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Global representation of solutions of differential systems

I Combining Borel summability and exponential asymptotic methods with clas-
sical techniques in regular regions we can now obtain global, nonperturbative
results about solutions of ODEs and PDE, in a perturbative way.

I (?!)
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Global representation of solutions of differential systems

I Asymptotic analysis of a problem depending on a small parameter roughly
follow this template: consider an equation N [u, ε] = 0, where N is a (possi-
bly nonlinear) operator, say differential, subject boundary/initial conditions.
Assume N [u0, 0] = 0 and u0 is known. Existence and uniqueness of the solu-
tion of N [u, ε] = 0, ε small, & bounds on error E = u − u0 follow from the
linearization:

I The equation for E is obtained by Taylor-Fréchet expansion of N ,

N (u0 + E ; ε) = 0 = N (u0; ε) + LE +N1E ⇔ LE = −δ −N1(E )

E = −L−1δ − L−1N1(E )

where LE = ∂N
∂u |u=u0E = O(ε), δ = N [u0] and N1(E ) = N (u0 + E )− LE

is expected to be O(ε2). Then, for rigorous analysis:

I L is inverted in a suitable way, subject to the given initial/boundary conditions,
and one makes use of the contractive mapping theorem in an adapted norm.
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Global representation of solutions of differential systems

I However: many problems are not solvable in closed form and do not come
with any obvious small parameter either.

I I will illustrate how to construct and apply, nonetheless, a perturbative-like
approach to many existence, uniqueness problems coming from ODEs and low
dimensional PDEs.

I (i) One key idea to start with: u0 in the above analysis does not have to be an
exact solution. All we need in a perturbative approach is to understand the
local and global behavior of u0 and how to obtain accurate estimates, not a
closed form expression... Approximate solutions (meaning that N [u0] is small
in some norm) which are accurate enough should work as well. Then “ε” is
essentially ‖u − u0‖.
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Global representation of solutions of differential systems

I A good approximate solution u0 can be found using exponential asymptotic
methods. Recent results provide global accurate and rigorous approximations
for quite general functions as expansions: transseries (at singularities). In
regular regions these are matched to classical approximations, namely orthog-
onal polynomial expansions ⇒ Global approximate solution.

I We used this approach on a number of questions that had been open for some
time.

I One of them is the Dubrovin’s conjecture: absence of poles of the tritronqueé
solution of PI

y ′′ = 6y2 + z (∗)

in {z : arg z ∈ [−3π/5, π]},
To prove it, we solved PI by we solved (*) by asymptotic methods, for all
z , arg z ∈ [−3π/5, π].
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Transseries and global representations

Transseries and global representations-

I Local expansions and global information; very simple illustration: erfc.
This solves the equation

f ′ − 2xf = 1

The solutions are entire. Take, say, initial condition f (0) =
√
π/2 (⇒ f (x) =√

π
2 e

x2
erfc(x)).

I At zero we have convergent power series:

f (x) =
√
π/2 +

∞∑
k=0

(−1)kx2k+1

(2k + 1)!!
(∗)

Though convergent everywhere, this is does not provide in a useful way global
information, but only for small enough x : x = 5 is not small:For 10−3 accuracy
about 75 terms need to be kept. f is singular at ∞ and in some sense the
influence of the sing. is felt at 5. But the Taylor series can be optimized by
replacing Taylor series with, say, Chebyshev-Padé representations.
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Transseries and global representations

I For large x , arg(x) ∈ [−π/2, π/2], we have the asymptotic expansion

f (x) ∼
∞∑

k=0

(−1)k(2k − 1)!!
2k−1x2k+1 (x → +∞) (∗)

I This is everywhere divergent (but Borel summable). But a three term trun-
cation suffices for 10−3 relative accuracy on [5,+∞].

I Since the series diverges, f must behave differently in other directions towards
∞. For large negative x it is given by

f (x) ∼
√
πex2

+
∞∑

k=1

(2k + 1)!!(−1)k

x2k+1 (x → −∞)

I The series part is same as (*)
√
π is a connection constant (here we have a

symmetry, f (x) + f (−x) =
√
πex2

)

I Combining the above, in a sense “everything” in terms of qualitative and
quantitative information about erfc follows (i.e., except for explicit connection
formulae or values, etc.) For classical functions all this is of course known.
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Transseries and global representations

Nonlinear equations

I Transseries, exponential asymptotics, trans-asymptotic matching and Borel
summability are now able to global info for quite general solutions of ODEs,
PDEs and difference equations.

