1) (2)
Theorem (Boelen & van Assche [2011])

The coefficients o, (t) and (3,(t) in the three-term recurrence relation (2) associated
with the semi-classical Laguerre weight (1)

(26, — n)(26, —n —v)
Bn
20, + 2001 + a0, —t) =2n+ 1+ v

(20, — t) (20,1 — t) =

Theorem
The coefficients o, (t) and (3,(t) in the three-term recurrence relation (2) associated
with the semi-classical Laguerre weight (1) satisfy the Toda system

doy, dS,

dt :6n+1_6n7 dt —

Bn(@n - CVn—l)
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w(z;t) = o¥ exp(—a* + tx), r € R, v > —1 (1)
rP,(xz;t) = Pyi(x;t) + an(t) Py(x; t) + 8,(t) Pyo1(x; ) (2)

Theorem (Filipuk, van Assche & Zhang [2012])

The coefficient a,(t) in the recurrence relation (2) associated with the semi-classical
Laguerre weight (1) is given by

O‘n(t) — %Qn(%t) T %t

where q,(z) satisfies

d?q, 1 (dg,\’ 3 3 5 2 207
= 2 4 20" —2n—1—-v)g, — — 3
=2 o <dz> +5q, +4zq, + 2(2 n V)q ” (3)
which is Py with parameters
(A,B) = (2n+1+v,—207°) (4)
Remarks:

e Filipuk, van Assche & Zhang [2012] did not specify the specific solution of (3).

e The parameters (4) satisfy the condition for Pry to have solutions expressible in terms
of parabolic cylinder functions.
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Theorem (PAC & Jordaan [2013])
For the semi-classical Laguerre weight

w(z;t) = 2" exp(—2* + tz)
the moment y(t; V) is given by
(T(v+1) exp(%tQ)
ot ) = 4 2(y+1)/2
1f {exp(tQ) 1+erf(2t)]}, if v=neN

with D, () the parabollc cyllnder function and erf(z) the error function.
Proof. The parabolic cylinder function D, ({) has the integral representation

_ 12 00
D¢ = T [ (-4 - g

Hence for the semi-classical Laguerre weight the moment pi(¢; v) is given by
to(t; v) = / r” exp(—2° +tx)dz
0
— 2(”“)/2/ s exp (—%52 +3v2t s) ds
0
(v + 1) exp (22
_ ( ) p(g) —ul( \/’t)

2(V—|—1)/2

_V1< \ft) if v#+#néeN
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If v =n € N, then

D-aal6) = \ [T exp(- 36 3 {etied ene (1v2C) }

with erfc(z) the complementary error function. Since erfc(—z) = 1 4 erf(z), then

to(t;m) = 1\f {eXp( t2) [1 +erf(%t)}}

Corollary
The moment i (t; v) satisfies the ordinary differential equation
d2M0 1, Ao
— —t— — = Do =0 1

Proof. The parabolic cylinder function D, (() satisfies
d’D,
d¢®

and so it follows from its definition that the moment 1 (¢; /) satisfies equation (1).

b+ -1¢) D=0
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Theorem (PAC & Jordaan [2013])
The coefficients «,,(t) and [3,(t) in the three-term recurrence relation

wP,(x;t) = Py(x;t) + a,(t)Py(x; t) + 5,(6) P,_1(x; 1)

associated with the semi-classical Laguerre weight

w(z;t) = z¥ exp(—a* + tx), r € RT, v > —1
are given by
d An-i—l(t) An+1<t>An—l(t)
W) = —1 : (1) = , > ()
alt) =G A Gul1) A2(%) "
where A\, (t) is the Hankel determinant given by
dﬂo d" g
Ay (t , ey ——— > 1
0= (i B )

A()(t) = 1 and A_1<t) = 0, with
(T(v+1) exp(£t?)
M()(t; V> _ 2(1/4-1)/2
1f {exp( W) [1+erf(3t)]}, if v=neN

D, (C) the parabolic cylmder functian and erf(z) the error function.

ﬁl( %%) if v4neN
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Remarks:
e The Hankel determinant A,,(¢) satisfies the Toda equation

d? ERAVESIAYEI),
¥ InA,(t) = AZ(1)

and the fourth-order, bi-linear equation

A, BA,dA, LA\ 2A,  [dA,\?
U () {5 (2]

S de® dt 1

dA,
+ itﬁnd—t +in(n+v)AL =0
d

e The function S),(t) = 5 In A, (t) satisfies

425, \ * 4s, 2 4S, /.d8S, 4s,
4<dt2) _(tdt —Sn) +4dt (th —n) <2dt —n—u)—()
1

which is equivalent to Syy, the Pry o-equation (let S),(t) = 50(z), with z = 2t), so

d - Ap(t) 2 ~ds,

a(t) = —n o = Suaalt) = Sult),  Bult) = 5l AL(H) =

“Formal and Analytic Solutions of Differential, Difference and Discrete Equations", Bedlewo, Poland, August 2013



