The action of the Kontorovich-Lebedev integral transform on *d*-orthogonal polynomial sequences

Ana F. Loureiro University of Kent, UK

(joint work with S. Yakubovich)

FASD³E 3 - conference 26-30, August 2013 Bedlewo

Outline

d-Orthogonal polynomials

Index Integral Transforms

1

Kontorovich-Lebedev transform

Ana F. Loureiro and S. Yakubovich, The Kontorovich-Lebedev transform as a map between d-orthogonal polynomials, to appear in Stud. Appl. Math.

A Monic Orthogonal Polynomial Sequence (MOPS) $\{P_n\}_{n\geqslant 0}$ is defined by

$$\langle u_0, P_n P_k \rangle = N_n \delta_{n,k}$$
, with $N_n \neq 0$.

where u_0 is the first element of the corresponding dual sequence (canonical form).

▶ In this case u_0 is said to be regular.

Equivalently, u_0 is regular iff $\Delta_n := \det[(u_0)_{i+j}]_{0 \leqslant i,j \leqslant n} \neq 0$, $n \geqslant 0$, where $(u_0)_n := \langle u_0, x^n \rangle$.

▶ It always satisfies the second order recurrence relation

$$P_{n+1}(x) = (x - \beta_n)P_n(x) - \gamma_n P_{n-1}(x)$$

with $P_0 = 1$ and $P_{-1} = 0$ and

$$\beta_n = \frac{\langle u_0, x P_n^2 \rangle}{\langle u_0, P_n^2 \rangle} \quad \text{and} \quad \gamma_{n+1} = \frac{\langle u_0, P_{n+1}^2 \rangle}{\langle u_0, P_n^2 \rangle} \neq 0, \ n \in \mathbb{N}$$

Definition. A MOPS $\{P_n\}_{n\geqslant 0}\perp u$ is called **semiclassical** when $\exists \Phi, \Psi \in \mathcal{P}$, with Φ monic and $\deg \Psi \geqslant 1$, such that (Maroni,1988)

$$\left(\Phi u\right)' + \Psi u = 0. \tag{1}$$

The pair (Φ, Ψ) is not unique.

▶ Simplification criteria : $\exists c \text{ such that } \Phi(c) = 0 \text{ and }$

$$|\Phi'(c) + \Psi(c)| + |\langle u, \theta_c^2(\Phi) + \theta_c(\Psi) \rangle| = 0,$$
 (2)

where $\theta_c(f)(x) = \frac{f(x) - f(c)}{x - c}$, for any $f \in \mathcal{P}$, and u would then fulfill

$$(\theta_c(\Phi)u)' + (\theta_c^2(\Phi) + \theta_c(\Psi)) u = 0.$$

► The class of u is $\mathbf{s} = \min_{(\Phi, \Psi)} [\max(\deg(\Phi) - 2, \deg(\Psi) - 1)]$

► Moreover,
$$\Phi(x)P'_{n+1}(x) = \sum_{\nu=n-s}^{n+1} \theta_{n,\nu}P_{\nu}(x)$$
 with $\theta_{n,n-s}\theta_{n,n+t} \neq 0$, $n \geqslant s$.

Definition. A MOPS $\{P_n\}_{n\geqslant 0}\perp u$ is called **semiclassical** when $\exists \Phi, \Psi \in \mathcal{P}$, with Φ monic and $\deg \Psi \geqslant 1$, such that (Maroni,1988)

$$\left(\Phi u\right)' + \Psi u = 0. \tag{1}$$

The pair (Φ, Ψ) is not unique.

▶ Simplification criteria : $\exists c$ such that $\Phi(c) = 0$ and

$$\left|\Phi'(c) + \Psi(c)\right| + \left| \langle u, \theta_c^2(\Phi) + \theta_c(\Psi) \rangle \right| = 0 , \qquad (2)$$

where $\theta_c(f)(x) = \frac{f(x) - f(c)}{x - c}$, for any $f \in \mathcal{P}$, and u would then fulfill

$$(\theta_c(\Phi)u)' + (\theta_c^2(\Phi) + \theta_c(\Psi)) u = 0.$$

► The class of u is $\mathbf{s} = \min_{(\Phi, \Psi)} [\max(\deg(\Phi) - 2, \deg(\Psi) - 1)]$

▶ Moreover,
$$\Phi(x)P'_{n+1}(x) = \sum_{\nu=n-s}^{n+1} \theta_{n,\nu}P_{\nu}(x)$$
 with $\theta_{n,n-s}\theta_{n,n+t} \neq 0$, $n \geqslant s$.

