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1. Introduction

It is well known that harmonic functions posses the
mean-value property:

u(x̊) =
1

σ(n)Rn

∫

B(x̊,R)
u(x)dx

=
1

nσ(n)Rn−1

∫

S(x̊,R)
u(x)dS(x),

where σ(n) = πn/2/Γ(n/2 + 1).
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On the other hand if a continuous function u sat-
isfies the above equality for every ball (for every
sphere) in Ω, then u is twice continuously differen-
tiable and harmonic on Ω.
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Clearly, for polyharmonic functions, i.e., solutions
of the iterated Laplace operator ∆m, m ∈ N, or
more generally for real analytic functions, the in-
tegral means over balls or spheres need not to be
equal the value of a function at the center of a ball
or sphere. It appears however that this means can
be expressed by some polynomials of the radius of
the ball or sphere.
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In fact, the mean-value formula for polyharmonic
functions for spherical means in dimensions d = 2, 3
was established already in 1909 by Pizzetti [18, 19].
The inverse to the mean-value property for polyhar-
monic functions in dimension n = 2 was first proved
by Sbrana [20]. The Pizzetti mean-value property
for polyharmonic functions and its inverse was ex-
tended to the case of spherical and solid means in
arbitrary dimension by Nicolesco [17].
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Afterwards some other theorems on mean-value
properties for polyharmonic and real analytic func-
tions have been obtained by Ghermanesco [11], Fried-
man [10], Bramble and Payne [6], Bojanov [5], Zal-
cman [21], Ziemian [22] and others.
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In the lecture we first recall differential relations
between the spherical and solid means of functions.
Next we extend the mean-value formulas to the case
of real analytic functions and obtain a characteri-
zation of such functions in terms of integral means
over balls or spheres. We also obtain similar char-
acterization of functions of Laplacian growth.
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As an application we study the problem of analyt-
icity in time of solutions of the initial value problem
to the heat equations ∂tu = ∆u with real analytic
initial data u(0, ·) = u0. We prove that the solu-
tion u is analytic in time at t = 0 iff the integral
means of u0 over balls or spheres of radius R can
be extended to entire functions of R of exponential
order at most 2.
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Next we extend the result to the case when ∆ is
replaced by its affine perturbations and for solutions
of heat type equations on a real analytic manifold.
Finally we state results on Borel summability of
solutions of the heat type equations.
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2. Spherical and solid means.

Let u ∈ C0(Ω), x̊ ∈ Ω, 0 < R < dist(x̊, ∂Ω).

M(u, x̊; R) =
1

σ(n)Rn

∫

B(x̊,R)

u(x)dx,

N(u, x̊; R) =
1

nσ(n)Rn−1

∫

S(x̊,R)

u(x)dS(x).
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Lemma 1 Let u ∈ C0(Ω). Then for any x̊ ∈ Ω
and 0 < R < dist(x̊, ∂Ω),

(R

n

∂

∂R
+ 1

)
M(u, x̊; R) = N(u, x̊; R).

If u ∈ C2(Ω), then

n

R

∂

∂R
N(u, x̊; R) = M(∆u, x̊; R).
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3. Mean-value properties for real-analytic functions.

Theorem 1 (Mean-value property). Let u ∈ A(Ω),
x̊ ∈ Ω. Then M(u, x̊; R) and N(u, x̊; R) are an-
alytic functions at the origin and for small R,

M(u, x̊; R) =

∞∑

k=0

∆ku(x̊)

4k
(

n
2 + 1

)
k
k!

R2k,(1)

N(u, x̊; R) =

∞∑

k=0

∆ku(x̊)

4k
(

n
2

)
k
k!

R2k.(2)

Here (a)k = a(a + 1) · · · (a + k − 1) is the Pochhamer symbol.
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If x̊ = 0 the proof is done by expending u into
Taylor series

u(x) =
∑

`∈Nn
0

1

`1! · · · `n!

∂|`|

∂x`
u(x̊)x`,

and then computing the integral of x` = x
`1
1 · · · x`n

n
over B(R). Finally, applying Lemma 1 we get (2).
¤
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Theorem 2 (Converse to the mean value prop-
erty). Let ρ ∈ C0(Ω,R+), u ∈ C∞(Ω). If

Ñ(x; R) =

∞∑

k=0

∆ku(x)

4k
(n

2

)
kk!