Theorem (PAC & Jordaan [2013])
If a,,(t) and (3,,(t) satisfy the system

d(;;" = —ap(oy — 5t) — 26, +52n+ 1+ v)
(1)
A, 1, (28,—n)(28,—n—v)
E = (an 2t>6n 2<204n - t)
then 28,(t) — n][26,(t) |
n —n n —n—v
Sn(t) = 20, (t)Bn(t) + 200, (t) — t
satisfies

425, \ * 4s, 248, /.ds, 4s,
4<dt2) —(t m —Sn) +4dt (2 im —n) <2 i —n—u):() (2)

which is equivalent to Sty, the Py o-equation.
Conversely if S,,(t) satisfies equation (2) then

deS” + tdS” + S
an<>_ dS 3 671()_ dt
4 &2n
dt

are solutions of the system (1).
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Theorem

The system
doy,
TRl —ap(an, — 5t) — 26, + 22n+ 1 +v) (1a)
dﬁn 1 (2671 o n) (2571 —n— V)
— = (v, — 5t) 05, — Ib
el G O 2(2a, — 1) (10)
is equivalent to the system
dgy,
Sn _ 4q,pn — qu — 22q, — 2v (2a)
dz
dpn,
di = —Qpi + 2009y + 22p, — M — UV (2b)
2

which is the Hamiltonian system associated with Py, with Hamiltonian

Hiv (G, Py 21, V) = 2q0p% — (@0 + 22q, + 20)p, + (0 + V) gy

Proof. Making the transformation

on(t) = 3qn(2) + 5t Bult) = —5a(2)pn(z) +3(n+v),  z=3t
in the system (1) yields the system (2). The inverse transformation is

Gn(2) = 20 (1) — ¢, pa(2) = _QBSSZ@_) 71; V’

t =2z
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The first few coefficients in the recurrence relation are given by

D_,(~ 13

(m@):%t_ll%4(—%v@ﬁ)zq5@)
1 U (t)
ult) =5t = ll) = S = = 1
., v +4 U, (t)
ll) =3t — =+ sEm v -1
2w+ DE 4 4(v 4 2)(2v + 3)] () — (v + D[t + 2(4v + 9)] T, (¢)
24 [2003(8) — (82 — 4v — 6)W2(¢) — 3(v + 1)t0,(¢) — 2(v + 1)?]
N (v 4+ 1)2[t* + 8(v + 2)]
20 (2003 (1) — (2 — v — 6)U2(¢) — 3(v + 1)tV () — 2(v + 1)?]
Bi(t) = =W (t) + 200, (¢) + 2(v + 1),

WS (t) — (1% — 4v — 6)V2(t) — 3(v + 1)tV,(t) — 2(v + 1)?
B 2[w2(t) — 14w, (t) — L + 1))
Hence, using the three-term recurrence relation
Poi(x;t) =[x — an(t)| Pz t) — Bul(t)Pr_1(x; 1), n=012...
with Py(x;t) = 1 and P_;(x;t) = 0, then the first few polynomials are given by

Ba(t)
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P(x;t) =2 -V,
s 2V — (2420, — v+ 1)t 2 +2)P2 — (A+ 1T, — (A +1)?
- 2 1 1 L — 9 1 N7 1
2(02 — 20, — s(v +1)] 2002 — 10, — H(v+1)]
4% 4+ 2v + U3 — 2 (t* — v — 1) V2
Pyfa;t) = o — (£ 420+ 90, — At —v — 1)V,
22603 — (82 — 4v — 6)¥2 — 3(v + 1)t0, — 2(v + 1)?]
(v+1)(5t* + 4N+ 6)U, + 3(v + 1)%t ,
B X
22603 — (82 — dv — 6)U2 — 3(v + 1)t0, — 2(v + 1)?]
) { (12 + 2v + AW — [t + 4(2v + 5)(v + 2)] W2
4|

Py(x;t) =x

2003 — (82 — dv — 6)U2 — 3(v + 1)t0, — 2(v + 1)?]
2w+ 1)t(t* —v =5V, + (v + 1)*(#* — 4v — 12)
X
412008 — (2 — v — 6)¥2 — 3(v + 1)1, — 2(v + 1)?]
2[(v+ Di* 4+ 4(v + 2)2| U8 — (v + 1)E(t* 4 2v 4 8)12
412003 — (2 — v — 6)U2 — 3(v + 1)1V, — 2(v + 1)?]
2w + 1)t + 20 +5)V, + (v + 1)t
412003 — (2 — v — 6)¥2 — 3(v + 1)t0, — 2(v + 1)?]
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Py(x;t)