Definition. A MOPS $\{P_n\}_{n\geqslant 0}\perp u$ is called **semiclassical** when $\exists \Phi, \Psi \in \mathcal{P}$, with Φ monic and $\deg \Psi \geqslant 1$, such that (Maroni,1988)

$$\left(\Phi u\right)' + \Psi u = 0. \tag{1}$$

The pair (Φ, Ψ) is not unique.

▶ Simplification criteria : $\exists c \text{ such that } \Phi(c) = 0 \text{ and }$

$$\left|\Phi'(c) + \Psi(c)\right| + \left| \langle u, \theta_c^2(\Phi) + \theta_c(\Psi) \rangle \right| = 0 , \qquad (2)$$

where $\theta_c(f)(x) = \frac{f(x) - f(c)}{x - c}$, for any $f \in \mathcal{P}$, and u would then fulfill

$$(\theta_c(\Phi)u)' + (\theta_c^2(\Phi) + \theta_c(\Psi)) u = 0.$$

► The class of u is $\mathbf{s} = \min_{(\Phi, \Psi)} \left[\max \left(\deg(\Phi) - 2, \deg(\Psi) - 1 \right) \right]$

▶ Moreover,
$$\Phi(x)P'_{n+1}(x) = \sum_{\nu=n-s}^{n+1} \theta_{n,\nu}P_{\nu}(x)$$
 with $\theta_{n,n-s}\theta_{n,n+t} \neq 0$, $n \geqslant s$.

Definition. A MOPS $\{P_n\}_{n\geqslant 0}\perp u$ is called **semiclassical** when $\exists \Phi, \Psi \in \mathcal{P}$, with Φ monic and $\deg \Psi \geqslant 1$, such that (Maroni,1988)

$$\left(\Phi u\right)' + \Psi u = 0. \tag{1}$$

The pair (Φ, Ψ) is not unique.

▶ Simplification criteria : $\exists c$ such that $\Phi(c) = 0$ and

$$\left|\Phi'(c) + \Psi(c)\right| + \left| \langle u, \theta_c^2(\Phi) + \theta_c(\Psi) \rangle \right| = 0 , \qquad (2)$$

where $\theta_c(f)(x) = \frac{f(x) - f(c)}{x - c}$, for any $f \in \mathcal{P}$, and u would then fulfill

$$(\theta_c(\Phi)u)' + (\theta_c^2(\Phi) + \theta_c(\Psi)) u = 0.$$

► The class of u is $\mathbf{s} = \min_{(\Phi, \Psi)} \left[\max \left(\deg(\Phi) - 2, \deg(\Psi) - 1 \right) \right]$

 $n+\deg \Phi$

▶ Moreover, $\Phi(x)P'_{n+1}(x) = \sum_{\nu=n-s}^{n-s} \theta_{n,\nu}P_{\nu}(x)$ with $\theta_{n,n-s}\theta_{n,n+t} \neq 0$, $n \geqslant s$.

The *d*-orthogonality

Definition. A MPS $\{P_n\}_{n\geqslant 0}$ is d-orthogonal with respect to the vector functional $\mathbf{U}=(u_0,\ldots,u_{d-1})^T$, iff ... (Maroni,1989)(van lseghem,1987)

$$\begin{cases}
\langle u_k, x^m P_n \rangle = 0 &, \quad n \geqslant md + k + 1, \quad m \geqslant 0, \\
\langle u_k, x^m P_{md+k} \rangle \neq 0 &, \quad m \geqslant 0.
\end{cases}$$
(3)

In this case, the d-MOPS $\{P_n\}_{n\geqslant 0}$ necessarily satisfies the (d+1)-order recurrence relation

$$P_{n+1}(x) = (x - \beta_n)P_n(x) - \sum_{\nu=0}^{d-1} \gamma_{n-\nu}^{d-1-\nu} P_{n-1-\nu}(x) \quad , \quad n \geqslant d+1, \quad (4)$$

where $\gamma_{n+1}^0 \neq 0$ for all $n \geqslant 0$, and $\gamma_k^{-m} = 0$, for $m \geqslant 0$.