R2k

is convergent locally uniformly in
{(x,R) : x ∈ Ω, |R| < ρ(x)},
then u ∈ A(Ω) and N(u, x; R) = Ñ(x; R) for
x ∈ Ω, R < min

(
ρ(x), dist(x, ∂Ω)

)
.
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Proof. We first derive that for any compact set
K b Ω one can find C < ∞ such that for k ∈ N0,

sup
x∈K

|∆ku(x)| ≤ C2k+1(2k)!.

But by [1, Thm 2.2 in Chapter II] this inequality
implies that u ∈ A(Ω). Finally, by Theorem 1 we

get Ñ(x; R) = N(u, x; R). ¤
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4. Functions of Laplacian growth.

In order to control the growth of iterated Laplacians
of smooth functions Aronszajn et al. [1] introduced
the notion of the Laplacian growth.
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Definition. Let % > 0 and τ ≥ 0. A function u
smooth on Ω ⊂ Rn is of Laplacian growth (%, τ )
if for every K b Ω and ε > 0 one can find C =
C(K, ε) < ∞ such that for k ∈ N0,

(3) sup
x∈K

|∆ku(x)| ≤ C(τ + ε)2k(2k)!1−1/%.
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Definition. ([4]) Let % > 0 and τ ≥ 0. An en-
tire function F is said to be of exponential growth
(%, τ ) if for every ε > 0 one can find Cε such that
for any R < ∞

sup
|z|≤R

|F (z)| ≤ Cε exp{(τ + ε)R%}.

The exponential growth of an entire function can be also expressed in

terms of estimations of its Taylor coefficients.
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It appears that a function u of Laplacian growth
(%, τ ) on Ω is in fact real-analytic on Ω (see [1,
Theorem 2.2 in Chapter II]). So the spherical and
solid means N(u, x; R) and M(u, x; R) are well de-
fined for x ∈ Ω and R small enough. However
due to estimation (3) both functions N(u, x; R) and
M(u, x; R) can be extended to entire functions of
exponential growth.
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Theorem 3 Let % > 0 and τ ≥ 0. If u is
of Laplacian growth (%, τ ), then N(u, x; R) and
M(u, x; R) extend holomorphically to entire func-
tions of exponential growth (%, τ%/%) locally uni-
formly in Ω.
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Conversely we have

Theorem 4 Let u ∈ A(Ω). If M(u, x; R) de-
fined for x ∈ Ω and 0 ≤ R < dist(x, ∂Ω) extends

to an entire function M̃(u, x; z) of exponential
growth (%, τ ) locally uniformly in Ω,

then u is of Laplacian growth
(
%, (%τ )1/%

)
.

Analogous result holds for N(u, x; R).
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5. Convergent solutions of the heat equation.

Let us consider the initial value problem for the heat
equation {

∂tu−∆xu = 0,
u|t=0 = u0,

(4)

where u0 ∈ A(Ω), Ω ⊂ Rn.
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Then its formal power series solution is given by

(5) û(t, x) =

∞∑

k=0

∆ku0(x)

k!
tk.

We ask when the solution u is an analytic function
of time variable at t = 0. In the dimension n = 1
the problem was solved by Kowalevskaya [12].
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She proved that the solution u is analytic in time
if and only if the initial data u0 can be analytically
extended to an entire function of exponential order
2.

In the multidimensional case the solution of the
problem was given by Aronszajn at al. [1] in terms
of the growth of iterates of the Laplacian of the
initial data.
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Theorem 5 Let 0 < T ≤ ∞. If formal power
series solution (5) of the heat equation (4) is
convergent for |t| < T locally uniformly in Ω,
then N(u0, x; R) and M(u0, x; R) extend to an
entire function of exponential growth (2, 1/(4T ))
locally uniformly in Ω.
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Conversely, if N(u0, x; R) or M(u0, x; R) can
be extended to an entire function of exponential
growth (2, 1/(4T )) locally uniformly in Ω, then
the solution û of the heat equation (4) is con-
vergent for |t| < T locally uniformly in Ω.
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Proof. Assume that û(t, x) is convergent for |t| <
T loc. unif. in Ω. Then ∀K b Ω, ε > 0 ∃C s.t.

sup
x∈K

|∆ku0(x)| ≤ C
( 1

T
+ ε

)k · k!

≤ Cε

(
(2T )−1/2 + ε

)2k · (2k)!1/2.