Ps(z; 1)

Py(z; )

t=3

\

t=1

t =4
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Semi-classical Hermite Weight

w(z;t) = |z|” exp(—a* + tx), r € R, v > —1

e P A Clarkson & K Jordaan, “The relationship between semi-classical Laguerre

polynomials and the fourth Painlevé equation”, Constr. Approx., to appear
[arXiv:1301.4134]
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Semi-classical Hermite weight
Consider the semi-classical Hermite weight
w(z;t) = |z|” exp(—a* + ta), reR, v>-1
e The moment 1 (¢; ) is given by
pi(t; v) = /OO z¥|x]” exp(—z® + tzr) do
d7COO

>~ d”* o
= — 2|V exp(—2° + tx dx):—
dt” (/oo 2] el ) d¢*

e The Hankel determinant A,,(¢) is given by

n=l d g A" g
Ant:dt[ - t} = i o
)= det wsutt)]” =W (1o B
where
(D(v+ 1) exp(5t°)
s A Dmi(= V20 + Do (120} v @ N
bo(t:v) = vV (= 5)™ Hon ($it) exp (1), v =92N
d2N—|—1 )
\\/% —dtQNH {erf(%t) exp (it )} : v=2N +1
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Theorem (PAC & Jordaan [2013])
The recurrence coefficients o, (t) and 3,(t) in the three-term recurrence relation

rP,(xz;t) = Pyoi(x;t) + an(t)Py(x; t) + 6,(t) Py_1(x; 1),

for monic polynomials orthogonal with respect to the semi-classical Hermite weight

w(z;t) = |z|” exp(—a* + tx), reR, v>-1
are given by ,
d . Aua(t) d

where A\, (t) is the Hankel determinant

-l dpg d" g
Ant:dt{ - t} = e o
) =det wsut)]” =W (o B
with
(T(v+ 1) exp(:t?)
s Dot (= 5V20) + Do (3V21) ) v @N
lt) = 7 (= 5 B () o (21, s =N
d2N+1 )
\\/% AN {erf(5¢) exp (3t°) }, v=2N +1
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Recurrence coefficients for w(xz;t) = 22 exp(—z° + tz)

2t
_ 1
()éo(t) = Et + t2 19
=1t At? 2t
Q =5 —
: 2T 12 242
6t(t* + 12 — 4¢2 At?
Oég(t) = %t + ( 1 ) Y
t0 — 6t + 3612+ 72 t1 412
. 33 (1 + 60 — 12t2) 6t(t* + 12 — 4¢?)
Oég(t) = §t -+ —
t8 — 16t0 4+ 120¢4 + 720 6 — 6t* 4 36t2 + 72
1) =1+ 10t (2% + 216t* + 720 — 24t° — 480¢2) 83 (t* + 60 — 12¢2)
Q =3 —
! 27 10— 30#8 + 36016 — 1200t* + 3600¢2 4 7200 3 — 165 + 1204 + 720
2(t* — 2)
) =1_
i) =5 (t2 + 2)2
4212 — 6) (12 + 6
aa(t) = 1 SO+ 0
(4 +12)
By(t) = 3 6(t* — 12t% 4+ 12)(¢° + 6t* + 36t* — 72)
I (6 — Gt* + 362 + 72)2
% (t* — 20t* + 60)(¢° + 72t* — 2160
8y(t) = 2 B ) )

(15 — 1616 + 120t* + 720)2

“Formal and Analytic Solutions of Differential, Difference and Discrete Equations", Bedlewo, Poland, August 2013

42



Hence, using the three-term recurrence relation
P,(z;t) =[x — a, ()| Pu(x; t) — Bu(t)Pyq(x: 1), n=012...
with Py(z;t) = 1 and P_1(x;t) = 0, then the first few polynomials are given by
t(t* +6)
2(t%2 + 2)
,  ttt 44t +12) 5 46t + 3612 — T2

Pi(z;t)=x —

Py(x;t) = 2° —
blait) = Fri2 T At
3t(t5 — 21 + 20t + 120 3(t% 4 40t* — 240
Py(z;t) = 2° — ( il il ):I:2+ iy ) T
2(t6 — 6t* + 36t2 + 72) 4(t5 — 6t* + 36t2 + 72)

t(t® + 72t — 2160)
8(t — 6t* + 36t2 + 72)
o 2t(t8 — 1210 + 72t + 24017 + 720)

Bilwt) = 15— 1615 + 12047 + 720
3(t1° — 10¢® + 80t + 1200¢* — 2400)
T —1e 4 1206t 4 720)
(10 — 10¢% + 120¢° — 240t* — 1200¢2 — 7200)
B 2(#8 — 16t° + 120¢% + 720) !
| 17— 12610+ 1508 — 480t 3600¢* — 43200¢2 + 43200

