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Linear di�erential systems

Consider a linear di�. system of p equations:

dy

dz
= B(z) y, y(z) ∈ Cp;

B(z) is a merom. (p× p)-matrix, that is, its entries are from the

�eld C(z) of rational functions,

a1 . . . , an ∈ C are singular points of B(z).

Two types of singularities: regular and irregular.
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The Picard�Vessiot extension C(z) ⊂ F is a �eld obtained by

adjoining to C(z) all elements of a fundamental matrix of the

system.

A linear di�. system is solvable by quadratures if there is a

tower of �elds

C(z) ⊂ F1 ⊂ . . . ⊂ Fk, F ⊂ Fk,

such that each Fi+1 is obtained by adjoining to Fi an exponential

or integral of some element from Fi.
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Galois group

The Galois group G of a linear di�. system is a group of di�.

automorphisms of the Picard�Vessiot extension C(z) ⊂ F

G = {σ : F → F |σ(f) = f ∀f ∈ C(z)}.

For a fundamental matrix Y (z) of the system one has

σ : Y (z) 7→ Y (z)C, C ∈ GL(p,C),

and G ⊂ GL(p,C) is a matrix algebraic subgroup.

The monodromy group M of a linear di�. system is a subgroup

of its Galois group: M ⊂ G. And for a system with regular sin-

gularities G = M (the closure in the Zariski topology).
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Example. The following system of two equations has one irreg-

ular singularity z =∞:

dy

dz
=

(
0 1
0 2z

)
y, Y (z) =

 1
∫
ez

2
dz

0 ez
2

 .
The system is solvable, M = {Id}, G 6= M is upper triangular.

Theorem (Picard�Vessiot). A linear di�. system is solvable by

quadratures ⇐⇒ the Galois group G is solvable, that is,

there is a tower of normal subgroups

e ⊂ G1 ⊂ . . . ⊂ Gk = G

such that all the factors Gi+1/Gi are commutative.
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How can one understand if a system is solvable by quadratures

looking at its coe�. matrix?

First consider a Fuchsian system

dy

dz
=

 n∑
i=1

Bi
z − ai

 y;

B1, . . . , Bn ∈Mat(p,C) are residue matrices.

The eigenvalues β1
i , . . . , β

p
i of the matrix Bi are called the expo-

nents of the system at the point ai.
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Solvability of Fuchsian systems with bounded exponents

Theorem 1. Let the eigenvalues β
j
i of the residue matrices Bi

satisfy inequalities

Reβji > −1/(n(p− 1)),

and for each pair β
j
i 6= βli, i = 1, . . . , n, one of the following

conditions holds:

1) Reβji −Reβli 6∈ Q; 2) Imβ
j
i 6= Imβli.

Then the Fuchsian system is solvable by quadratures i� all the

matrices Bi are (upper-)triangular (in some basis).
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Remark. One of the conditions

1) Reβji −Reβli 6∈ Q, 2) Imβ
j
i 6= Imβli

of the previous theorem holds i�

(µji/µ
l
i)
N 6= 1 ∀N ∈ N

for each pair µ
j
i 6= µli of the eigenvalues of the monodromy matrix

Mi, i = 1, . . . , n (since µ
j
i = e2πiβji ).

Theorem 2. If the Jordan form of each monodromy matrix of

the Fuchsian system consists of one block, then this system is

solvable by quadratures i� all its residue matrices Bi are triangular

(in some basis).
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Example (A. Bolibrukh). There are 4 upper-triangular matrices

Mi ∈ GL(7,C) such that there exists a Fuchsian system having

them as the monodromy matrices. But the coe�. matrix of this

system can not be transformed to the upper-triangular form.

Thus, this Fuchsian system is solvable by quadratures (the mon-

odromy group M = 〈M1, . . . ,M4〉 is solvable) but its residue ma-

trices are not triangular.
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Now consider a linear di�. system

dy

dz
= B(z) y, y(z) ∈ Cp,

with non-resonant irregular singularities a1, . . . , an. This means

that the leading term Bi,ri of an expansion

B(z) =
Bi,ri

(z − ai)ri
+ . . .+

Bi,1

z − ai
+Bi,0 + . . .

of the coe�. matrix B(z) near each singular point has p pairwise

distinct eigenvalues.
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A formal fundamental matrix near each singular point:

Ŷi(z) = F̂i(z)(z − ai)Λi eQi(z),

F̂i(z) is an invertible matrix formal Taylor series in (z − ai);
Λi = diag(λ1

i , . . . , λ
p
i ) is a diagonal matrix of formal exponents;

Qi(z) is a diagonal matrix with polynomials in 1/(z − ai) on the

diagonal.
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Solvability of irregular systems with bounded formal expo-

nents

Theorem 3. Let for each irregular singularity ai all formal expo-

nents λ
j
i are distinct and satisfy inequalities

Reλji > −1/(n(p− 1)),

moreover one of the following conditions holds:

1) Reλji −Reλli 6∈ Q; 2) Imλ
j
i 6= Imλli.

Then the system is solvable by quadratures i� there exists a

constant matrix C ∈ GL(p,C) such that the matrix C−1B(z)C is

triangular.
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Linear independence of some elements of the Picard�Vessiot

extension

Now we consider a scalar linear di�. equation

u(p) + b1(z)u(p−1) + . . .+ bp(z)u = 0, bj ∈ C(z),

of order p with regular singular points a1, . . . , an ∈ C \ {0}.

ai is regular ⇐⇒ bj(z) =
αij

(z−ai)j
+ o(1/(z − ai)j), z → ai.

The exponents β1
i , . . . , β

p
i at the point ai are roots of the equa-

tion

λ(λ− 1) . . . (λ− p+ 1) +αi1λ(λ− 1) . . . (λ− p+ 2) + . . .+αip = 0.
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Consider the Picard�Vessiot extension C(z) ⊂ F obtained by

adjoining to C(z) fundamental solutions u1(z), . . . , up(z) of the

equation and their derivatives.

An assumption that the elements of the �nite subset

AM = {uk1
1 (z) . . . u

kp
p (z) | (k1, . . . , kp) ∈ Zp+, k1+. . .+kp = M} ⊂ F

(#AM = CMp+M−1) are linear independent over C implies the

following statement.
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Theorem 4. Let the exponents of the linear di�. equation satisfy

the conditions Reβji > ti ∈ Z and

N >
1

2
(n− 2)(CMp+M−1 − 1)−M

n∑
i=1

ti

is an integer. Then the elements of the family

AM,N = {zkNuk1
1 (z) . . . u

kp
p (z) | k ∈ Z+, k1 + . . .+ kp = M} ⊂ F

are also linear independent over C.

Using ideas of the proof of this theorem one can also obtain the

following estimate.
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Proposition. Let P (x1, . . . , xp) be a homogeneous polynomial of

degree M and u1(z), . . . , up(z) fundamental solutions of the linear

di�. equation with exponents satisfying the conditions Reβji >

ti ∈ Z. If P (u1(z), . . . , up(z)) 6≡ 0, then

ord0P (u1(z), . . . , up(z)) <
1

2
(n− 2)CMp+M−1(CMp+M−1 − 1)−

−CMp+M−1M
n∑
i=1

ti.

(Estimates of Yu. Nesterenko, D. Bertrand, A. Bolibrukh for

ord0P (y1(z), . . . , yp(z)), where y = (y1, . . . , yp)> is a solution of a

linear di�erential system.)
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