Index integral transforms

In 1964, Wimp formally introduced the general index transform over parameters of the Meijer G-function

$$F(\tau) = \int_0^\infty G_{p+2,q}^{m,n+2} \left(x; \frac{1-\mu+i\tau, 1-\mu-i\tau, (a_p)}{(b_q)} \right) f(x) dx ,$$

whose inversion formula

$$f(x) = \frac{1}{\pi^2} \int_0^\infty \tau \sinh(2\pi\tau) F(\tau) G_{p+2,q}^{q-m,p-n+2} \left(x; \frac{\mu + i\tau, \mu - i\tau, -(a_p^{n+1}), -(a_n)}{-(b_q^{m+1}), -(b_m)} \right) d\tau .$$

was established in 1985 by Yakubovich.

Examples.

 ${\sf Kontorovich-Lebedev} \; \big({\sf KL} \big) \; \cdot \; \; {\sf Mehler-Fock} \; \cdot \; \; {\sf Olevski-Fourier-Jacobi} \; \cdot \; \\ {\sf Whittaker} \; \cdot \; \; \\ {\sf Whittaker} \; \cdot \; \; {\sf Contorovich-Lebedev} \; \big({\sf KL} \big) \; \cdot \; \; {\sf Mehler-Fock} \; \cdot \; \; {\sf Olevski-Fourier-Jacobi} \; \cdot \; \\ {\sf Whittaker} \; \cdot \; \; {\sf Contorovich-Lebedev} \; \big({\sf KL} \big) \; \cdot \; \; {\sf Mehler-Fock} \; \cdot \; \; {\sf Olevski-Fourier-Jacobi} \; \cdot \; \\ {\sf Whittaker} \; \cdot \; \; {\sf Contorovich-Lebedev} \; \big({\sf KL} \big) \; \cdot \; \; {\sf Mehler-Fock} \; \cdot \; \; {\sf Olevski-Fourier-Jacobi} \; \cdot \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \; \big({\sf Contorovich-Lebedev} \; \big) \; \\ {\sf Contorovich-Lebedev} \;$

The Kontorovich-Lebedev (KL) transform

For $\alpha > 0$, consider

$$\begin{aligned} & \mathsf{KL}_{\alpha}[f](\tau) = 2 \left| \Gamma\left(\alpha + 1 + \frac{i\tau}{2}\right) \right|^{-2} \int_{0}^{\infty} x^{\alpha} \mathsf{K}_{i\tau}(2\sqrt{x}) f(x) \mathrm{d}x \;, \\ & x^{\alpha+1} \; f(x) = \frac{1}{\pi^{2}} \lim_{\lambda \to \pi^{-}} \int_{0}^{\infty} \tau \sinh(\lambda \tau) \left| \Gamma\left(\alpha + 1 + \frac{i\tau}{2}\right) \right|^{2} \mathsf{K}_{i\tau}(2\sqrt{x}) \; \mathsf{KL}_{\alpha}[f](\tau) \mathrm{d}\tau \;, \end{aligned}$$

valid for any continuous function $f \in L_1\left(\mathbb{R}_+, K_0(2\mu\sqrt{x})dx\right)$, $0 < \mu < 1$, in a neighborhood of each $x \in \mathbb{R}_+$ where f(x) has bounded variation.

Here,
$$K_{i\tau}(2\sqrt{x}) = \int_0^\infty \exp(-2\sqrt{x}\cosh(u))\cos(\tau u)\mathrm{d}u, \ x \in \mathbb{R}_+, \ \tau \in \mathbb{R}_+.$$

Thus,

$$KL_{\alpha}: \quad x^n \quad \longmapsto \quad (\alpha+1-\frac{i\tau}{2})_n(\alpha+1+\frac{i\tau}{2})_n = \prod_{\sigma=1}^n \left((\alpha+1+\sigma)^2+\frac{\tau^2}{4}\right)$$

where
$$(a)_n := a(a+1)...(a+n-1)$$

Parseval identity for KL_{α}

Theorem

The operator KL_{α} is an isomorphism between Hilbert spaces

$$\begin{array}{cccc} \mathit{KL}_{\alpha} & : & \mathit{L}_{2}(\mathbb{R}_{+}; x^{2\alpha+1} \mathit{d}x) & \rightarrow & \mathit{L}_{2}\left(\mathbb{R}_{+}; \tau \sinh(\pi\tau) \left| \Gamma\left(\alpha+1+\frac{i\tau}{2}\right) \right|^{4} \frac{\mathit{d}\tau}{4\pi^{2}} \right) \\ & f & \mapsto & 2\left| \Gamma\left(\alpha+1+\frac{i\tau}{2}\right) \right|^{-2} \int_{0}^{\infty} x^{\alpha} \mathit{K}_{i\tau}(2\sqrt{x}) \mathit{f}(x) \mathit{d}x \end{array}$$

The following generalized Parseval equality holds

$$\begin{split} &\int_0^\infty x^{2\alpha+1} f(x) g(x) dx \\ &= \frac{1}{4\pi^2} \int_0^\infty \tau \sinh(\pi \tau) \left| \Gamma\left(\alpha + 1 + \frac{i\tau}{2}\right) \right|^4 K L_\alpha[f](\tau) K L_\alpha[g](\tau) d\tau \ , \end{split}$$

where $f, g \in L_2(\mathbb{R}_+; x^{2\alpha+1}dx)$.

