Linear differential equations on the Riemann
sphere and root systems

Kazuki HIROE
Dept. Math., Josai University, Japan

August 29, 2013

Formal and Analytic Solutions of Differential, Difference and Discrete Equations
Aug 25-31, 2013
Mathematical Research and Conference Center, Beldewo



Plan of the talk

1. Symmetries of Euler transforms and Weyl groups of Kac-Moody root systems.
2. Classification of Euler transform orbits.

3. Additive Deligne-Simpson problem; Fuchsian and non-Fuchsian.



Symmetries of Euler transforms

The Euler transform, Riemann-Liouville integral

I"f(x) := ﬁ/j(x — )P () dt for p,a € C.

It is known that for n € Z,
_ d" . .
I™"f(x) = d—f(a;) (by Cauchy's integration theorem).
ajn

Also we have the generalized Leibniz rule. Hence we may write

o' f(x):=1"f(x) (the fractional derivative).



Make new diff eq’s from known ones

From a diff op P(x,0) with coeff in C|x]|, we can make a new diff op R(x, )
as follows,

P(z,8) " R(x,8) = 91+ P(x, 9) 9"
Moreover,
R(z,0)[Fu = O HT™MPOH[Hy
P(z,0)u=0= — §omtmpy
= 0
That is,

Sol’'s of Pu =0 z Sol’s of Rv = 0.



Natural questions

o What is the orbit of a differential equation under the action of Euler
transforms?

o What is the group generated by Euler transforms?



Example (Gauss’s hypergeometric equation)
(1 —2)0%u+ (v — (a+ B+ 1)x)0u — afu = 0. (1)
Then we can see that

0 P (x(1=2)0%+ (v — (a+ B+ 1)x)0 — aB)0"
=x2(l—2)0+(y—pB) —(a— B+ 1)x. First order!

A solution of the last equation is z°~7(1 — 2)*~7*!. Hence solutions of (1)

are
1 T
9712771 — )27 = / PV =) (z —t) P dt.
(1—x) T3 /. (1—=8)*(z 1)




Kac-Moody root system (after Crawley-Boevey)

Riemann schemes (tables of exponents of x*)

=0 1

xO 0 CZ; E(ﬁ){:c:O 1 00 }
3 - —a—1 a—-p+1

l—v y=a=0 § F=7 1 b

Spectral types (tables of multiplicities of x* (umodZ))

r=0 1 o0 r=0 1 o0
1 1 1 — 0 0O O
I 1 1 1 ] I 1 1 1 ]




Interpretation as reflections

The previous example is a special case of the following computation:

rx=0 1 e o x =0 1 e
t :
mY  mi m° IR MmO +d mi+d mP+d

0 1 o' 0 1 o0
mo mo Mgy mgy my moy

for d = mY +ma +m3° — 2n. This is the root reflection!!

ms ms
mY mY9 0 0
5 n _ o n+d mi + ms
Reflection 1 1
O———0O) n = mi + ms
O O

M + Mo

ms° ms°




General case. Let P(x,0) be a "good” Fuchsian differential operator with
singular points ¢y = 0o, cy,...,¢p. Then

p
P(x,0) ~m(P) = H(mi,l, ..,mgy,)  (multiplicities of (x — ¢;)Mii (medZ)),
i=0

We can regard m(P) as the element ao(m(P)) of the root lattice Q(P) with
the diagram.

&2

=~
)

Q 1.2
Euler trans. RN




Weyl group symmetry of Euler transforms

Theorem 1 (Crawley-Boevey 2003 (Fuchsian systems), Oshima 2010 (scaler
equations)). Let P(x,0) € C(z)[0d] be an irreducible Fuchsian differential
operator with the spectral type m(P). Then there exists the root lattice R(P)
of the simply-laced star-shaped diagram Q(P) such that the following hold.

1. a(m(P)) € R(P)T is a positive root.
2. The Weyl group W (P) of R(P) is generated by Fuler transforms.

3. # of accessory parameters of P(x,0) is 1 — 3(a(m(P)), a(m(P))).



From Kac to

Theorem 2 (N. Katz '96). Let P(z,0) be Fuchsian and irreducible. If P(x,0)
has no accessory parameter, then

P(xz,0) ~ 0

by a finite iteration of Fuler transforms and additions.

Rough explanation.

P is accessory parameter free < (a(m(P)), a(m(P))) =2
< a(m(P)) is a real root
< a(m(P)

P)) is in a W(P) orbit of a simple root.

m

[]



Non Fuchsian cases
How about equations with irregular singular points?
Assumption: P(x,0) has at most unramified irregular singular points.

