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Setting the problem

We consider an ordinary di�erential equation

f(z, w, w′, . . . , w(n)) = 0, (1)

where f(z, w, w′, . . . , w(n)) is an analytic function (a polynomial)

of its variables.

We study some properties of a formal power series solution

ϕ =
∞∑
k=0

ck z
k ∈ C[[z]] (2)

of the equation (1).

Mainly, we concern the question of convergence of the formal

power series solution (2) of the equation (1).
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Brief historical review

The Maillet theorem is one of the well-known theorems that

describe properties of formal power series solutions of ODE.

Theorem (E.Maillet, Sur les s�eries divergentes et les �equations di��erentielles,

Ann. Sci. Ecole Norm. Sup., vol. 3, 1903).

If the formal series
∞∑
k=0

ck z
k satis�es the equation

f(z, w, w′, . . . , w(n)) = 0,

then there exists a real number s > 0 such that the series

∞∑
k=0

ck
(k!)s

zk (3)

converges in some neighborhood of zero.

(Formal power series possessing the property from the Maillet

theorem are called the Gevrey series of order s.)
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In 1978 Jean-Pierre Ramis studied formal power series solutions

of a linear di�erential equation

bn(z) w(n) + bn−1(z) w(n−1) + · · ·+ b0(z) w = 0, (4)

where bj(z) are holomorphic functions in a neighborhood of zero.

We can write the equation (4) in the equivalent form Lw = 0,
where L is a linear di�erential operator

L = an(z) δn + an−1(z) δn−1 + · · ·+ a0(z), (5)

δ = z
d

dz
, aj(z) are holomorphic functions in a neighborhood of

zero.

The linear di�erential operator (5) corresponds to the Newton

polygon N(L), that is the bound of the convex hull of the union

of sets

Sj = {(x, y) ∈ R2 | x 6 j, y > ord0 aj(z) }, j = 0,1, . . . , n.
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The point z = 0 is called a regular singular point of the operator

L = an(z) δn + an−1(z) δn−1 + · · ·+ a0(z),

if the inequalities ord0 aj(z) > ord0 an(z) (j = 0,1, . . . , n − 1)
hold, otherwise the point z = 0 is called an irregular singular

point of the operator L.

Note that in the regular case the Newton polygon N(L) consists

of the one horizontal and one vertical edge. In the irregular case

the Newton polygon N(L) contains edges with positive tangents

of the slopes angles.

Fig. 1. Regular case. Fig. 2. Irregular case.
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Let 0 < r1 < . . . < rm < ∞ be all the positive tangents of the

slopes angles of the edges of the Newton polygon N(L) (m 6 n).

Theorem (J.-P. Ramis, D�evissage Gevrey, Ast�erisque, vol. 59/60, 1978,

pp. 173�204).

Any formal power series solution
∞∑
k=0

ck z
k of the equation

Lw = 0

has an exact Gevrey order

s ∈ {0,1/r1, . . . ,1/rm}.
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Further we consider a non-linear ODE written in the form

F (z, w, δw, . . . , δnw) = 0, (6)

where δ = z
d

dz
and F (z, w0, w1, . . . , wn) is a holomorphic function

in a neighborhood of the point 0 ∈ Cn+2.

Theorem (B.Malgrange, Sur le th�eor�eme de Maillet, Asympt. Anal., vol. 2

1989, pp. 1�4).

Let the formal power series ϕ =
∞∑
k=0

ck z
k satisfy the equation

(6), ϕ(0) = 0, and the condition

∂F (z,Φ)

∂wn
6≡ 0, Φ = (ϕ, δϕ, . . . , δnϕ),

holds. Then
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a) if the point z = 0 is a regular singular point of the operator

Lϕ =
n∑
i=0

∂F

∂wi
(z,Φ) δi, (7)

then the formal power series ϕ converges in some neighbor-

hood of z = 0;

b) if the point z = 0 is an irregular singular point of the operator

Lϕ and r is the smallest positive tangent of the slopes angles

of the Newton polygon N(Lϕ), then the formal power series

ϕ has the Gevrey order s = 1/r.
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One year later the item b) of the Malgrange theorem have been

speci�ed by Yasutaka Sibuya.

