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Linear differential systems

Consider a linear diff. system of p equations:
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B(z) is a merom. (p x p)-matrix, that is, its entries are from the
field C(z) of rational functions,

ai...,an € C are singular points of B(%2).

Two types of singularities: regular and irregular.



The Picard—Vessiot extension C(z) C F is a field obtained by
adjoining to C(z) all elements of a fundamental matrix of the
system.

A linear diff. system is solvable by quadratures if there is a
tower of fields

C(z)cF1C...C Fp, F C Fy,

such that each F;4; is obtained by adjoining to F; an exponential
or integral of some element from Fj.



Galois group

The Galois group G of a linear diff. system is a group of diff.
automorphisms of the Picard—Vessiot extension C(z) C F

G={o:F—Flo(f)=f VfeC(2)}.
For a fundamental matrix Y (z) of the system one has
o:Y(z)—Y(2)C, C e GL(p,C),
and G C GL(p,C) is a matrix algebraic subgroup.
The monodromy group M of a linear diff. system is a subgroup

of its Galois group: M C G. And for a system with regular sin-
gularities G = M (the closure in the Zariski topology).



Example. The following system of two equations has one irreg-
ular singularity z = oo:

2
dy (0 1 [ 1 [eFdz
$—<O 2Z>y7 Y(Z)_<O 822 )
The system is solvable, M = {Id}, G %= M is upper triangular.

Theorem (Picard—Vessiot). A linear diff. system is solvable by
quadratures < the Galois group G is solvable, that is,
there is a tower of normal subgroups

eCG1C...CG,=G

such that all the factors G;4,/G; are commutative.



How can one understand if a system is solvable by quadratures
looking at its coeff. matrix?

First consider a Fuchsian system

dy ~ B .
de > Y
z i—1 % — a4

B1,...,Bn € Mat(p,C) are residue matrices.

The eigenvalues B1,..., 8" of the matrix B; are called the expo-
nents of the system at the point a;.



Solvability of Fuchsian systems with bounded exponents

Theorem 1. Let the eigenvalues Bg of the residue matrices B;
satisfy inequalities

Re ! > —1/(n(p — 1)),

and for each pair 5;;7 o= 525-, ¢ = 1,...,n, one of the following
conditions holds:

1)Re B! — Regl ¢ Q; 2)Im g/ # Im L.

Then the Fuchsian system is solvable by quadratures iff all the
matrices B; are (upper-)triangular (in some basis).



Remark. One of the conditions

1)Rep/ —Refl¢Q,  2)Imp! #Im g
of the previous theorem holds iff
(ul/p)N #1  VYNEN
for each pair u‘g = Mé of the eigenvalues of the monodromy matrix

: ' 137
M;, i=1,...,n (since u] = e2™1P; ).

Theorem 2. If the Jordan form of each monodromy matrix of
the Fuchsian system consists of one block, then this system is
solvable by quadratures iff all its residue matrices B, are triangular
(in some basis).



Example (A. Bolibrukh). There are 4 upper-triangular matrices
M, € GL(7,C) such that there exists a Fuchsian system having
them as the monodromy matrices. But the coeff. matrix of this
system can not be transformed to the upper-triangular form.

Thus, this Fuchsian system is solvable by quadratures (the mon-
odromy group M = (My,..., My) is solvable) but its residue ma-
trices are not triangular.



Now consider a linear diff. system

d
“ =By,  y)ec?
dz
with non-resonant irregular singularities a1,...,an. This means

that the leading term B; ,. of an expansion

B .. Bi 1
B(z) = _Z’TZ. - + ...+ _Z’ .
(z —a;) Z — a;

of the coeff. matrix B(z) near each singular point has p pairwise
distinct eigenvalues.

+ Bio+---



A formal fundamental matrix near each singular point:

Yi(2) = Fj(2)(z — a;)™Ni e9i(2),

F;(2) is an invertible matrix formal Taylor series in (z — a;):

A; = diag(\}, ..., AP) is a diagonal matrix of formal exponents;
Q;(z) is a diagonal matrix with polynomials in 1/(z — a;) on the
diagonal.
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Solvability of irregular systems with bounded formal expo-
nents

Theore_m 3. Let for each irregular singularity a; all formal expo-
nents A;Z are distinct and satisfy inequalities

J
ReX; > —1/(n(p—1)),
moreover one of the following conditions holds:
' l . ' l
1)ReX] — Re); ¢ Q; 2)Im ! # Im ;.

Then the system is solvable by quadratures iff there exists a
constant matrix C € GL(p,C) such that the matrix C~1B(2)C is
triangular.

11



Linear independence of some elements of the Picard—Vessiot
extension

Now we consider a scalar linear diff. equation

uP) bl(z)u(p_l) + ...+ bp(z)u =0, b; € C(z),

of order p with regular singular points a,...,an € C\ {0}.

a; is regular <= b;(z) = (Zfiaj.)j +0o(1/(z —a;))), z—a,.

The exponents Bz-l, e ,Bf at the point a; are roots of the equa-
tion

AA-1)...A=p+ 1) +agd(A=1)...(A=p+2)+...+ay = 0.
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Consider the Picard—Vessiot extension C(z) C F obtained by
adjoining to C(z) fundamental solutions w1(z),...,up(z) of the
equation and their derivatives.

An assumption that the elements of the finite subset

Ay = {1 (2) () | (k... kp) € 2P, ki+...+kpy=M}CF

(#Ay, = CcM ) are linear independent over C implies the
M p+M—1
following statement.
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Theorem 4. Let the exponents of the linear diff. equation satisfy
the conditions Re ! >t; € Z and

1 mn
N > 5(?1 — 2)(C%-M—1 -1 -M ) t
i=1
IS an integer. Then the elements of the family

Ay ={FVub1G)  uf(z) | keZy, ki+...+ky=M}CF

are also linear independent over C.

Using ideas of the proof of this theorem one can also obtain the
following estimate.
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Proposition. Let P(xq,...,zp) be a homogeneous polynomial of
degree M and ui1(2),...,up(2) fundamental solutions of the linear
diff. equation with exponents satisfying the conditions Reﬁg >

t; € Z. If P(u1(2),... ,up(z)) % 0, then
1
ordoP(u1(2), ..., up(2)) < S(n-— 2)Cl n1(Cpn—1 — 1) —

n
M
—Cpm—1M >t

1=1

(Estimates of Yu. Nesterenko, D. Bertrand, A. Bolibrukh for
ordoP(y1(2),...,yP(2)), where y = (y1,...,yP) " is a solution of a
linear differential system.)
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