16(t® — 16t° + 120t* + 720)
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Freud Weight

w(x;t) = exp (—iaz4 - tiL’Q) :

“Formal and Analytic Solutions of Differential, Difference and Discrete Equations", Bedlewo, Poland, August 2013

reR

44



Freud weight (Magnus [1995])
Consider the monic orthogonal polynomials with respect to the Freud weight
w(z;t) = exp (—iz* — ta?) r,t € R
which satisfy the three-term recurrence relation

rPy(x;t) = Pyyi(x;t) + Bu(t) Py—1(z; 1)
It is well known that 3, (¢) satisfies

Bn(ﬁn—l + 671 + ﬁn+1) + Qtﬁn =N

26, 1 [dB3,\°
@2 23, ( dt> + 9l U6+ 28+ 36 -

which are dP; and Pry with A = —%n and B = —%nQ, respectively.
Remark. The link between these equations is given by

1 dg, 5
6n+1 Qﬁn ( dt _ 2tﬁn _ ﬁn>

1 dﬁn
671—1 Qﬁn ( + - 2tﬁn _ ﬁi)

which are the Pry Béicklund transformations 7;* and 7, respectively.

n2

28,
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For the Freud weight
w(z;t) = exp (—iz* — ta?) reR

the moments are
oo

to(t) = / exp (—1304 — th) dz =2 y 2 exp (—y2 — 2ty) dy
_ 0

21/4\/7 GXp t2 D 1/2(\/515)

dn
pon(t) = (=1)" dt‘ff, fon1(t) = n=12...
Remark. Solutions of Pry with A = —1n and B = —in? i.e.
d?q, 1 (dg, : 5 n?
_ g2 + 22 + In)g, — ——. — 192, ...
dt” 2qn<dt> + 30+ A0+ 28+ g 2 .

are known as the “half-integer hierarchy”, which arise in quantum gravity (Fokas, Its
& Kitaev [1991, 1992]) and were studied by Bassom, PAC & Hicks [1995]. The first
solution 1n this hierarchy is given by
01D1/2(\[75> 02D1/2( - \/575)
2t + V2
CiD_ 1/2(\[75) + CyD 1/2( — \@t)

with C and (5 arbitrary constants and D, (() the parabolic cylinder function.

Q<t; _%7 _%> —
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Generalized Freud Weight

= Lexp (—laz4 - t:z:2) : r € R,

w(x;t) = |z 0

“Formal and Analytic Solutions of Differential, Difference and Discrete Equations", Bedlewo, Poland, August 2013
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Generalized Freud weight
For the generalized Freud weight

wlz;t) = |z exp (—1a* — tz?), T €
the moments are
po(t) = / [ exp (=32t — t2*) da

= 2”/ v’ exp (—y2 — Qty) dy
0

— 2/?D(v) exp(%tQ)D_V(ﬂt)

on(t) = / 2" x|* exp (—iat — ta?) da

n 4" - 1,4

= (—1) 7 2]*exp (—32" — ta

d” o :
= —]_ n — ]_ 2 o« .
( ) dtn ) n =

o
() = [P exp (~ot - t0?) da

©.@)

=0, n=12...
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Theorem (PAC [2013])

The recurrence coefficient [3,(t) in the three-term recurrence relation
xPy(x;1) = Poa(@;t) + Bu(t) Poo1(2;8),
is given by

d . AV d A
1Il y 6271 1(t> == h’l
dt - APt) T AL

where Ay[lo | (t) and Ag | (t) are the Hankel determinants, respectively given by

d dn—l
200 =W (o - )

/827L<t) —

B
d gz A" s dpo d*pg d" g
ALRl4) = — ... = (—=1)"
n <) W H2, dt? ’ dtn_l ( >W dtv dtQa ’ dtn

Remark: Note that
62n<t> — Q<t; l—mn—2v, _277/2)
Boni1(t) = q(t; v—n—1 -2+ n)Q)
where ¢(t; A, B) satisfies Pyy

2 1 /dg¢\° 3 3 o 2 B
= — At 20t — A —
dt? 2q(dt) LR Jat
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Discrete Orthogonal Polynomials

e P A Clarkson, “Recurrence coefficients for discrete orthonormal polynomials and
the Painlevé equations", J. Phys. A 46 (2013) 185205
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Discrete Orthonormal Polynomials

