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Orthogonal polynomials

Orthonormal polynomials:∫
pn(x)pk(x)w(x)dx = δn,k,

where pn(x) has degree n and integration is over the support of w(x) ≥ 0 in
R.

For a sequence (pn)n∈N of orthonormal polynomials one has a three-term
recurrence relation:

xpn(x) = αn+1pn+1(x) + βnpn(x) + αnpn−1(x)

with p−1 = 0.

Monic polynomials satisfy

xpn(x) = pn+1(x) + βnpn(x) + α2
npn−1(x).



Multiple orthogonal polynomials

Multiple orthogonal polynomials (MOPs) are generalizations of orthogonal
polynomials, which originated from Hermite-Padé approximation in the con-
text of irrationality and transcendence proofs in number theory and further
developed in approximation theory.

During the past few years, multiple orthogonal polynomials have also arisen in
a natural way in certain models from mathematical physics, including random
matrix theory, non-intersecting paths, etc.

MOPs are polynomials of one variable which are defined by orthogonality
relations with respect to r different weights w1, w2, . . . , wr, where r ≥ 1 is a
positive integer.



Let ~n = (n1, n2, . . . , nr) ∈ Nr be a multi-index of size |~n| = n1 +n2 + · · ·+nr and
suppose µ1, µ2, . . . , µr are r measures with supports on certain simple curves
in the complex plane.

The type II multiple orthogonal polynomial is the monic polynomial

P~n(x) = x|~n| + · · ·
of degree |~n| satisfying the conditions∫

P~n(x)xkw1(x) dx = 0, k = 0,1, . . . , n1 − 1,

...∫
P~n(x)xkwr(x) dx = 0, k = 0,1, . . . , nr − 1.

Example. Let r = 2, ~n = (n,m). The multiple Hermite polynomials are
defined by ∫ ∞

−∞
xkHn,m(x)e−x

2+c1x dx = 0, k = 0,1, . . . , n− 1,∫ ∞
−∞

xkHn,m(x)e−x
2+c2x dx = 0, k = 0,1, . . . ,m− 1, c1 6= c2.



Recurrence relations for MOPs

Recall that for monic OPs (r = 1) we have a 3-term recurrence relation

xpn(x) = pn+1(x) + βnpn(x) + α2
npn−1(x).

What happens for MOPs?

Let r = 2. The multi-index ~n is now given by (n,m) ∈ N2. The recurrence
relations is given by

xPn,m(x) = Pn+1,m(x) + cn,mPn,m(x) + an,mPn−1,m(x) + bn,mPn,m−1(x),

xPn,m(x) = Pn,m+1(x) + dn,mPn,m(x) + an,mPn−1,m(x) + bn,mPn,m−1(x),

with a0,m = 0 and bn,0 = 0 for all n,m ≥ 0.

For general r > 1 we have the following nearest-neighbor recurrence relations:

xP~n(x) = P~n+~e1
(x) + b~n,1P~n(x) +

r∑
j=1

a~n,jP~n−~ej(x),

...

xP~n(x) = P~n+~er(x) + b~n,rP~n(x) +
r∑

j=1

a~n,jP~n−~ej(x),



where ~ej = (0, . . . ,0,1,0, . . . ,0) is the j-th standard unit vector with 1 on the
j-th entry, (a~n,1, . . . , a~n,r) and (b~n,1, . . . , b~n,r) are the recurrence coefficients.

For r = 2 we use the following notation for the recurrence coefficients:

a~n,1 = an,m, a~n,2 = bn,m, b~n,1 = cn,m, b~n,2 = dn,m.



Wronskians of multiple orthogonal polynomials

[L. Zhang and G. Filipuk, On certain Wronskians of multiple orthogonal poly-
nomials, in preparation.]

We study certain Wronskians with entries given by multiple orthogonal poly-
nomials. We show that depending on the size of the determinant we can
either get a strict positivity of the Wronskian (which gives rise to the Turán
type inequalities for multiple Hermite and Laguerre orthogonal polynomials
(of the first and second kind)) or prove that real zeros of the associated Wron-
skians strictly interlace. We also present numerical studies of the distribution
of zeros of Wronskians in the complex plane.