I How do solns. of nonlinear equations behave? Consider a simple example,

y ′ + y =
1
x2 + y4 (∗)

As x →∞, (*) has a unique power series solution ỹ0(x) = 1
x2 + 2

x3 + 6
x4 + . . .

which can be shown to be divergent too. The general solution should contain
a free parameter. To find possible further terms in a formal expansion we look
for

ỹ = ỹ0 + δ

Since ỹ0 formally solves (*), if δ → 0, then δ′+δ ∼ 4ỹ0δ,⇒ δ = Ce−x ỹ1(x)+
δ1 where ỹ1(x) is a (divergent) series.
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Transseries and global representations

I Looking for formal solutions (as ỹ0 + E , E small we get a transseries

ỹ = ỹ(x ;C ) = ỹ0(x) + Ce−x ỹ1(x) + C 2e−2x ỹ2(x) + . . .

where ỹk(x) are divergent power series, Borel summable, and C is an arbi-
trary parameter. This is a transseries (formal) solution) valid for x → ∞
along directions in the complex plane for which the terms can be well ordered
decreasingly, namely for x ∈ e iaR+ with |a| < π

2 .

I Beyond |a| < π
2 nonlinear eq. solutions develop singularities; their expansion

is obtained by reordering the terms of the transseries by a general procedure.

I Rewriting of the transseries:

∞∑
k=0

(Ce−x)k ỹk =
∞∑

k,l=0

akl

x l (Ce−x)k =
∞∑

k,l=0

aklx−lξk (|x | → ∞, Re (x) > 0)
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I Looking for formal solutions (as ỹ0 + E , E small we get a transseries
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Transseries and global representations

I For general meromorphic systems, transseries as x → +∞ are of the form∑
k>−M

akξ
k, ξk =: ξk1

1 · · · ξ
kl
l

where ξi are transmonomials, expressions such as 1/x , x−βe−λx , and rarely
iterated exps. Reλix > 0, constructed by induction on level–number of
iterated exponentials–possibly applied to an iterated log of x ; valid if ξi =
o(1). To allow ξ to be large we rewrite

∞∑
k,l=0

aklx−lξk =
∞∑

k=0

x−kFk(ξ); ξ = Ce−x

where now ξ is allowed to be large. Typically, solutions represented by two-
scale expansions have arrays of movable singularities (O.C., R. Costin, Invent.
Math 2001, IMRN (2012)). For PI,

F0(ξ) = 144 ξ
(ξ−12)2 , F1(ξ) =

1
60 ξ

4−3ξ3−210ξ2−216ξ
(ξ−12)3 , . . . , Fn(ξ) = Pn(ξ)

(ξ−12)n+2 (1)

near ξ = 12 we have arrays of poles. Transseries & two scale expansions match
each-other; these can be shown to match – in compact regular regions– Taylor
series, or more generally classical polynomial expansions.
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Transseries and global representations

Representations of general functions; transseries

I Transseries were introduced in the pioneering work of Ecalle, ∼ 1980. Later
made rigorous, extended by Balser, Braaksma, Malgrange, Ramis,...

I We can now provide global information –as matching local expansions covering
C and use the expansions to provide sharp and rigorous estimates.

I Motivated by two specific open problems, we are now applying exponential
asymptotics techniques in a new direction: that of quantitative global repre-
sentation of relatively general large classes of functions, for solving existence
uniqueness etc. questions when classical method do not apply.
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The problem and the strategy, in a nutshell

The problem and the strategy, in a nutshell-

I Assume we are seeking to show existence and uniqueness and find the prop-
erties in a large region of the solution of a linear or nonlinear problem,
N (y(x), x) = 0.

I First we find ỹ , an approximate global solution (i.e. N (ỹ , x) small), made of
matched transseries, double-scale expansions and classical polynomials.

I Then, by definition/construction, we have a ỹ s.t. N (ỹ(x), x) = ε(x) with ε
small enough in suitable norms. Then seek y in the form y = ỹ + E .