Hence u0 is of Laplacian growth (2, 1/
√

2T ) and by
Theorem 3, N(u0, x; R) and M(u0, x; R) extend to
entire functions of exponential growth (2, 1/(4T )).
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On the other hand let N(u0, x; R) or M(u0, x; R)
can be extended to an entire function of exponen-
tial growth (2, 1/(4T )) loc. unif. in Ω. Then by
Theorem 4, u0 is of Laplacian growth (2, 1/

√
2T )

loc. unif. in Ω.
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Hence for |t| < T and small ε > 0

sup
x∈K

∞∑

k=0

|∆ku0(x)|
k!

|t|k ≤ Cε

∞∑

k=0

(
1/
√

2T + ε
)2k · (2k!)1/2|t|k
k!

≤ · · ·

≤ Cε

∞∑

k=0

[( 1

T
+ ε

)
|t|

]k

< ∞.

So û(t, x) is convergent for |t| < T loc. unif. in Ω. ¤
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6. A perturbed heat equation

Set ∆a,b = ∆+〈a,∇〉+b for a ∈ Rn, b ∈ R. Then
the unique formal power series solution ŵ(t, x) to{

∂tw −∆a,bw = 0,
w|t=0 = w0 ∈ A(Ω),

(6)
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is given by

(7) ŵ(t, x) =

∞∑

k=0

(∆a,b)kw0(x)

k!
tk.

On the other hand w(t, x) satisfies (6) iff
u(t, x) = exp{1

2〈a, x〉 − ct}w(t, x)

with c = 1
4a

2 − 1
2

∑n
i=1 ai + b

is a solution of the heat equation (4).
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Set

Ma(w0; x,R) = −
∫

B(x,R)

u(ξ) exp{1
2〈a, ξ〉} dξ,

Na(w0; x,R) = −
∫

S(x,R)

u(ξ) exp{1
2〈a, ξ〉} dS(ξ).

Since the multiplication by an exponential function
has no influence on convergence/divergence proper-
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ties by Theorem 5 we get

Corollary 1 Let 0 < T ≤ ∞. The formal power
series solution (7) of the initial value problem
(6) is convergent for |t| < T locally uniformly
in Ω iff Ma(w0; x,R) and/or Na(w0; x,R) as
functions of R extend holomorphically to entire
functions of exponential growth (2, 1/(4T )) lo-
cally uniformly in Ω.
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6. The heat type equations on a real analytic manifold

Let M be a real analytic manifold of dimension n
and X1, . . . , Xd real analytic linearly independent
vector fields on M.
Define a Laplace type operator on M by

∆̃ = X2
1 + · · · + X2

n.
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Let us consider the initial value problem{
∂tv − ∆̃v = 0,
v|t=0 = v0, v0 ∈ A(M).

(8)

The formal power series solution of (8) is given by

(9) v̂(t, y) =

∞∑

k=0

∆̃kv0(y)

k!
tk.
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It is well known that if vector fields Xi commute,

(C) [Xi, Xj] = 0 for i, j = 1, . . . , n,

then for a fixed ẙ ∈M one can find a real analytic
diffeomorphism Φ : Rn ⊃ Ω onto−−−→ V ⊂M s. t.
ẙ ∈ V = Φ(Ω) and Φ−1∗ (Xi) = ∂

∂xi
for i = 1, . . . , n.

Set BΦ(y, R) = Φ
(
B(x,R)

)
, SΦ(y, R) = Φ

(
S(x,R)

)
,

with x = Φ−1(y), 0 < R < dist(x, ∂Ω).
Define a measure µΦ(A) =

∫
Φ−1(A) dξ for A ⊂ V .
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Theorem 6 Let 0 < T ≤ ∞. The formal power
series solution (9) of the heat type equation (8)
is convergent for |t| < T locally uniformly in V
if and only if the solid integral mean

MΦ(v0, y; R) =
1

µΦ
(
BΦ(y,R)

)
∫

BΦ(y,R)

v(η)dµΦ(η)

extends to an entire function of exponential growth
(2, 1/(4T )) locally uniformly in V .
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Proof. Assume that the formal power series so-
lution (9) of (8) is convergent for |t| < T locally
uniformly in V . Denote its sum as v(t, y) and
set u(t, x) = v

(
t, Φ(x)

)
, u0(x) = v0

(
Φ(x)

)
for

|t| < T , x ∈ Ω. Then u satisfies the heat equation
(4) and is given by (5) with the series convergent
for |t| < T locally uniformly in Ω. Hence by The-
orem 5, M(u0, x; R) extends to entire functions of
exponential growth

(
2, 1/(4T )

)
loc. uni. in Ω.
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But for x ∈ Ω and y = Φ(x) we have

σ(n)Rn = |B(x,R)| =

∫

Φ−1(BΦ(y,R))
dξ

= µΦ
(
BΦ(y, R)

)
,∫

B(x,R)
u0(ξ)dξ =

∫

Φ−1(BΦ(y,R))
v0

(
Φ(ξ)

)
dξ

=

∫

BΦ(y,R)
v0(η)dµΦ(η).
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So
M(u0, x; R) = MΦ(v0, y; R).

