On formal power series solutions of inhomogeneous linear moment partial differential equations

Sławomir Michalik

Cardinal Stefan Wyszyński University
Warsaw, Poland

Formal and Analytic Solutions of Differential, Difference and Discrete Equations
Będlewo, August 25–31, 2013
Abstract

We study the formal power series solutions of the initial value problem for general inhomogeneous linear moment partial differential equations in two complex variables with constant coefficients

\[
\left\{ \begin{array}{l}
P(\partial_{m_1,t}, \partial_{m_2,z}) \hat{u}(t, z) = \hat{f}(t, z) \in \mathbb{C}[[t, z]]_{\tilde{s}_1, \tilde{s}_2}\\
\partial_{t,m_1}^j \hat{u}(0, z) = 0 \text{ for } j = 0, \ldots, n - 1
\end{array} \right.,
\]

where \(\partial_{m_1,t} \) and \(\partial_{m_2,z} \) are moment-differential operators introduced by W. Balser and M. Yoshino, \(n \in \mathbb{N} \) and

\[
P(\lambda, \zeta) = P_0(\zeta)\lambda^n - \sum_{j=1}^{n} P_j(\zeta)\lambda^{n-j}
\]

is a polynomial of order \(n \) with respect to \(\lambda \).
Moment functions

Definition

A pair of functions e_m and E_m is said to be kernel functions of order k ($k > 1/2$) if they have the following properties:

1. $e_m \in O(S_0(\pi/k))$, $e_m(z)/z$ is integrable at the origin, $e_m(x) \in \mathbb{R}_+$ for $x \in \mathbb{R}_+$ and e_m is exponentially flat of order k in $S_0(\pi/k)$ (i.e. $\forall \varepsilon > 0 \exists A, B > 0$ such that $|e_m(z)| \leq Ae^{-|z|/B}^k$ for $z \in S_0(\pi/k - \varepsilon)$).
Moment functions

Definition

A pair of functions e_m and E_m is said to be **kernel functions of order k** ($k > 1/2$) if they have the following properties:

1. $e_m \in \mathcal{O}(S_0(\pi/k))$, $e_m(z)/z$ is integrable at the origin, $e_m(x) \in \mathbb{R}_+$ for $x \in \mathbb{R}_+$ and e_m is exponentially flat of order k in $S_0(\pi/k)$ (i.e. $\forall \varepsilon > 0 \exists A, B > 0$ such that $|e_m(z)| \leq Ae^{-|z|/B^k}$ for $z \in S_0(\pi/k - \varepsilon)$).

2. $E_m \in \mathcal{O}^k(\mathbb{C})$ (i.e. $E_m \in \mathcal{O}(\mathbb{C})$ and $\exists A, B > 0$ such that $|E_m(z)| \leq Ae^{B|z|^k}$ for $z \in \mathbb{C}$) and $E_m(1/z)/z$ is integrable at the origin in $S_\pi(2\pi - \pi/k)$.
Moment functions

Definition

A pair of functions e_m and E_m is said to be kernel functions of order k ($k > 1/2$) if they have the following properties:

1. $e_m \in O(S_0(\pi/k))$, $e_m(z)/z$ is integrable at the origin, $e_m(x) \in \mathbb{R}_+$ for $x \in \mathbb{R}_+$ and e_m is exponentially flat of order k in $S_0(\pi/k)$ (i.e. $\forall \varepsilon > 0 \exists A,B > 0$ such that $|e_m(z)| \leq Ae^{-(|z|/B)^k}$ for $z \in S_0(\pi/k - \varepsilon)$).

2. $E_m \in O^k(\mathbb{C})$ (i.e. $E_m \in O(\mathbb{C})$ and $\exists A,B > 0$ such that $|E_m(z)| \leq Ae^{B|z|^k}$ for $z \in \mathbb{C}$) and $E_m(1/z)/z$ is integrable at the origin in $S_{\pi}(2\pi - \pi/k)$.

3. The connection between e_m and E_m is given by the corresponding moment function m of order $1/k$ as follows. The function m is defined in terms of e_m by

$$m(u) := \int_0^\infty x^{u-1} e_m(x)dx \text{ for } \text{Re } u \geq 0$$

and the kernel function E_m has the power series expansion $E_m(z) = \sum_{n=0}^\infty \frac{z^n}{m(n)}$ for $z \in \mathbb{C}$.
Moment functions

In the case $k \leq 1/2$ we must define the kernel functions of order k and the corresponding moment functions in another way.