I Exactly as in perturbation theory, E , expected to be small, satisfies

LE = ε(x) +N1(E ); L =
∂N
∂y

(∗)

where N1(E ) is a "small" nonlinearity. We solve the quasi-linear equation (*)
by, writing it in contractive integral form, typically

E = L−1ε(x) + L−1N1(E ); L =
∂N
∂y

(∗)

I Next, contractive mapping arguments (for L−1N1) show that the solution E
exists and is small. For the estimates, rough bounds L−1N1 suffice.
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(∗)

where N1(E ) is a "small" nonlinearity. We solve the quasi-linear equation (*)
by, writing it in contractive integral form, typically

E = L−1ε(x) + L−1N1(E ); L =
∂N
∂y

(∗)

I Next, contractive mapping arguments (for L−1N1) show that the solution E
exists and is small. For the estimates, rough bounds L−1N1 suffice.
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I First we find ỹ , an approximate global solution (i.e. N (ỹ , x) small), made of
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The problem and the strategy, in a nutshell

I This is a quite general approach, applicable roughly in all low dimensional
problems for which it is possible to “check the result numerically” (numerical
checking may be a hard task!). All this is of course natural; the new element
is set of techniques to represent solutions (i) accurately, (ii) “economically”
and (iii) with rigorously controlled errors, for many problems for quite general
ODEs, difference equations and some classes of PDEs.

I I will illustrate this on the solution of two problems which were open.
–Conditional stability of solitons in focusing NLS;
–The Dubrovin conjecture.
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NLS (OC, M Huang, W Schlag, Nonlinearity 2011)

NLS (OC, M Huang, W Schlag, Nonlinearity 2011)-

I
iψt + ∆ψ + |ψ|2pψ = 0; x ∈ Rd (2)

I Here, p ∈ (0, 2
d−2 ) if d > 3. Standing wave solutions (“solitons”) ψ =

e itα2
Q(x) where we restrict to the case where Q is a ground state, that is

α2Q −∆Q = Q2p+1; Q > 0 (3)

I Known: such Q exist, they are radial Q = Q(|x |), smooth, expo decaying,
(Strauss, Berestycki, Lions; for uniqueness, Coffman, McLeod, Serrin, and
Kwong). In one dimension d = 1, these ground states are explicitly given as

Q(x) = (p + 1)1/2p cosh−1/p(px) (4)

I In 3d, Q is likely non-explicit (equation is non-integrable).

I An important question: is the scattering property of the (unstable) soliton:
whether with I.C. on the center stable manifold, solutions decompose into
soliton + free wave +o(1) in t (Buslaev, Strauss, Grillakis, Weinstein and for
the latter, Soffer-Weinstein, Perelman, Cuccagna, Schlag.)
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NLS (OC, M Huang, W Schlag, Nonlinearity 2011)

I In order to study stability, one generally linearizes around the standing wave.

I This leads to matrix Schrödinger operators of the form(
−∆ + α2 0

0 ∆− α2

)
+

(
−(p + 1)Q2p −pQ2p

pQ2p (p + 1)Q2p

)
(5)

I and upon conjugation with
(
1 i
1 −i

)
we get the operator

(
0 iL−
−iL+ 0;

)
L− = −∆ +α2 −Q2p; L+ = −∆ +α2 − (2p + 1)Q2p (6)

I Schlag (Ann. of Math (2009), showed conditional scattering for the unstable
case p = 1 (focusing, supercritical). The results are conditional on the fact
that neither L+ nor L− have any eigenvalues in the gap (0;α2] (α = 1) and
L− has no resonance at 1 (reduction uses ideas of Perelman).

I The gap condition was checked numerically (Schlag, Demanet) but mathe-
matically the problem remained open.
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NLS (OC, M Huang, W Schlag, Nonlinearity 2011)

I One difficulty with standard approaches is that there is no clear intrinsic reason
for the gap condition to hold; “on the contrary” the problem is dangerously
close (±0.01 in the power p of the nonlinearity), to one in which the answer
is different.

I Our new method was introduced to solve this problem, but has evolved and
simplified much since then.

I The soliton “Q ” is spherically symmetric, and is the unique regular, decaying,
positive solution of

− Q ′′(r)− 2
r
Q ′(r) + Q(r)− Q3(r) = 0 (7)

I The existence of Q was known from variational methods. The spectrum of
L±, which have Q as a “potential” requires fine details on Q not provided by
these. We find instead Q in terms of high accuracy expansions.
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NLS (OC, M Huang, W Schlag, Nonlinearity 2011)

Representation as r →∞ (here |r | > 2.5): First the “Jost” solution:

Lemma

There exists a unique positive solution y(r ;β) to (7) with the property that
y(r ;β) ∼ βr−1e−r as r →∞. It satisfies∣∣∣ y(r ;β)

y3(r ;β)
− 1
∣∣∣ < 4.6 · 10−6 ∀ r > 5

2
(8)

where a

y3(r ;β) = r−1βe−r + β3 − r−1(2erEi(−4r)− e−rEi(−2r))

aβ ∈ (1, 3); a specific β is chosen later by matching.
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NLS (OC, M Huang, W Schlag, Nonlinearity 2011)

I For a global rep., we match with Legendre poly. expansion on [0, 2.5].