Hence MΦ(v0, y; R) as a function of R extends to
entire functions of exponential growth

(
2, 1/(4T )

)
locally uniformly in V .

The proof of the converse statement is done in the
same way. ¤
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Remark. An analogue of Theorem 6 holds for
solutions of heat type equations with ∆̃ perturbed
by

∑n
i=1 aiXi + b. In that case the measure µΦ

should be replaced by

µa
Φ(A) =

∫

Φ−1(A)
exp{1

2〈a, ξ〉} dξ, A ⊂ V.
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7. Borel summable solutions

Definition. Let d ∈ R, U ⊂ Cn and ϕ̂j ∈ O(U).
A formal series

ϕ̂(t, z) =
∑∞

j=0

ϕj(z)

j!
tj

is Borel summable with respect to t in the direc-
tion d if its Borel transform defined on Dε × U
by
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(B̂ϕ̂
)
(s, z) =

∑∞
j=0

ϕj(z)

(j!)2
sj

extends holomorphically to a domain(
Dε ∪ S(d, ε)

)× U with some 0 < ε
and the extension satisfies for any U1 b U and
0 < ε1 < ε,

sup
z∈U1

|(B̂ϕ̂
)
(s, z)| ≤ AeB|s| for s ∈ S(d, ε1)
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with some A,B < ∞.
If so, then the function

ϕθ(t, z) =
1

t

∫ ∞(θ)

0
B̂ϕ̂(s, z)e−s/tds

is called the Borel sum (or 1-sum) of ϕ̂.
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S. Michalik obtained a characterization of Borel
summable solutions of the heat equation (4).

Theorem M([16]). Let d ∈ R, U ⊂ Cn and
û be the formal power series solution (5) of the
heat equation (4) with u0 ∈ O(U).
Then the following conditions are equivalent
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• û is 1-summable in the direction d;

• M(u0; z, R) ∈ O2
(
U × (Ŝd/2 ∪ Ŝd/2+π)

)
;

• N(u0; z, R) ∈ O2
(
U × (Ŝd/2 ∪ Ŝd/2+π)

)
.

Furthermore, the 1-sum of û is given by

uθ(t, z) =
1

(4πt)n/2

∫

(eiθ/2R)n
exp

{
− eiθ|x|2

4t

}

u0(x + z)dx.
if u0(x + z) is well defined.
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Theorem 7 Let M be a real analytic manifold,
v0 ∈ A(M) and X1, . . . , Xn real analytic lin-
early independent commuting vector fields onM.
Fix ẙ ∈M and let Φ, Ω, V , BΦ, µΦ and dSΦ be
as in Theorem 6. Set u0 = v0 ◦ Φ and assume
that u0 and Φ extend to a complex neighborhood
U ⊂ Cn of Ω. Then v0 extends to the neighbor-
hood Φ(U) of V in the complexification of M.
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Let d ∈ R and let v̂ be the formal solution (9)
of the heat type equation (8). Then TFCAE:

1. v̂ is Borel summable in d loc. uni. in Φ(U);

2. MΦ(v0; z, R) extends to Φ(U)×(
Dε∪S(d/2, ε)∪

S(d/2+π, ε)
)

with 0 < ε and for any U1 b U ,
0 < ε1 < ε and R ∈ S(d/2, ε1)∪S(d/2+π, ε1),

supz∈Φ(U1)
|MΦ(v0; z, R)| ≤ AeB|R|2;

3. The same holds for NΦ(v0; z, R).
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8. Final remarks and open problems

1. The results on convergence and Borel summa-
bility are local. It would be interesting to obtain
global analogues. In case of the one dimensional
heat equation on S1 the problems can be easily
solved. The general case seems to be open.
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2. It would be also interesting to obtain conditions
for convergence and Borel summability of formal
solutions to (8) in cases when vector fields Xi do
not commute and/or are not linearly independent.

Of special interest here are the cases when ∆̃ is the
Grushin operator ∂2

x+x2∂2
y or the Laplace operator

on the Heisenberg group.

Thank you for your attention!
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