Proposition. For any polynomial f and $|{\rm Im}\mu| < 2\beta$, it is valid the identity

$$\begin{split} & \int_{0}^{\infty} x^{\alpha+\beta} f(x) K_{i\mu}(2\sqrt{x}) dx \\ & = \frac{1}{8\pi\Gamma(2\beta)} \int_{0}^{\infty} K L_{\alpha}[f](\tau) \frac{\left|\Gamma\left(\beta + \frac{i(\tau+\mu)}{2}\right) \Gamma\left(\beta + \frac{i(\tau-\mu)}{2}\right) \Gamma\left(\alpha + 1 + \frac{i\tau}{2}\right)\right|^{2}}{\left|\Gamma\left(i\tau\right)\right|^{2}} d\tau \; . \end{split}$$

Proposition. For any polynomial f and eta > 0, we have

$$\int_{0}^{\infty} x^{\alpha+\beta} e^{-x} f(x) dx$$

$$= \frac{\sqrt{e}}{4\pi} \int_{0}^{\infty} KL_{\alpha}[f](\tau) \frac{\left|\Gamma\left(\alpha+1+\frac{i\tau}{2}\right)\Gamma\left(\beta+\frac{i\tau}{2}\right)\right|^{2}}{\left|\Gamma\left(i\tau\right)\right|^{2}} W_{-\beta+\frac{1}{2},\frac{i\tau}{2}}(1) d\tau ,$$
(5)

holds, where $W_{\gamma,\mu}(x)$ represents the Whittaker function.

Proposition. For any polynomial f and $|\mathrm{Im}\mu| < 2\beta$, it is valid the identity

$$\begin{split} & \int_{0}^{\infty} x^{\alpha+\beta} f(x) K_{i\mu}(2\sqrt{x}) dx \\ & = \frac{1}{8\pi\Gamma(2\beta)} \int_{0}^{\infty} K L_{\alpha}[f](\tau) \frac{\left|\Gamma\left(\beta + \frac{i(\tau+\mu)}{2}\right) \Gamma\left(\beta + \frac{i(\tau-\mu)}{2}\right) \Gamma\left(\alpha + 1 + \frac{i\tau}{2}\right)\right|^{2}}{\left|\Gamma\left(i\tau\right)\right|^{2}} d\tau \; . \end{split}$$

Proposition. For any polynomial f and $\beta > 0$, we have

$$\int_{0}^{\infty} x^{\alpha+\beta} e^{-x} f(x) dx$$

$$= \frac{\sqrt{e}}{4\pi} \int_{0}^{\infty} KL_{\alpha}[f](\tau) \frac{\left|\Gamma\left(\alpha+1+\frac{i\tau}{2}\right)\Gamma\left(\beta+\frac{i\tau}{2}\right)\right|^{2}}{\left|\Gamma\left(i\tau\right)\right|^{2}} W_{-\beta+\frac{1}{2},\frac{i\tau}{2}}(1) d\tau ,$$
(5)

holds, where $W_{\gamma,\mu}(x)$ represents the Whittaker function.

More properties of KL_{α}

▶ For any $m, n \in \mathbb{N}_0$ and any $f \in \mathcal{P}$, it is valid

$$KL_{\alpha} \left[\left(\frac{1}{x} \mathcal{A} x + 2\alpha \frac{d}{dx} x \right)^{m} x^{n} f(x) \right] (\tau)$$

$$= (-1)^{m} \left(\frac{\tau^{2}}{4} + \alpha^{2} \right)^{m} \left| \left(\alpha + 1 + \frac{i\tau}{2} \right)_{n} \right|^{2} KL_{\alpha+n}[f](\tau).$$

where $A = x \frac{d}{dx} x \frac{d}{dx} - x$.