Theorem (Y. Sibuya, Linear Di�erential Equations in the Complex Do-

main: Problems of Analytic Continuation, Transl. Math. Monographs, vol. 82,

A.M.S., 1990).

The formal power series solution ϕ has the exact Gevrey order

s ∈ {0,1/r1, . . . ,1/rm},

where 0 < r1 < . . . < rm < ∞ are all the positive tangents of

the slopes angles of the Newton polygon N(Lϕ) of the linear

di�erential operator

Lϕ =
n∑
i=0

∂F

∂wi
(z,Φ) δi.
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Concerning proofs of the Malgrange theorem

Malgrange and Sibuya proved the item a) of the Malgrange theo-

rem (the regular case) in di�erent ways, however, in both proofs

the initial equation is reduced to a special form.

Lemma (B.Malgrange). If the equation

F (z, w, δw, . . . , δnw) = 0 (6)

has the formal power series solution ϕ =
∞∑
k=0

ck z
k, ϕ(0) = 0, and

the condition
∂F (z,Φ)

∂wn
6≡ 0 holds, then there exists the integer

N > 0 such that for all m > N by means of the transformation

w =
m∑
k=0

ck z
k + zm v

the equation (6) is transformed into the special form
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L(δ +m)v = z µ(z, v, δv, . . . , δnv), (8)

where L is a polynomial of degree less than or equal to n and

the function µ(z, v0, v1, . . . , vn) is holomorphic in a neighborhood

of the point 0 ∈ Cn+2.

(A regular linear di�erential operator Lϕ corresponds to the case

when the polynomial L in the equation (8) is of degree n exactly.)
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On Malgrange's and Sibuya's proofs

Further convergence of the corresponding formal power series

solution ψ of the equation

L(δ +m)v = z µ(z, v, δv, . . . , δnv) (8)

(in the regular case) was proved by Malgrange with the help of

the implicit mapping theorem for Banach spaces, while Sibuya

used the fundamental Ramis�Sibuya theorem on asymptotic ex-

pansions.

Note that Malgrange's and Sibuya's proofs do not contain an

estimate of the radius of convergence of the formal power series

solution of the ODE F (z, w, δw, . . . , δnw) = 0.

We propose an analytic proof of the Malgrange theorem in its

regular case. Our proof is based on the majorant method and

allows to get an estimate of the radius of convergence of the

formal power series solution ψ of the equation (8).
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Analytic proof of the Malgrange theorem in the regular

case

Let the series expansion of the function µ(z, v0, v1, . . . , vn) has

the form

µ(z, v0, v1, . . . , vn) =
∞∑
p=0

∑
q∈Zn+1

+

αp,q z
p v

q0
0 v

q1
1 . . . vqnn .

Consider a function M(z, vn) holomorphic in a neighborhood

of the point 0 ∈ C2 which is constructed from the function

µ(z, v0, v1, . . . , vn) as follows:

M(z, vn) =
∞∑
p=0

∑
q∈Zn+1

+

|αp,q| zp vq0
n v

q1
n . . . vqnn .
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The key idea of our proof is that the equation

L(δ +m)v = z µ(z, v, δv, . . . , δnv) (8)

is majorated by the equation

σ δnv = zM(z, δnv), σ = inf
k∈N
|L(k +m)|

kn
> 0, (9)

in the following sense.

Lemma. The equation (9) has the unique analytic solution

Ψ =
∞∑
k=1

Ck z
k, Ck ∈ R, Ck > 0,

in a neighborhood of zero (Ψ(0) = 0), which is majorant for the

formal solution ψ =
∞∑
k=1

ck z
k of the equation (8), that is,

|ck| 6 Ck, k = 1,2, . . .
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As a consequence of the previous lemma we have the following

statement.

Proposition. Let the function µ(z, v0, v1, . . . , vn) be holomorphic

in a neighborhood of a closed polydisk

∆ = {|z| 6 r, |w0| 6 ρ, . . . , |wn| 6 ρ}, M = max
∆
|µ|.

Then the formal solution ψ =
∞∑
k=1

ckz
k of the equation

L(δ +m)v = z µ(z, v, δv, . . . , δnv)

converges in a disk{
|z| < r

ρ

ρ+Mr/σN

}
, N = (n+ 1)n+1/(n+ 2)n+2.
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