We can similarly define the spectral type of P(x,d) which counts the
multiplicities of formal solutions with leading terms

el (@=a) Dy g)m

7...



An explanation with an example.

Consider the doubly confluent Heun’s equation,
[220% + (cx® + (2 — b)x + a)0 + (cdx + N)]u = 0.

This has local solutions with the following leading terms,



The multiplicities of leading terms are

r=0]| 2=
1,1 1,1

More generally let us consider the case with the multiplicities of leading terms,

=20 Tr = OO
miy, Mo n1, N2

(n = mq + mg = n1 + no).




Then middle convolutions change these as follows :

(m1 +di1)(m2), (n1 4+ di 1) (n2)
(m1)(m2), (n1)(n2) —  (m1 + di2)(m2), (n1)(ne + di 2)
(m1)(me +ds21), (N1 + da.1)(n2)
(mq)(ma + ds 2), (n1)(n2 + da2).

Here di,j = Z(n — m; — nj).

This can be seen as the Weyl group action as follows.



C1,1 C1,3 c11+dig 1,3

refl at c1 1

C2.1 C2.2 C2.1 C2.2

Here c; jare defined by
Ci,l +Ci,2 =My C1,j T C2,5 = 1.

Thus the doubly confluent Heun lives in (4; @ A1) root lattice with Weyl group
symmetry.



Theorem 3 (H 2013, (cf. H-Oshima 2013)). If P(xz,0) € C(x)[0] is irreducible
and has at most unramafied irreqular singular points. There exists symmetric
Kac-Moody root lattice R(P) such that the following hold.

1. The spectral type m(P) corresponds to a positive root a(P) of R(P).
2. The Weyl group W (P) is generated by Euler transforms.
3. # of accessory parameters is 1 — 2(a(P), a(P)).

4. The Weyl group acts on the space of characteristic exponents of the formal
solutions.



Confluent family of Heun’s equations

Heun Confluent Heun | Biconf Heun | Triconf Heun | Doubleconf Heun
1+14+1+1 14+1+2 1+ 3 4 2+ 2
R ne e ALY AV @ Al
1
1 1 1
O
1 2 & 1 1
1 1
O

1+a

l4+a l—a

1—a




e All roots are null imaginary roots of affine root systems.

e All of them are fixed by Weyl group. However, characteristic exponents are
changed by Euler transforms.

e Weyl group symmetries coincide with them of Backlund transform of
corresponding Painlevé equations!



Classification of spectral types (joint work with T. Oshima)

Let us classify Euler transform orbits of diff. eq's.

Assumption: P(x,0) € C(x)|0] has at most unramified irregular singular points.
[0-acc. param.]

Theorem 4 (Katz, Arinkin). If P(x,0) is irreducible and has no accessory
parameter, then P 1is in the Euler transform orbit of 0.

[1-acc. param.]

Theorem 5 (Kostov, Takemura, H-Oshima). If P(x,d) is irreducible and has
one accessory parameters, then the corresponding root is in the Weyl group
orbit of the null imaginary root of one of the following Euclidean root systems.

B B B, DY A, A ALY (A e AW,



[2-acc. param.]
Theorem 6 (Oshima, H-Oshima). If P(x, 0) is irreducible and has two accessory

parameters, then the corresponding root is in the Weyl group orbit of the null
imaginary root of one of the following Fuclidean root systems.
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And MORE!!

O

2 1 1
4 2 3
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Remark 7. Our classification coincides with the degeneration scheme of 4-
dimensional Painlevé equations given by Kawakami-Nakamura-Sakai.

[General cases]
Theorem 8 (Oshima, H-Oshima). # of Weyl group orbits of differential
equations with the fized number of accessory parameters is finite.



Additive Deligne-Simpson problem

Definition 9. An additive Deligne-Simpson problem consists of a collection of
points a1, ...,a, € C and of conjugacy classes Co,C4,...,C, of M(n,C). The
solution of the problem is irreducible Fuchsian system

d L4,
—Y = Y
dx ;m—ai

satisfying that A; € C;. Here Ag:= —> | A;.

W. Crawley-Bovevey gave a necessary and sufficient condition for the existence
of a solution by using the representation theory of quivers.



Let us choose &f; 11,...,&[i,q4,) € C so that H;.lizl(Az- — i j14n) = 0 for all
A; € C; (= eigenvalues).