I Set

Q̃(r) :=

{
p1(r) for 0 6 r < 5/2
y3(r ;β) for r > 5/2 (9)

where p1 is given in terms of a piecewise-polynomial (2 pieces) of degree 11,
with explicit rational coefficients.

Lemma (O C, M. Huang, W. Schlag, Nonlinearity 2011)

Let Q be the exact ground state of (7) and Q̃ be the approximate one given above.
Then one has the error bound∣∣∣∣∣ Q̃(r)

Q(r)
− 1

∣∣∣∣∣ 6 7 · 10−5 ∀ r > 0 (10)
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NLS (OC, M Huang, W Schlag, Nonlinearity 2011)

I Is this “extravagant” accuracy really needed? Surprisingly perhaps, it is.

I Idea of proof. It is first checked that Q̃ satisfies the equation within an error
ε, ‖ε‖ ∼ 10−6 relative error in L∞. By contractve mapping arguments we
show that there is an actual solution within the error bound listed above.

I Contraction mapping estimates, requiring taking absolute values where can-
cellations might occur, etc., account for the loss of accuracy from 10−6 to
7 · 10−5

I All calculations are inQ[Z], and proofs are rigorous in all details; they involving
multiplications of polynomials, maximization/minimization of cubic ones etc.
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NLS (OC, M Huang, W Schlag, Nonlinearity 2011)

Theorem (Gap property)

In [0, 1], L+ = − d2

dr2 − 2
r

d
dr + 1 − 3Q2 has no eigenvalue or resonance and

L− has no eigenvalue.

Essentially the same strategy is now applied to stability (spectral) problem

L+u = λu; L−u = λu (11)

where (as before) L+ = − d2

dr2 − 2
r

d
dr + 1− 3Q2, L− = − d2

dr2 − 2
r

d
dr + 1−Q2.

We have
Standard ODE analysis shows that there are two solutions u1(r ;λ) and
u2(r ;λ) of the equation (11) with the properties u1(0;λ) = 1 and
u2(r ;λ) = r−1e−r

√
1−λ(1 + o(1)), r →∞.

Let W = u1u′2 − u2u′1 be the Wronskian of these two special solutions.
Clearly, the existence of an eigenvalue of L+ is equivalent to W = 0 for
some λ. The lemma thus follows from the result below.
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NLS (OC, M Huang, W Schlag, Nonlinearity 2011)

Lemma
We have the following estimate

inf
λ∈[0,1]

|W (5
2 ;λ)| > 1

250
(12)

from which the gap condition follows. The low value of the Wronskian is
what requires working with such accuracy. (Note: the numerically
calculated inf is 40% larger –still very small–this is why we need such
accuracy throughout.)
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Dubrovin’s conjecture

solving Dubrovin’s conjecture (OC, M Huang, S Tanveer,
Duke M. J. 2013

I The Painlevé equation P1 is

y ′′ = 6y2 + z

Painlevé equations occur in numerous applications, random matrices, combi-
natorics, number theory, KdV etc.

I The Dubrovin conjecture relates to a special solution of PI, the tri-tronquée,
yt , unique mod. symmetries (the eq. has a 5-fold symmetry) given by the
property that it has no poles for large z , arg z ∈ [−3π/5, π].
Dubrovin’s conjecture(∼ 1993, crucial for instance in understanding blow-up
in NLS) states yt is analytic for all z arg z ∈ [−3π/5, π].

I This is a central connection problem not known to be solvable from the
Riemann-Hilbert linearization of PI.
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Dubrovin’s conjecture

The Dubrovin conjecture follows from the following

Theorem (OC, M. Huang, S. Tanveer (DMJ, 2013))

The tritronquée yt is analytic in the region{
z 6= 0 : arg z ∈ [−3π/5, π]

}
∪
{
z : |z | < 37

20

}
(13)

I Proof. We first use the symmetry of the solution w.r.t. iR+ to reduce the
question to showing existence in a bisected sector, arg x ∈ [−π/2, π/2], where
x = e iπ/4

30 (24z)5/4.

I The solution is given, in the four of the five1 sectors of symmetry the tritron-
quée, by four matched expressions, (14), (15), (16) below, + a Taylor series
near zero.