Discrete orthonormal polynomials {p,(z)},n =0,1,2, ..., with respect to a discrete
weight w(k),
= 1, if m=n
S Pk)pa (K)o (k) = Gy = !
— 0, if m+#n

satisfy the three-term recurrence relation

:Upn(x) — an+1pn+1<x> + bnpn(x; t) + anpn—1<x>

The moments are

,un:Zk”w(k), n=0,1,2,...
k=0
and the recurrence coefficients
CL2 _ An—l—lAn—l b — An+1 . An
! A% ’ " An-i—l An
where
Mo M1 o--. Hn—1 Mo M1 ... Hn—2  Mn
A — gy M2 ... Up A — Hr o (2 .. Hp—1 Hnd
Hpn—1 Hn - H2p—2 Hn—-1 HMn .. H2n—-3 H2n—1
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In the case when the discrete weight has the form
w(k) = c(k)t", t >0

which is the case for the Charlier polynomials and Meixner polynomials, then

=3t = Zk“ (), 6(6) = 1
Hence the determinants A, and ﬁn are given by
Ho f1 - flael T 077) B L 71))
At = | e | 5(lfo) 52(#0) 5"(:Mo) W)
T T VEYE B I 0770 B V775) B R 077

Ho M1 ... Hn—2  Hnp
Aty = | PR et B = 5(A,) = 6 (W)

Hn—1 Hn ... H2pn—3 H2n—1
and the recurrence coefficients are given by

—~—

ar(t) = 6°(InA,) =6 (InWy(po)), bal(t) =0 (m A ) = (m - )
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Charlier Polynomials

The Charlier polynomials given by

Culki t) = (~1)"nlL{ <_1>

t

where L%O‘)(z) is the Laguerre polynomial, are orthogonal on N with respect to the

discrete weight

¢k
Here
po(t) = Z - ©
k=0
N n—1
A () = Walpo) = " excp(nt) T] (k)
k=1
~ d
Ay(t) = tgﬁn = |sn(n — 1) +nt|A,

and the recurrence coefficients are given by

n

A
a’(t) = 6°(In A\,) = nt, bu(t) =0 (hq “) =n+t
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Meixner Polynomials
The Meixner polynomials given by

1
M, (k; o, t) = o F} (—n,—k;—a;l—;), a>0, 0<t<l

where o F(a, b; ¢; z) is the hypergeometric function, are orthogonal on N with respect
to the discrete weight

t
w(k) = T a>0, t>0

with (), = I'(a + k) /T'(a) the Pochhammer symbol. Here

00 ktk
Z = (1—t)™

k=0

gn(n=1)/2 n—l N
Ault) = W) = ey [[ a8
k=1
~ d — 1 200 — 1
An(t):t—An:n(n )+ n(n + 2« )tAn
dt 2(1 —t)

and the recurrence coefficients are given by

ai(t) = 52(1n A,) = 71(72(;—_0;)—2 1)t7 by(t) = & (m An+1> _n + (n + a)t
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Discrete Pearson Equation
The discrete Pearson equation has the form
Alo(k)(k)] = r(k)w(k)
where A is the forward difference operator
AF(R) = Flk+1) = F(k)
e Classical discrete orthogonal polynomials: o(k) and 7(k) are polynomials with
deg(o) < 2 and deg(7) =1

w(k) | o(k) 7(k)
k
Charlier % k t—k
i
Meixner (al)j k| (t—1k+ta

e Semi-classical discrete orthogonal polynomials: o(k) and 7(k) are polynomials
either deg(o) > 2 or deg(7) > 1

w(k) o(k) 7 (k)
Generalized Charlier ; ﬁ;k k(k+5—1) —k*+ (1 -k +t
Generalized Meixner (@) tk k(k+08—1) | —k*+(1+t— 0Bk +ta
(8) k!
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Generalized Charlier Polynomials

The generalized Charlier polynomials are orthogonal on N with respect to the dis-
crete weight

ik
w(k):w)kk!, B3>0
with (6), = ['(8 + k)/I'(3) the Pochhammer symbol.
Theorem (Smet & van Assche [2012])

The recurrence coefficients a,(t) and b,(t) for orthonormal polynomials associated
with the generalized Charlier weight

1
w(k):w)kk!, 6 >0

on the lattice N satisfy the discrete system
(an — t)(a; —t) = t(by —n)(by —n+ B — 1),
by + by —n+ 3 =nt/a,

with initial conditions

(2)

aj =0, 0= VELEVD (215 1 (2V)), (3)

I51(2vt)  dt
with I,(z) the modified Bessel function.
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Lemma (PAC [2013])
For the generalized Charlier polynomials

- tk 1-03)/2
polt) = Z G = LI (V)

with I,(z) the modified Bessel function.

Proof. Since the modified Bessel function /() has the series expansion

o0 (%x)2k+u
]V — )
() kz_%k!F(VJrkJrl)

then the expression for the moment zi4(¢) follows immediately.