Definition

A function e_m is called a kernel function of order $k \in (0, 1/2]$ if we can find a pair of kernel functions $e_{\tilde{m}}$ and $E_{\tilde{m}}$ of order $pk > 1/2$ (for some $p \in \mathbb{N}$) so that

$$e_m(z) = e_{\tilde{m}}(z^{1/p})/p \quad \text{for} \quad z \in S_0(\pi/k).$$

For a given kernel function e_m of order $k > 0$ we define the corresponding moment function m of order $1/k > 0$ and the kernel function E_m of order $k > 0$ as in the previous definition. It means that

$$m(u) = \tilde{m}(pu) \quad \text{and} \quad E_m(z) = \sum_{j=0}^{\infty} \frac{z^j}{m(j)} = \sum_{j=0}^{\infty} \frac{z^j}{\tilde{m}(jp)}.$$
Proposition

Let m_1, m_2 be moment functions of orders $s_1, s_2 \in \mathbb{R}_+$ respectively. Then

1. $m_1 m_2$ is a moment function of order $s_1 + s_2$,
2. m_1 / m_2 is a moment function of order $s_1 - s_2$ ($s_1 > s_2$).

Using the above proposition we extend the notion of moment functions to real orders as follows

Definition

We say that m is a moment function of order $s < 0$ if $1/m$ is a moment function of order $-s > 0$.

We say that m is a moment function of order 0 if there exist moment functions m_1 and m_2 of the same order $s > 0$ such that $m = m_1 / m_2$.
Moment functions

Proposition

Let m_1, m_2 be moment functions of orders $s_1, s_2 \in \mathbb{R}_+$ respectively. Then

1. $m_1 m_2$ is a moment function of order $s_1 + s_2$,
2. m_1 / m_2 is a moment function of order $s_1 - s_2$ ($s_1 > s_2$).

Using the above proposition we extend the notion of moment functions to real orders as follows

Definition

We say that m is a **moment function of order** $s < 0$ if $1/m$ is a moment function of order $-s > 0$.

We say that m is a **moment function of order 0** if there exist moment functions m_1 and m_2 of the same order $s > 0$ such that $m = m_1 / m_2$.

Sławomir Michalik (Wyszyński University) Solutions of inhomogeneous moment-PDEs FASDE 2013
Moment functions

Example

In the theory of k-summability ($k > 0$) we use the following kernel functions of order k with the corresponding moment function m of order $1/k$:

- $e_m(z) = k z^k e^{-z^k}$
- $m(u) = \Gamma(1 + u/k)$
- $E_m(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(1 + n/k)} =: E_{1/k}(z)$, where $E_{1/k}$ is the Mittag-Leffler function of index $1/k$.

Analogously, we denote by Γ_s the moment function of order $s \in \mathbb{R}$ defined by

$$
\Gamma_s(u) :=
\begin{cases}
\Gamma(1 + su) & \text{for } s \geq 0 \\
\frac{1}{\Gamma(1 - su)} & \text{for } s < 0
\end{cases}
$$

Γ_s are the canonical examples of moment functions, since every moment function m of order $s \in \mathbb{R}$ has the same growth as Γ_s. It means that there exist constants $c, C > 0$ such that $c n \Gamma_s(n) \leq m(n) \leq C n \Gamma_s(n)$ for every $n \in \mathbb{N}$.

Sławomir Michalik (Wyszyński University) Solutions of inhomogeneous moment-PDEs FASDE 2013 6 / 22
Moment functions

Example

In the theory of k-summability ($k > 0$) we use the following kernel functions of order k with the corresponding moment function m of order $1/k$:

- $e_m(z) = k z^k e^{-z^k}$
- $m(u) = \Gamma(1 + u/k)$
- $E_m(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(1 + n/k)} =: \mathbb{E}_{1/k}(z)$, where $\mathbb{E}_{1/k}$ is the Mittag-Leffler function of index $1/k$.