1The fifth is a sector with poles.
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Dubrovin’s conjecture

Main steps

I The quasisolution we use in the region |z | > 1.7, arg x ∈ [−π/4, π/2] is simply
the asymptotic series with one nontrivial order,

y0(z) = i
√

z
6

(
1−

4
25x2

)
with x =

e iπ/4

30
(24z)5/4 (14)

I The region |z | > 1.7 arg x ∈ [−π/2,−π/4] is close to the antistokes line
−iR− along which the solution starts oscillating and beyond which poles
will develop. Here we use a truncated two-scale expansion (1/x , ξ), ξ =
Cx−1/2e−x explained before, as y0(z) = i

√ z
6

(
1− 4

25x2 + h0(x)
)
with

h0(x) =
(
ξ +

ξ2

6
+
ξ3

48
+

ξ4

432
+

5ξ5

20736

)
+

1
x

(
−
ξ

8
−

11
72
ξ2 −

43
1152

ξ3
)
+

9ξ
128x2 , (15)

I We show that there is an actual solution close to the quasisolution. This takes
care of the nbd of ∞, meaning here |z | > 1.7.
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Dubrovin’s conjecture

I To cover now the disk, |z | 6 1.85 we first solve the eq. from |z | = 1.7 down
to zero.

I We first use the substitution g(t) = e2πi/5y(−te iπ/5) which makes the equa-
tion and solution real valued, g ′′ = 6g2 + t. The region of interest is
0 > t > t0 = −1.7. Here we do a more careful calculation to find g , g ′

within 5 · 10−3, and use these values at t0 as an initial condition for solving
the ODE up to t = 0 and match to a power series.

I On the segment t ∈ [t0, 0], the quasisolution is obtained through Chebyshev
projection (of the power series at zero obtained by matching at t0).

g0(t) = −
280
519

+
150s
1013

+
239s2

10331
+

110s3

14779
−

32s4

9853
+

9s5

4397
−

16s6

39505
+

8s7

49105
, where s = t−t0.

(16)

I The relative difference between g0 and the actual solution is around 1% in
L∞([−1.7, 0]).

I We thus get g , g ′ at zero within 1%. The last step is to show that there is
a convergent power series solution in a ball of radius at least 1.85 if the first
two coefficients c0, c1 are within 1% of g(0), g ′(0). This is done by relatively
straightforward estimated on the recurrence of the Taylor coefficients; this
ends the proof.
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Dubrovin’s conjecture

Comments; directions of future research

I This new approach, computational but rigorous, applies to many concrete
problems. It is straightforward and “robust”, as the precision can be increased
as needed.

I Whenever qualitative methods exist, they would usually still be preferable
since they are more likely to provide “a simple reason” for which a result holds.
Insofar as PI goes, for us the Dubrovin conjecture holds because the Stokes
multiplier µ is numerically quite small while first pole position is increasing as
a function of µ.

I We applied the same method to Blasius’ equation in Hydrodynamics (OC, S.
Tanveer (2013)).
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Dubrovin’s conjecture

I We are working on the extension of the method to PDEs, where there are
many open questions amenable to this method.
Many solutions of the thin film equation

ht + (hxxx)x = 0

break down (pinch) in finite time. There is very convincing numerical evidence,
but no proof and the problem has been open for a long time.
However, when trying to prove the expected result we obtained inconsistencies
instead... It turned out that the standard pinching shape ansatz assumed in
the literature and based on the (relatively vast) numerical literature, missed
some logarithmic corrections, virtually invisible unless explicitly searched for,
and the first step for us was to redo the numerical analysis carefully...
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Dubrovin’s conjecture

Thank you.
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Dubrovin’s conjecture

Borel summability in a nutshell

I A formal solution of y ′ + y = 1/x as x → +∞ is

ỹ =
∞∑

k=0

k!

(−x)k+1

nowhere convergent. At the core of Borel summability: note that k!/xk+1 =∫∞
0 e−pxpkdp and thus:

∞∑
k=0

k!

(−x)k+1 ” = ”
∞∑

k=0

∫ ∞
0

e−px(−p)kdp” = ”

∫ ∞
0

e−px

1 + p
dp

It turns out that for generic linear or nonlinear systems of ODEs, many PDEs
etc at irregular singular points, modulo normalizing changes of variables, fac-
torial divergence is the only one encountered. A rigorous version of the above
(plus some generalizations) allows for dealing with large classes of systems.
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