Corollary (PAC [2013])
The Hankel determinant A\, (t) is given by

An(t) = Waluo) = [D(3)]" W (107214 (2v1) )

and the recurrence coefficients a,(t) and b,(t) have the form

a,(t) = (t(i)Q(lnAn(t)), bo(t) =t % (m Aﬁzét(;))
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Theorem (PAC [2013])

d
The function S, (t) = ta In A, (t) where

Aft) = [D(3)]" W (1772151 (2v2) )

satisfies
d?s, ds,1> ds, [dS, ds,
[dt] —[n—(n+ﬁ—1) dt] _4dt [dt_llldt — Sy 4 3n(n —1)

which is equivalent to Syiy, the Py o-equation.

Proof. Making the transformation
Sp(t; B) = o(t) + it +in” — In(B+1) — 15

(5 () (5-) oo

which is the Py o-equation with parameters (6y, 0,) = (n + 3,n — ).

yields

Then we set v = (3, &1 = —1 and €5 = 1, in the following Theorem.
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Theorem (Okamoto [1987]; Forrester & Witte [2002])
Special function solutions of the Py o-equation

A0\ ° do\” do dU
) ) ()i

are given by

d
o(t) = t—In7,,(t) + teieat + 17 + In(l — ) — in’

dt !
for the parameters (Vy, V) = (V + n, 162(v — n)), where 7,,,,(t) is the determinant

4\ I+
Tow(t) = det [(tdt) wy(t)]
with 1, (t) given by

(2 {C0, (V) + CY, (VD) if =1, =1
tV2{C, (2VE) + O5Y, (V) ), i er=—1, ey=-—1
t”/2{01[ (2vt) + CL K, (2v) }, if e =1, g9 = —1
tv/? {01 (2f)+02 ( )}, if e1=—1, &y=

) a

Cy and Cy arbitrary constants, J,(z), Y,(z), I,(2) and K,(z) Bessel functions.

n—1

J,k=0

Uy <t) —

/"
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Generalized Meixner polynomials

The generalized Meixner polynomials are orthogonal on N with respect to the dis-
crete weight

() "
w(k) = : a > 0, > ()
(%) (B)r k! b
with (), = I'(a + k) /T'(«) the Pochhammer symbol.
Theorem (Smet & van Assche [2012])

The recurrence coefficients a,(z) and b,(2) for orthonormal polynomials associated
with the generalized Meixner weight on the lattice N satisfy

2 =nt — (a— 1)z, by=n+a—0+t—(a—1)y,/t

where x,, and vy, satisfy the discrete system

a

a—1 a— 3
(@ + Yn) (@01 + Yn) = —5—Yn(Yn — 1) <yn it
(a0 — Daxy(z, +1) a— [
n n n n—1) — nt1 )
(@0 4 yu) (@ + o) (o — 1)x,, — nt In a—1
with initial conditions
t M 1 1,t d
ai =0, boza e+ 1,5+1, >:t—1nM(oz,ﬁ,t)

8 Mo, 5t di
and M («, 3,t) is the Kummer function.
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Lemma (PAC [2013])
For the generalized Meixner polynomials

e

with M («, 3, t) the Kummer function.

Corollary (PAC [2013])
The Hankel determinant A\, (t) is given by

An(t) = Walpo) = W (M(a, 3,1))

and the recurrence coefficients a,(t) and b,(t) have the form

a2(t) = (t%>2 (InAL1),  bu(t) = t% (l AX:&E?)
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Theorem (PAC [2013])

The function
d —
Sult) = t—InW, (Mm, 8, t))
satisfies
425,\° ds, ’
(t 2 ) = [(t+n+ﬁ— 1) i —§n(n—1+2a)]

ds, [(dS, ds,
_4dt (dt —n—oz+ﬁ>[ im — Sn+3 (n—l)]

which is equivalent to Sy, the Py o-equation.
Proof. Making the transformation

Sa(t) =0(2) +12a— B+3n—1)z+2n"+1(2a — 36 — Dn+ (20 — 3 — 1)
with z = ¢, yields the Py o-equation
2
20\ do do = (do
— | —<2(— | —z— 4 — ] =0 S
(de) { (dz> Tz ”} " jHl (dz " “J) v
with parameters

k=120 —08—-n—1) k3 =120 — 3+3n—1)
ko= —12a+ 3 +n—3) /{4:—1(2@—35+n+1)
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Theorem (Okamoto [1987]; Forrester & Witte [2002])

Special function solutions of the Py o-equation

9
d%o 2 do do ! do
j=1

are given by

d
o(z) = zd—an( 3)—1Bn+2a—0—1)z
2
— " —12a—38 - 1)n — 2(2a — B —1)°
for the parameters
k1 =120 —03—n-—1), i(Qoz—ﬁnLBn—l)
ko = —12a+ B +n —3), ki =—12a —30+n+1)
where W, (¢a.3) is the determinant given by
FRNAL n—1
Wi(a.5) = det [( ) soa,ﬁ<z>]
5,k=0

with
@a,ﬁ(z) — 01M<Od, ﬁ: Z) + 02U<Oéa ﬁ7 Z)