Then consider the following quiver.

0,1] [0, 2]




Define a collection of positive integers o = (o, cf; ;1) and of complex numbers

J
ag = 0, Alq,4] = rank H(Az - g[i,kz]j)a
k=1
p
Ao = — Zfb Alig] = &ig] — Slig+1)-



Theorem 10 (Crawley-Boevey). The additive Deligne-Simpson problem has a
solution if and only if the following are satisfied.

1. o 18 a positive root.

2. For any decomposition o« = 1 + B2 + --- where By 1s a positive root with
A - By =0, we have the equality p(a) > p(B1) + p(B2) + - - -.

Here p(8) = 1 4(8, ).

Remark 11. A corresponding result for scalar equations is obtained by T.
Oshima.



Additive Deligne-Simpson problems for non-Fuchsian equations

G = GL(n, C[[z]] /z"C[[z]))

k—1

1=0

gp = M(n, 2™ "C[[z]]/C[[]])

b

1=1

Ag € GL(TL,C), A; € M(n,@)}

A; € M(n,@)}



Definition 12 (Hukuhara-Turrittin-Levelt normal forms).
B =diag(qi(z NI, + Rz~ .. qgm(z I, + Rpx™ ) € g}

with q;(z) € x*Clz| satisfying q; # q; if i # j and R; € M (n;,C).

Fuchsian non-Fuchisan

Jordan normal forms <« HTL normal forms
GL(n, C)-orbits < G -orbits



Definition 13. An generalized additive Deligne-Simpson problem consists of a
collection of points ai,...,a, € C, of nonzero positive integers ko, ..., k, and
of HT'L normal forms B; € 95, forv=20,...,p. A solution of the problem is
an irreducible equation

dx i:zljzl (x — a;)J T ; 0,j+1T

where A;(x) = ijl A; jx77 are in Gy,-orbit of B;. Here we put Apq =
— > i1 A



Remark 14 (Known results). ® The case kg = ---k, = 1 corresponds to the
Fuchsian case.

o The case kg <3 and k1 = ---k, =1 is considered by P. Boalch who gave a
necessary and sufficient condition of the existence of a solution.

o The case; an arbitrary ko and ki = ---k, = 1, is considered by H-
Yamakawa.

e The case; each B; has reqular semisimple top, is considered by V. Kostov.



Associated quiver

B;, = dlag( (¢ )( )In(y;) + Rgi)aj_l, . (Z). (:I;‘_l)]n(i) + Ri:b .

fori =0,...,p. Choose gﬁi’ﬂ, . ,gE[;{}] € C so that

©l4,4]
H (R§Z) _ fl[jaj]) —0
k=1

Set I, = {i € {0,...,p} | m >0} U {0} and I, = {0, ...

Then let us define the quiver Q = (Qq, Q1) as follows.

7p}\Iirr-



The set of vertices

t=V9Y,...,D,

Qoz{[z‘,ﬂ' }u [z',j,k]‘ i=1,...,m®

jzl,...,m(i)



The set of arrows (Here d;(j, j') = deg cpy(¢}” () — ¢ ()) — 2)

j=1,...,m9,

(S Iirr\{o}a
i'=1,...,m®

| e, 1< < <m,
p '/: [7’7]] (7 4!

1<k <dij,5)
{p : Z ,Js 1 [Zaj] ‘iEIirraj:17'°'7m(i)}

u{p”lz i,1,1] = [0,5] |1 € Legy j =1,...,m® }

Qi =1 piy ik 0,4] = [i, ]

C

: Z]? [Z7J7k_1]



Associated complex numbers and integers

From HTL normal forms B;, we define the following numbers. Let us define
a = (g)aecqy € Z90 and A = (Ay)aeq, € CR0 by

k
o =5, a5,k = dim ¢(rank H(Rﬁ-z) - &),
=1
—fl I fori e I,rr\{()} j=1,. (i),
)\[O,j] :_50] Z € for] —]. (O),
ZEIreg

Nijm =& =g fori=0,...p,i=1,....mD k=1, e — L



Theorem 15 (H 2013). The generalized additive Deligne-Simpson problem has
a solution if and only if the following are satisfied.

1. « 15 a positive root of Q.

2. For any decomposition o« = 81 + B2 + --- where By € L are positive roots
and satisfy X - B; = 0, we have

p(a) > p(B1) +p(B2) +--- .

Here

there exists b € 7, such that }

L= < ZQO ()
{B Zj:l Bli.j) = b for all i € I,
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