Analogously, we denote by Γ_s the moment function of order $s \in \mathbb{R}$ defined by

$$\Gamma_s(u) := \begin{cases}
\Gamma(1 + su) & \text{for } s \geq 0 \\
1/\Gamma(1 - su) & \text{for } s < 0
\end{cases}. $$

Γ_s are the canonical examples of moment functions, since every moment function m of order $s \in \mathbb{R}$ has the same growth as Γ_s. It means that there exist constants $c, C > 0$ such that

$$c^n \Gamma_s(n) \leq m(n) \leq C^n \Gamma_s(n) \quad \text{for every } n \in \mathbb{N}.$$
Moment Borel transform

Definition

Let m be a moment function. Then the linear operator $B_{m,x} : \mathbb{C}[[x]] \rightarrow \mathbb{C}[[x]]$ defined by

$$B_{m,x} \left(\sum_{j=0}^{\infty} u_j x^j \right) := \sum_{j=0}^{\infty} \frac{u_j}{m(j)} x^j$$

is called an m-moment Borel transform.
Moment Borel transform

Definition

Let m be a moment function. Then the linear operator $B_{m,x}: \mathbb{C}[[x]] \to \mathbb{C}[[x]]$ defined by

$$B_{m,x}(\sum_{j=0}^{\infty} u_j x^j) := \sum_{j=0}^{\infty} \frac{u_j}{m(j)} x^j$$

is called an m-moment Borel transform.

Remark

For every $\hat{u} \in \mathbb{C}[[x]]$ the following properties of moment Borel transforms are satisfied:

1. $B_{m_1,x} B_{m_2,x} \hat{u} = B_{m_1 m_2} \hat{u}$ for every moment functions m_1 and m_2.
2. $B_{m,x} B_{1/m,x} \hat{u} = B_{1/m,x} B_{m,x} \hat{u} = B_{1,x} \hat{u} = \hat{u}$ for every moment function m.

Sławomir Michalik (Wyszyński University) Solutions of inhomogeneous moment-PDEs FASDE 2013 7 / 22
Gevrey order

According to the properties of moment functions we may define the Gevrey order of formal power series as follows

Definition

Let $s \in \mathbb{R}$. Then $\hat{u} \in \mathbb{C}[[x]]$ is called a **formal power series of Gevrey order** s if there exists a disc $D \subset \mathbb{C}$ with centre at the origin such that $B_{\Gamma_s, x} \hat{u} \in \mathcal{O}(D)$. The space of formal power series of Gevrey order s is denoted by $\mathbb{C}[[x]]_s$.

Remarks

1. We may replace Γ_s in the above definition by any moment function m of order s.
2. If $\hat{u} \in \mathbb{C}[[x]]$ and $s \leq 0$ then \hat{u} is convergent, so its sum u is well defined. Moreover $\hat{u} \in \mathbb{C}[[x]]_0 \iff u \in \mathcal{O}(D)$ and $\hat{u} \in \mathbb{C}[[x]]_s \iff u \in \mathcal{O}^{-1/s}(\mathcal{O})$ for $s < 0$.

Sławomir Michalik (Wyszyński University)
Solutions of inhomogeneous moment-PDEs
FASDE 2013
Gevrey order

According to the properties of moment functions we may define the Gevrey order of formal power series as follows

Definition

Let $s \in \mathbb{R}$. Then $\hat{u} \in \mathbb{C}[[x]]$ is called a **formal power series of Gevrey order s** if there exists a disc $D \subset \mathbb{C}$ with centre at the origin such that $B_{\Gamma_s \times \Gamma_s} \hat{u} \in \mathcal{O}(D)$. The space of formal power series of Gevrey order s is denoted by $\mathbb{C}[[x]]_s$.

Remarks

1. We may replace Γ_s in the above definition by any moment function m of order s.
2. If $\hat{u} \in \mathbb{C}[[x]]_s$ and $s \leq 0$ then \hat{u} is convergent, so its sum u is well defined. Moreover $\hat{u} \in \mathbb{C}[[x]]_0 \iff u \in \mathcal{O}(D)$ and $\hat{u} \in \mathbb{C}[[x]]_s \iff u \in \mathcal{O}^{-1/s}(\mathbb{C})$ for $s < 0$.

Sławomir Michalik (Wyszyński University) Solutions of inhomogeneous moment-PDEs FASDE 2013 8 / 22
Now we are ready to define the k-summability of formal power series.