C and Cy arbitrary constants, M («, 3, z) and U(«, 3, z) Kummer functions.
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Special function solutions of Painlevé equations

Numbe.r of Special Number of Associated Number of
(essential) . orthogonal
function parameters . . parameters
parameters polynomial
P 0 —
Airy
Pu ! Ai(z), Bi(z) ! o
Bessel
P AC R ADN AN A E N -
p 5 Parabolic cylinder | Hermite 0
Y D, (z) H,(z)
Kummer .
A ted
M(a,b, z),U(a,b, z) N
Py 3 hittak 2 Laguerre 1
Whittaker L%k)(z)
My u(2), Wieu(2)
hypergeometric Jacobi
P Fi(a,bic:2) R O
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Further Examples

w(z;z) =a"exp(—x —t/x), v >0,
w(w; z) = 2" (x + 2)* exp(—2x), v, A >0,
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Perturbed Laguerre weight
Consider orthogonal polynomials with respect to the perturbed Laguerre weight

w(x;z) =x"exp(—x —t/x), reRT, v >0

Define the Hankel determinant

n—1 o0

A(t) = det [1ja(t)] o mt) = / 2 exp (—z — t/7) da

Jhv= 0

Then Chen & Its [2010] show that
d
H,(t) =t—1InA,(t
(1) =t Ay (1)

satisfies

d2H n+ )dHn 2 4dHn dH, | thn )
= |Z2n+ v —n| — — n n
e i at \ dt at g

which is equivalent to a special case of Syjy, the Py o-equation. Specifically, letting

H,(t)=0c+i+in"—Inw+1)— L~

20\ do\? do do
(tm> + {4 <E) — 1} (ta — a) +(n*—v >dt l(n®+v7)

which is Sy with (¥, V) = (n +v,n — v).

yields
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For the perturbed Laguerre weight
w(x;t) =z"exp(—z —t/x), reRY, v>0, t>0

the associated moments are
u(®) = [ @ ep (= tfa)do = 28 (2V0)
0

with K, (z) the modified Bessel function. Hence the Hankel determinant is given by

n—1 - n—1
Ay (t) = det {Mﬁk(t)} = 2""0 2 det | Ky (2\/%) }
J,k=0 R 3,k=0
PR AL n—1
_ ongn(v+1)/2 ot (td_t> K, (2\/%)]
! 5,k=0
using properties of Bessel functions. Then
d
H,(t) =t—1InA,(t
(£) =t At
satisfies
A2H,\’ dH,]* dH, (dH, dH,
t = |n— (2 — 4 — 1|t — H,
( dt2) [n (2n+v) dt] dt (dt )[ dt +n(n+y)]

which is equivalent to a special case of Sy, the Py o-equation.
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Deformed Laguerre weight
Consider orthogonal polynomials with the respect to the deformed Laguerre weight

w(x; 2) = 2 (x + 2)%e 7, reRT, v>0, A>0

Define the Hankel determinant

Ay(ziv, A) = det [ﬂj+k<z§ v, A)}

n—1

7.k=0
where

pip(z v, \) = / "z + 2) e da
0

Chen & McKay [2012] (also Basor, Chen & McKay [2013]) show that

d
H,(z;v,\) = o InA, (250, \)
satisfies
A2H,\" dH, ’
(z 2) :[(z—l—Qn—l—V—l—)\) —Hn—l—n)\]
dz dz
P (dz +>\> [Zdz +nn+v+A)

which is equivalent to a special case of Sy, the Py o-equation.
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Remarks

e For the deformed Laguerre weight

w(w: z) = 2" (x + 2)%e 7, r € R v>0, A>0

the kth moment is
pp(z; v, \) = / 2" e 4 2) e da
0

00
_ ZV+)\+/€+1/ SI/Jrk(l + S)/\e—sz dor
0

—T(v+k+ 1)U+ kE+ 1L, v+ A+k+2,1)

with U(a, b, z) the Kummer function of the second kind.
e In the special case of the deformed Laguerre weight when A = m € Z™ then

o
pp(z v, m) = / "M x4 2)Me da
0

—T(v+k+ 12" U+ k+1Lv+m+k+2,1)
—T(w+k+1)(—=1)"m! LU=k ()

with Lq(f‘)(z) the associated Laguerre polynomial, since

(o, +m A+ 1,2) = (=)™ ml L™ (2), m e Z"
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The Kummer functions M (a, b, z) and U (a, b, z) have the integral representations