Orthogonal polynomials associated with an exponential cubic weight

[G. Filipuk, W. Van Assche and L. Zhang, Multiple orthogonal polynomials
associated with an exponential cubic weight, arXiv:1306.3835, submitted.]

Consider the three rays

Γk = {z ∈ C : arg z = ωk}, k = 0,1,2,

where

ω = e2πi/3,

and the orientations are all taken from left to right.

We shall denote by p(1)
n the monic polynomials satisfying∫

Γ
pn(x)xke−x

3

dx = 0, k = 0,1, . . . , n− 1, (1)

with Γ = Γ0 ∪ Γ1 and recurrence coefficients β(1)
n and (α(1)

n )2. In a similar

manner, we set p(2)
n to be the polynomials satisfying (1) with Γ = Γ0 ∪ Γ2,

and denote by β(2)
n and (α(2)

n )2 the associated recurrence coefficients.



The three-term recurrence is given by relation

xpn(x) = pn+1(x) + βnpn(x) + α2
npn−1(x),

where

βn =

∫
Γ xp

2
n(x)e−x

3

dx∫
Γ p

2
n(x)e−x3dx

, α2
n =

∫
Γ xpn(x)pn−1(x)e−x

3

dx∫
Γ p

2
n−1(x)e−x3dx

,

and the initial condition is taken to be α2
0p−1 = 0. It is shown by A. Magnus

that the recurrence coefficients βn and α2
n satisfy the string equations

α2
n+1 + β2

n + α2
n = 0,

3α2
n(βn−1 + βn) = n.



One can determine (β(1),(2)
n ,

(
α2
n

)(1),(2)
) recursively from the string equations

with initial condition (Γ(2/3)
Γ(1/3)

eπi/3,0) and (Γ(2/3)
Γ(1/3)

e−πi/3,0) respectively.

Actually, one can prove that

β(1)
n = bne

πi/3, (α(1)
n )2 = ane

−πi/3,

β(2)
n = bne

−πi/3, (α(2)
n )2 = ane

πi/3,

where

an + an+1 = b2
n,

3an+1(bn + bn+1) = n+ 1.



Multiple orthogonal polynomials associated with exponential cubic weight

For (k, l) ∈ N2, we are interested in the polynomials Pk,l of degree k+ l which
satisfy the orthogonality conditions∫

Γ0∪Γ1

xiPk,l(x)e−x
3

dx = 0, i = 0,1, . . . , k − 1,∫
Γ0∪Γ2

xiPk,l(x)e−x
3

dx = 0, i = 0,1, . . . , l− 1.

If one of k and l is equal to zero, then Pk,l reduce to the usual orthogonal
polynomials with respect to the exponential cubic weight e−x

3

, i.e.,

Pk,0(x) = p(1)
k (x), P0,k(x) = p(2)

k (x).

It can be shown that the following Rodrigues formula holds:

Pn,n+m(x) =
(−1)n

3n
ex

3 dn

dxn

(
e−x

3

P0,m(x)
)
,

Pn+m,n(x) =
(−1)n

3n
ex

3 dn

dxn

(
e−x

3

Pm,0(x)
)
.



Result: The recurrence coefficients for MOPs in the nearest neighbor recur-
rence relations

xPn,n+m(x) = Pn+1,n+m(x) + cn,n+mPn,n+m(x)

+ an,n+mPn−1,n+m(x) + bn,n+mPn,n+m−1(x),

xPn,n+m(x) = Pn,n+m+1(x) + dn,n+mPn,n+m(x)

+ an,n+mPn−1,n+m(x) + bn,n+mPn,n+m−1(x),

and

xPn+m,n(x) = Pn+m+1,n(x) + cn+m,nPn+m,n(x)

+ an+m,nPn+m−1,n(x) + bn+m,nPn+m,n−1(x),

xPn+m,n(x) = Pn+m,n+1(x) + dn+m,nPn+m,n(x)

+ an+m,nPn+m−1,n(x) + bn+m,nPn+m,n−1(x),

can be expressed explicitly in terms of an, bn satisfying

an + an+1 = b2
n,

3an+1(bn + bn+1) = n+ 1.



Thank you very much for your attention!