Definition

Let $k > 0$ and $d \in \mathbb{R}$. Then $\hat{u} \in \mathbb{C}[[x]]$ is called k-summable in a direction d if there exists a disc-sector $\hat{S}_d := S_d \cup D$ in a direction d such that $B_{\Gamma_{1/k},x} \hat{u} \in \mathcal{O}^k(\hat{S}_d)$.
Borel summability

Now we are ready to define the k-summability of formal power series

Definition

Let $k > 0$ and $d \in \mathbb{R}$. Then $\hat{u} \in \mathbb{C}[[x]]$ is called k-summable in a direction d if there exists a disc-sector $\hat{S}_d := S_d \cup D$ in a direction d such that $B_{\Gamma_{1/k}, x} \hat{u} \in \mathcal{O}^k(\hat{S}_d)$.

Remark

By the general theory of moment summability we may replace $\Gamma_{1/k}$ in the above definition by any moment function m of order $1/k$.
Moment operators

Definition

Let m be a moment function. Then the linear operator $\partial_{m,x} : \mathbb{C}[[x]] \to \mathbb{C}[[x]]$ defined by

$$\partial_{m,x}\left(\sum_{j=0}^{\infty} \frac{u_j}{m(j)} x^j \right) := \sum_{j=0}^{\infty} \frac{u_{j+1}}{m(j)} x^j$$

is called the m-moment differential operator $\partial_{m,x}$.
Moment operators

Definition

Let m be a moment function. Then the linear operator $\partial_{m,x} : \mathbb{C}[[x]] \to \mathbb{C}[[x]]$ defined by

$$\partial_{m,x} \left(\sum_{j=0}^{\infty} \frac{u_j}{m(j)} x^j \right) := \sum_{j=0}^{\infty} \frac{u_{j+1}}{m(j)} x^j$$

is called the m-moment differential operator $\partial_{m,x}$.

Moreover, the right-inversion operator $\partial_{m,x}^{-1} : \mathbb{C}[[x]] \to \mathbb{C}[[x]]$ given by

$$\partial_{m,x}^{-1} \left(\sum_{j=0}^{\infty} \frac{u_j}{m(j)} x^j \right) := \sum_{j=1}^{\infty} \frac{u_{j-1}}{m(j)} x^j$$

is called the m-moment integration operator $\partial_{m,x}^{-1}$.

Example

Below we present some examples of moment differential operators acting on
\(\hat{u}(x) = \sum_{j=0}^{\infty} u_j x^j. \)
Example

Below we present some examples of moment differential operators acting on
\(\hat{u}(x) = \sum_{j=0}^{\infty} u_j x^j \).

- \(\partial_{\Gamma,1,x} \hat{u} = \partial_x \hat{u} \).
Moment differential operators

Example

Below we present some examples of moment differential operators acting on
\(\hat{u}(x) = \sum_{j=0}^{\infty} u_j x^j \).

- \(\partial_{\Gamma_1, x} \hat{u} = \partial_x \hat{u} \).

- \((\partial_{\Gamma_s, x} \hat{u})(x^s) = \partial_x^s (\hat{u}(x^s)) \) (s > 0), where \(\partial_x^s \) is the Caputo fractional derivative of order s (i.e. \(\partial_x^s (\sum_{j=0}^{\infty} \frac{u_j}{\Gamma_s(j)} x^{sj}) := \sum_{j=0}^{\infty} \frac{u_{j+1}}{\Gamma_s(j)} x^{sj} \).
Moment differential operators

Example

Below we present some examples of moment differential operators acting on
\(\hat{u}(x) = \sum_{j=0}^{\infty} u_j x^j. \)

- \(\partial_{1,x} \hat{u} = \partial_x \hat{u}. \)

- \((\partial_{s,x} \hat{u})(x^s) = \partial_x^s(\hat{u}(x^s)) \) \((s > 0), \) where \(\partial_x^s \) is the Caputo fractional derivative of order \(s \) (i.e. \(\partial_x^s \left(\sum_{j=0}^{\infty} \frac{u_j}{\Gamma(s(j))} x^{sj} \right) := \sum_{j=0}^{\infty} \frac{u_{j+1}}{\Gamma(s(j))} x^{sj} \)).