▶ Let $\{S_n(\cdot;\alpha) := KL_\alpha [P_n](\cdot)\}_{n\geqslant 0}$. If $\{P_n\}_{n\geqslant 0}$ is given by

$$P_n(x) = (-1)^n \frac{\left(\prod_{\nu=1}^q (b_{\nu})_n\right)}{\left(\prod_{\nu=1}^p (a_{\nu})_n\right)} \,_{p+1} F_q \left(\begin{array}{c} -n, a_1, \dots, a_p \\ b_1, \dots, b_q \end{array} \middle| x \right) \,, \ n \geqslant 0, \quad (6)$$

where the coefficients a_j , b_k with $j=1,\ldots,p$ and $k=1,\ldots,q$, do not depend on x but possibly depending on n, then

$$S_n\left(\frac{\tau^2}{4}\right) = \frac{(-1)^n\left(\prod_{\nu=1}^q (b_{\nu})_n\right)}{\left(\prod_{\nu=1}^p (a_{\nu})_n\right)} \,_{\rho+3}F_q\left(\begin{array}{c} -n, a_1, \dots, a_{\rho}, \alpha+1-\frac{i\tau}{2}, \alpha+1+\frac{i\tau}{2} \\ b_1, \dots, b_q \end{array} \right| 1\right)$$

More properties of KL_{α}

▶ For any $m, n \in \mathbb{N}_0$ and any $f \in \mathcal{P}$, it is valid

$$KL_{\alpha} \left[\left(\frac{1}{x} \mathcal{A} x + 2\alpha \frac{d}{dx} x \right)^{m} x^{n} f(x) \right] (\tau)$$

$$= (-1)^{m} \left(\frac{\tau^{2}}{4} + \alpha^{2} \right)^{m} \left| \left(\alpha + 1 + \frac{i\tau}{2} \right)_{n} \right|^{2} KL_{\alpha+n}[f](\tau).$$

where $A = x \frac{d}{dx} x \frac{d}{dx} - x$.

▶ Let $\{S_n(\cdot;\alpha) := KL_\alpha[P_n](\cdot)\}_{n\geqslant 0}$. If $\{P_n\}_{n\geqslant 0}$ is given by

$$P_n(x) = (-1)^n \frac{\left(\prod_{\nu=1}^q (b_{\nu})_n\right)}{\left(\prod_{\nu=1}^p (a_{\nu})_n\right)} \,_{p+1} F_q \left(\begin{array}{c} -n, a_1, \dots, a_p \\ b_1, \dots, b_q \end{array} \middle| x \right) , \ n \geqslant 0, \quad (6)$$

where the coefficients a_j , b_k with $j=1,\ldots,p$ and $k=1,\ldots,q$, do not depend on x but possibly depending on n, then

$$S_n\left(\frac{\tau^2}{4}\right) = \frac{(-1)^n\left(\prod_{\nu=1}^q (b_\nu)_n\right)}{\left(\prod_{\nu=1}^p (a_\nu)_n\right)} \,_{p+3}F_q\left(\begin{array}{c} -n, a_1, \ldots, a_p, \alpha+1-\frac{i\tau}{2}, \alpha+1+\frac{i\tau}{2} \\ b_1, \ldots, b_q \end{array} \right| 1\right)$$

1. The MPS $\{P_n\}_{n\geqslant 0}$ is said to be an Appell sequence when

$$P'_{n+1}(x) = (n+1)P_n(x) , n \geqslant 0.$$

If $\{P_n\}_{n\geqslant 0}$ is also d-orthogonal,

then $\{S_n:= \mathit{KL}_{lpha}[P_n]\}_{n\geqslant 0}$ is (2d+2)-orthogonal and

$$\delta_i S_{n+1}\left(\frac{\tau^2}{4};\alpha\right) = (n+1)S_n\left(\frac{\tau^2}{4};\alpha+\frac{1}{2}\right) , n \in \mathbb{N}_0,$$

where
$$\delta_{\omega}f(x):=rac{f(x+\omega)-f(x-\omega)}{2\omega}.$$

2. Let $\{R_n\}_{n\geqslant 0}$ be a reversed Appell sequence, i.e.,

$$R_n(x) = \frac{1}{\lambda_n} x^n P_n\left(\frac{1}{x}\right) \ , \ n \in \mathbb{N}_0,$$

where $\{P_n\}_{n\geqslant 0}$ is an Appell sequence and $\lambda_n=P_n(0)\neq 0,\ n\geqslant 0.$