M(a,b, z) = F(a)?i?— 2 /0 e* 54711 — 5)" " ds

1 ©
Ula,b, z) = —/ e s (14 5) 0 ds
['(a) Jo

e For the perturbed Jacobi weight (Basor, Chen & Ehrhardt [2010])

w(x;z) =1 —2)* 1+ z)" e, r e |[—1,1], a>0, 8>0

the moments are given by
_ 2a+5_1F(Oé)F<ﬁ> e M
Mo+ )

p A
(2o, ) = (—1) @Mo(z; a, 3)
e For the Pollaczek-Jacobi weight (Chen & Dai [2010])

w(z; z) = 2711 — z)7 e /7, z € [0,1], a>0 >0

the kth moment is

wo(z; a, 3) (a, a0 + 3,22)

Nk(zv O‘aﬁ) — F(ﬁ) e_ZU<ﬁa l—a— ka Z)

d n—1

For both these weights H,(z) = i In A, (2), with A, (2) = det {uﬁk(z)} - satis-
2 5,k=0

fies an equation which is equivalent to a special case of Sy, the Py o-equation.
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Discontinuous Weights

w(r;z) ={14+&—26H(x — 2)} exp (—:C2) :
w(z;2) = {1 = EH(z — 2)} |z — 2]* 2 exp(—z),

where H(x) is the Heaviside step function.
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v, A > 0,

r,z € R
x,z € Rt
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Discontinuous Hermite weight

Consider the discontinuous Hermite weight
w(z;z) = {1+ & —26H(x — 2)}exp (—27), 0<&<,

with H(x) the Heaviside step function. In this case

© 9]

po(z) = / w(z; z)de = /7 [1+ Eerf(2)]

0

and define the Hankel determinant

An(z) = det |p1ji(2)

n—1

J,k=0
Then 1t can be shown that

Sn(z) = C?—Zln Ay (2)

satisfies

which is Syy, the Pry o-equation, with (9, ) = (n,0), and

d . Ani(z) = Sp11(2) — Su(2)

wy(2) = —1In

dz  Ap(z)
satisfies Py with (A, B) = (2n + 1,0).
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(dzz) _4(Zdz _sn) +4(dz) (dz +2n)_0
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Discontinuous Laguerre weight

Consider the discontinuous Laguerre weight
w(x;2) ={1 —&H(z — 2)} |z — 2] 2¥ exp(—z), v,A>0, xz,ze€R"

with H(x) the Heaviside step function.
Since

/ ' (z—x)e " dr = BA+ LA+ kD2 M e P MO+ L v+ A +2,2)
0
/ ' (x—2) e dr =TA+ 1) 2" e UN+1Lv+ A+2,2)

with BA+ 1, A+ k+1) =T(v+ DI'(A+1)/T'(v + A + 2) the Beta function, and
M/(a,b, z) and U(a, b, z) the Kummer functions, then the kth moment is given by

pp(z v, A) = / [1—&H(x — 2)] 2" ™ |z — 2] e " da
0

— / 2"y —x) e dr + (1 —€) / 2" — 2 e da
0 z

= MR I BN+ LA+ E+ D) MM+ Lv+A+k+2,2)
+ (1 =TA+ DU+ 1L, v+ A+ k+2,2)}
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Define the Hankel determinant
n—1
Ap(z;v, A) = det [Mﬁk(z; 2 A)} -
]7 oy

then 1
H,(z;v,\) = S A, (z; v, A)
z
satisfies
2H,\ > dH, 2
2 | = [(z+2n+v+ N —H,+2n+2v+A)n
dz dz
dH, dH, dH,
4 Cn g
(dz +n)<dz +n+u) [Zdz n+(n+u+)\)n]

which is equivalent to a special case of Sy, the Py o-equation. Specifically, letting

Hy(zv,N) =0 —12n+v—XNz+3n° +in(v+ X))+ i(v — A)°

yields
2
A%\ ” do\” do ~ (do
— | —<2(—| —z2— 4 — | =0 S
(Zdz2> { (dz) Zdz+0} " H(dz+ﬁ]> v
with
ﬁ1:%n+%u+i)\, /ﬂ)g:—%n—il/—%)\,
Ko %n—ieri)\ Ky —%n—ieri)\

74
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Conclusions

e The coefficients in the three-term recurrence relations associated with semi-classical
generalizations of orthogonal polynomials and discrete orthogonal polynomials can
often be expressed in terms of solutions of the Painlevé equations.

e These coefficients can be expressed as Hankel determinants which arise in the solu-
tion of the Painlevé equations and particularly the Painlevé o-equations, the second-
order, second-degree equations associated with the Hamiltonian representation of the
Painlevé equations.

e These Hankel determinants arise in the special cases of the Painlevé equations when
they have solutions in terms of the classical special functions, the “classical solutions”
of the Painlevé equations.

e The moments of the semi-classical weight and the discrete weight provide the link
between the orthogonal polynomials and the associated Painlevé equation.

e These results illustrate the increasing significance of the Painlevé equations in the
field of orthogonal polynomials and special functions.
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