- \(\partial_{0,x} \hat{u}(x) = \partial_{1,x} \hat{u}(x) = \frac{\hat{u}(x)-u_0}{x}. \)
Moment differential operators

Example

Below we present some examples of moment differential operators acting on \(\hat{u}(x) = \sum_{j=0}^{\infty} u_j x^j \).

- \(\partial_{\Gamma,1} x \hat{u} = \partial_x \hat{u} \).
- \((\partial_{\Gamma,s} x \hat{u})(x^s) = \partial_x^s(\hat{u}(x^s)) \) (\(s > 0 \)), where \(\partial_x^s \) is the Caputo fractional derivative of order \(s \) (i.e. \(\partial_x^s(\sum_{j=0}^{\infty} \frac{u_j}{\Gamma_s(j)} x^j) := \sum_{j=0}^{\infty} \frac{u_{j+1}}{\Gamma_s(j)} x^j \)).
- \(\partial_{\Gamma,0} x \hat{u}(x) = \partial_{1,x} \hat{u}(x) = \frac{\hat{u}(x)-u_0}{x} \).
- \(\partial_{\Gamma,-1} x \hat{u}(x) = \frac{1}{x} \int_0^x \frac{\hat{u}(y)-u_0}{y} \, dy \).
Moment differential operators

Example

Below we present some examples of moment differential operators acting on \(\hat{u}(x) = \sum_{j=0}^{\infty} u_j x^j \).

- \(\partial_{\Gamma_1, x} \hat{u} = \partial_x \hat{u} \).
- \((\partial_{\Gamma_s, x} \hat{u})(x^s) = \partial^s_x(\hat{u}(x^s)) \) (\(s > 0 \)), where \(\partial^s_x \) is the Caputo fractional derivative of order \(s \) (i.e. \(\partial^s_x(\sum_{j=0}^{\infty} \frac{u_j}{\Gamma_s(j)} x^j) := \sum_{j=0}^{\infty} \frac{u_j+1}{\Gamma_s(j)} x^j \)).
- \(\partial_{\Gamma_0, x} \hat{u}(x) = \partial_{1, x} \hat{u}(x) = \frac{\hat{u}(x)-u_0}{x} \).
- \(\partial_{\Gamma_{-1}, x} \hat{u}(x) = \frac{1}{x} \int_0^x \frac{\hat{u}(y)-u_0}{y} \, dy \).
- \((\partial_{\Gamma_{-s}, x} \hat{u})(x^s) = \frac{1}{x^s} \partial^{-s}_x \hat{u}(x^s)-u_0 \) (\(s > 0 \)) where \(\partial^{-s}_x \) is the right-inversion operator to \(\partial^s_x \) and is defined by \(\partial^{-s}_x(\sum_{j=0}^{\infty} \frac{u_j}{\Gamma_s(j)} x^j) := \sum_{j=1}^{\infty} \frac{u_{j-1}}{\Gamma_s(j)} x^j \).
Moment operators

The moment differential operator $\partial_{m,z}$ is well-defined for every $\varphi \in \mathcal{O}(D)$. Moreover, if $\varphi \in \mathcal{O}(D_r)$ and m is a moment function of order $1/k > 0$ then for every $|z| < \varepsilon < r$ and $n \in \mathbb{N}$ we have

$$\partial^n_{m,z} \varphi(z) = \frac{1}{2\pi i} \int_{|w| = \varepsilon} \varphi(w) \int_{0}^{\infty(\theta)} \zeta^n E_m(z\zeta) \frac{e_m(w\zeta)}{w\zeta} d\zeta dw,$$

where $\theta \in (-\arg w - \frac{\pi}{2k}, -\arg w + \frac{\pi}{2k})$.