According to Ben Cheikh & Douak (2001), if $\{R_n\}_{n\geqslant 0}$ is d-orthogonal then

$$R_n(x) := R_n(x; \bar{\alpha}_d) = (-1)^n \left(\prod_{\sigma=1}^d (\alpha_\sigma + 1)_n \right) {}_1F_d \left(\begin{matrix} -n \\ \alpha_1 + 1, \dots, \alpha_d + 1 \end{matrix}; x \right) , n \geqslant 0,$$

The corresponding KL_{α} -transformed sequence $\{S_n\}_{n\geq 0}$ with $S_n(\cdot; \alpha, \bar{\alpha}_d) = KL_{\alpha}[R_n(x; \bar{\alpha}_d)](\cdot)$ is \widetilde{d} -orthogonal where

$$\widetilde{d} = \begin{cases} 2 & , & d = 1 \\ 1 & , & d = 2 \\ d & , & d = 3, 4, 5, \dots \end{cases}$$

2. Let $\{R_n\}_{n\geqslant 0}$ be a reversed Appell sequence, i.e.,

$$R_n(x) = \frac{1}{\lambda_n} x^n P_n\left(\frac{1}{x}\right) \ , \ n \in \mathbb{N}_0,$$

where $\{P_n\}_{n\geqslant 0}$ is an Appell sequence and $\lambda_n=P_n(0)\neq 0$, $n\geqslant 0$.

According to Ben Cheikh & Douak (2001), if $\{R_n\}_{n\geqslant 0}$ is d-orthogonal then

$$R_n(x) := R_n(x; \bar{\alpha}_d) = (-1)^n \left(\prod_{\sigma=1}^d (\alpha_\sigma + 1)_n \right) {}_1F_d \left(\begin{matrix} -n \\ \alpha_1 + 1, \dots, \alpha_d + 1 \end{matrix}; x \right) , n \geqslant 0,$$

The corresponding KL_{α} -transformed sequence $\{S_n\}_{n\geqslant 0}$ with $S_n(\cdot;\alpha,\bar{\alpha}_d)=KL_{\alpha}[R_n(x;\bar{\alpha}_d)](\cdot)$ is \widetilde{d} -orthogonal where

$$\widetilde{d} = \begin{cases} 2 & , & d = 1 \\ 1 & , & d = 2 \\ d & , & d = 3, 4, 5, \dots \end{cases},$$

2. Let $\{R_n\}_{n\geqslant 0}$ be a reversed Appell sequence, i.e.,

$$R_n(x) = \frac{1}{\lambda_n} x^n P_n\left(\frac{1}{x}\right) \ , \ n \in \mathbb{N}_0,$$

where $\{P_n\}_{n\geqslant 0}$ is an Appell sequence and $\lambda_n=P_n(0)\neq 0$

According to Ben Cheikh & Douak (2001), if $\{R_n\}_{n\geqslant 0}$ is d-orthogonal then

$$R_n(x) := R_n(x; \bar{\alpha}_d) = (-1)^n \left(\prod_{\sigma=1}^d (\alpha_\sigma + 1)_n \right) {}_1F_d \left(\begin{matrix} -n \\ \alpha_1 + 1, \dots, \alpha_d + 1 \end{matrix}; x \right) , n \geqslant 0,$$

The corresponding KL_{α} -transformed sequence $\{S_n\}_{n\geqslant 0}$ with $S_n(\cdot; \alpha, \bar{\alpha}_d) = KL_{\alpha}[R_n(x; \bar{\alpha}_d)](\cdot)$ is \widetilde{d} -orthogonal where

$$\widetilde{d} = \left\{ \begin{array}{ll} 2 & , & d = 1 \\ \hline 1 & , & \frac{\mathsf{d} = 2}{d} \longrightarrow \mathsf{Continuous} \; \mathsf{Dual} \; \mathsf{Hahn} & , \\ d & , & d = 3, 4, 5, \dots \end{array} \right.$$

For instance, ...

▶ (d=1): if $u_0 := u_0(\alpha_1)$ is the regular form associated to the Laguerre polynomials $\{\widehat{L}_n(\cdot;\alpha_1)\}_{n\geqslant 0}$, then

$$< \textit{u}_0(\alpha_1), f> = \int_0^\infty f(x) \; \frac{\mathrm{e}^{-x} x^{\alpha_1}}{\Gamma(\alpha_1 + 1)} \; dx \; , \; f \in \mathcal{P}.$$

Necessarily, the canonical form $s_0(\alpha_1, \alpha)$ corresponding to the KL_{α} -transform of $\{\widehat{L}_n(\cdot; \alpha_1)\}_{n\geqslant 0}$ admits the representation

$$\langle s_0(\alpha_1,\alpha),g_{\alpha}\rangle = \frac{\sqrt{e}}{4\pi} \int_0^{\infty} g_{\alpha}(\tau) \frac{\left|\Gamma\left(\alpha+1+\frac{i\tau}{2}\right)\Gamma\left(\alpha_1-\alpha+\frac{i\tau}{2}\right)\right|^2}{\Gamma(\alpha_1+1) |\Gamma(i\tau)|^2} W_{\alpha-\alpha_1+\frac{1}{2},\frac{i\tau}{2}}(1) d\tau$$

as long as $\alpha_1 > \alpha$, where $g_{\alpha}(\tau) = KL_{\alpha}[f](\tau)$.

For instance, ...

▶ (d=2): if $u_0 := u_0(\alpha_1, \alpha_2)$ is the regular form associated to the 2-orthogonal Laguerre type polynomials $\{\widehat{B}_n(\cdot; \alpha_1, \alpha_2)\}_{n \ge 0}$, then

$$< u_0(\alpha_1,\alpha_2), f> = \int_0^\infty f(x) \; \frac{x^{\frac{\alpha_1+\alpha_2}{2}} \mathcal{K}_{\alpha_1-\alpha_2}(2\sqrt{x})}{\Gamma(\alpha_1+1)\Gamma(\alpha_2+1)} \; dx \; , \; f \in \mathcal{P}.$$

Necessarily, the canonical form $s_0(\alpha_1, \alpha)$ corresponding to the KL_{α} -transform of $\{\widehat{L}_n(\cdot; \alpha_1)\}_{n\geqslant 0}$ admits the representation

$$\langle s_0(\alpha_1,\alpha),g_\alpha\rangle = \left|\frac{1}{4\pi}\right|\int_0^\infty g_\alpha(\tau) \; \frac{\left|\Gamma\left(\alpha+1+\frac{i\tau}{2}\right)\Gamma\left(\alpha_1-\alpha+\frac{i\tau}{2}\right)\Gamma\left(\alpha_2-\alpha+\frac{i\tau}{2}\right)\right|^2}{\Gamma(\alpha_1+1)\Gamma(\alpha_2+1)\Gamma(\alpha_1+\alpha_2-2\alpha)\; |\Gamma\left(i\tau\right)|^2} \; d\tau$$

as long as $\alpha_2 > \alpha$, where $g_{\alpha}(\tau) = KL_{\alpha}[f](\tau)$.

¿ Can we determine all the orthogonal polynomial sequences that are mapped by the KL_{α} -transform to d-orthogonal sequences **?**

MOPSs whose KL_{α} -transformed sequence is a d-MOPS

Theorem. Let $\{B_n\}_{n\geqslant 0}$ be a MOPS with respect to u_0 .

If $\{S_n\}_{n\geqslant 0}$ is a *d*-MOPS, then d is even $\geqslant 2$

and $\{B_n\}_{n\geqslant 0}$ is semiclassical of class $s\in \left\{\max(0,\frac{d}{2}-2)\;,\;\frac{d}{2}-1\;,\;\frac{d}{2}\right\}$ insofar as there exist two polynomials ϕ,ψ such that u_0 fulfills

$$D(\phi u_0) + \psi u_0 = 0.$$

Precisely, there is a monic polynomial ρ , with deg $\rho(x)=\frac{\sigma}{2}$, and $N\neq 0$, such that (ϕ,ψ) is given by

a)
$$\phi(x) = x^2$$
 and $\psi(x) = x(N\rho(x) - (3+2\alpha))$ with $\rho(0) = 0$, $\langle u_0, \rho(x) \rangle \neq N^{-1}(2+2\alpha)$ and $\alpha \neq -\frac{n+3}{2}$, $n \in \mathbb{N}_0$ (u_0 is of class $s = \frac{d}{2}$)

b)
$$\phi(x) = x$$
 and $\psi(x) = N\rho(x) - (2+2\alpha)$ with $\langle u_0, \rho(x) \rangle \neq N^{-1}(2+2\alpha)$ and $\alpha \neq -\frac{n}{2} - 1$, for $n \geqslant 1$
$$(u_0 \text{ is of class } s = \frac{d}{2} - 1)$$

c)
$$\phi(x)=1$$
 and $\psi(x)=N\theta_0\rho(x)$ with $N\rho(0)=1+2\alpha$
$$(u_0 \text{ is of class } s=\tfrac{d}{2}-2 \text{, as long as } d\geqslant 4).$$

MOPSs whose KL_{α} -transformed sequence is a d-MOPS

Theorem. Let $\{B_n\}_{n\geqslant 0}$ be a MOPS with respect to u_0 .

If $\{S_n\}_{n\geqslant 0}$ is a *d*-MOPS, then *d* is even $\geqslant 2$

and $\{B_n\}_{n\geqslant 0}$ is semiclassical of class $s\in \{\max(0,\frac{d}{2}-2)\;,\;\frac{d}{2}-1\;,\;\frac{d}{2}\}$ insofar as there exist two polynomials ϕ,ψ such that u_0 fulfills

$$D(\phi u_0) + \psi u_0 = 0.$$

Precisely, there is a monic polynomial ρ , with deg $\rho(x)=\frac{d}{2}$, and $N\neq 0$, such that (ϕ,ψ) is given by

- a) $\phi(x) = x^2$ and $\psi(x) = x(N\rho(x) (3+2\alpha))$ with $\rho(0) = 0$, $\langle u_0, \rho(x) \rangle \neq N^{-1}(2+2\alpha)$ and $\alpha \neq -\frac{n+3}{2}$, $n \in \mathbb{N}_0$ (u_0 is of class $s = \frac{d}{2}$);
- b) $\phi(x) = x$ and $\psi(x) = N\rho(x) (2 + 2\alpha)$ with $\langle u_0, \rho(x) \rangle \neq N^{-1}(2 + 2\alpha)$ and $\alpha \neq -\frac{n}{2} 1$, for $n \geqslant 1$ (u_0 is of class $s = \frac{d}{2} 1$);
- c) $\phi(x) = 1$ and $\psi(x) = N\theta_0 \rho(x)$ with $N\rho(0) = 1 + 2\alpha$ $(u_0 \text{ is of class } s = \frac{d}{2} - 2$, as long as $d \ge 4$).

MOPSs whose KL_{α} -transformed sequence is a d-MOPS

Moreover, the MOPS $\{B_n\}_{n\geqslant 0}$ fulfills

$$x^{2}B_{n}''(x) + x\Big(N\rho(x) - (3+2\alpha)\Big)B_{n}'(x)$$

$$-\Big\{N\rho(x)\Big(N\rho(x) - (2+2\alpha)\Big) - Nx\rho'(x) - x + (1+2\alpha)\Big\}B_{n} = -\sum_{\nu=n-1}^{n+d} \rho_{n,\nu}^{d}B_{\nu}(x)$$

where

$$\rho_{n,\mu}^d = \begin{cases} \frac{\langle u_0, B_n^2 \rangle}{\langle u_0, B_\mu^2 \rangle} \alpha_{n+1}^{n+d-\mu} & \text{if} \quad n+1 \leqslant \mu \leqslant n+d, \text{ with } n \geqslant 0, \\ \zeta_n - \alpha^2 & \text{if} \quad \mu = n, \text{ with } n \geqslant 0, \\ \gamma_1 & \text{if} \quad \mu = n-1 \text{ with } n \geqslant 1. \end{cases}$$

Two situations arise:

Case a. The form u_0 is a semiclassical form of class s=1, insofar as it fulfills

$$D(x^2u_0) + x(Nx - (3 + 2\alpha))u_0 = 0$$

and, therefore the corresponding MOPS $\{B_n\}_{n\geqslant 0}$ can be expressed as

$$\widetilde{B}_{n+1}(N^{-1}x) = \widehat{L}_{n+1}(N^{-1}x; 2\alpha + 2) + a_n \widehat{L}_n(N^{-1}x; 2\alpha + 2)
\times \widehat{L}_{n+1}(N^{-1}x; 2\alpha + 2) = \widetilde{B}_{n+1}(N^{-1}x) - (a_n - (2n - 2\alpha - 3))\widetilde{B}_n(N^{-1}x)$$

where $\{\widehat{L}_n\}_{n\geqslant 0}$ represents the (monic) Laguerre polynomials and

$$a_n = \frac{\lambda(n+1)! + (2\alpha - \lambda + 2)(2\alpha + 3)_{n+1}}{\lambda n! + (2\alpha - \lambda + 2)(2\alpha + 3)_n} , n \geqslant 0.$$

Case b. The MOPS $\{B_n\}_{n\geqslant 0}$ is, up to a linear change of variable, a Laguerre sequence of parameter α_1 .

thank you!