Using the above formula, we may define a moment pseudodifferential operator $\lambda(\partial_{m,z})$: $\mathcal{O}(D) \to \mathcal{O}(D)$ as an operator satisfying $\lambda(\partial_{m,z}) E_m(z\zeta) := \lambda(\zeta) E_m(z\zeta)$ for $|\zeta| \geq r_0$. Hence, if $\lambda(\zeta)$ is an analytic function for $|\zeta| \geq r_0$ of polynomial growth at infinity then $\lambda(\partial_{m,z})$ is defined by $\lambda(\partial_{m,z}) \varphi(z) := \frac{1}{2\pi i} \int_{|w| = \varepsilon} \varphi(w) \int_{0}^{\infty(\theta)} \zeta^n E_m(z\zeta) \frac{e_m(w\zeta)}{w\zeta} d\zeta dw$ for every $\varphi \in \mathcal{O}(D_r)$ and $|z| < \varepsilon < r$, where $\theta \in (-\arg w - \frac{\pi}{2k}, -\arg w + \frac{\pi}{2k})$.
Moment operators

The moment differential operator $\partial_{m,z}$ is well-defined for every $\varphi \in \mathcal{O}(D)$. Moreover, if $\varphi \in \mathcal{O}(D_r)$ and m is a moment function of order $1/k > 0$ then for every $|z| < \varepsilon < r$ and $n \in \mathbb{N}$ we have

$$\partial^n_{m,z} \varphi(z) = \frac{1}{2\pi i} \oint_{|w| = \varepsilon} \varphi(w) \int_0^{\infty(\theta)} \zeta^n E_m(z\zeta) \frac{e_m(w\zeta)}{w\zeta} d\zeta \, dw,$$

where $\theta \in (\arg w - \frac{\pi}{2k}, \arg w + \frac{\pi}{2k})$.

Using the above formula, we may define a moment pseudodifferential operator $\lambda(\partial_{m,z}) : \mathcal{O}(D) \rightarrow \mathcal{O}(D)$ as an operator satisfying

$$\lambda(\partial_{m,z}) E_m(\zeta z) := \lambda(\zeta) E_m(\zeta z) \quad \text{for} \quad |\zeta| \geq r_0.$$

Hence, if $\lambda(\zeta)$ is an analytic function for $|\zeta| \geq r_0$ of polynomial growth at infinity then $\lambda(\partial_{m,z})$ is defined by

$$\lambda(\partial_{m,z}) \varphi(z) := \frac{1}{2\pi i} \oint_{|w| = \varepsilon} \varphi(w) \int_{r_0e^{i\theta}}^{\infty(\theta)} \lambda(\zeta) E_m(\zeta z) \frac{e_m(\zeta w)}{\zeta w} d\zeta \, dw$$

for every $\varphi \in \mathcal{O}(D_r)$ and $|z| < \varepsilon < r$, where $\theta \in (\arg w - \frac{\pi}{2k}, \arg w + \frac{\pi}{2k})$.

Slawomir Michalik (Wyszyński University)
Commutation formula

The operators $B_{m',x}, \partial_{m,x}, P(\partial_{m,x}): \mathbb{C}[[x]] \to \mathbb{C}[[x]]$ and $\lambda(\partial_{m,x}): \mathcal{O}(D) \to \mathcal{O}(D)$ satisfy the following commutation formulas:

1. $B_{m',x} \partial_{m,x} \hat{u} = \partial_{mm',x} B_{m',x} \hat{u},$
2. $B_{m',x} P(\partial_{m,x}) \hat{u} = P(\partial_{mm',x}) B_{m',x} \hat{u}$ for any polynomial P with constant coefficients.
3. $B_{m',x} \lambda(\partial_{m,x}) \hat{u} = \lambda(\partial_{mm',x}) B_{m',x} \hat{u}$ for any moment pseudodifferential operator $\lambda(\partial_{m,x}).$
Commutation formula

The operators $B_{m',x}, \partial_{m,x}, P(\partial_{m,x}): \mathbb{C}[[x]] \to \mathbb{C}[[x]]$ and $\lambda(\partial_{m,x}): \mathcal{O}(D) \to \mathcal{O}(D)$ satisfy the following commutation formulas:

1. $B_{m',x} \partial_{m,x} \hat{u} = \partial_{mm',x} B_{m',x} \hat{u},$
2. $B_{m',x} P(\partial_{m,x}) \hat{u} = P(\partial_{mm',x}) B_{m',x} \hat{u}$ for any polynomial P with constant coefficients.
3. $B_{m',x} \lambda(\partial_{m,x}) \hat{u} = \lambda(\partial_{mm',x}) B_{m',x} \hat{u}$ for any moment pseudodifferential operator $\lambda(\partial_{m,x}).$

By the above commutation formula we may extend the definition of moment pseudodifferential operators:

Definition

Let $s \in \mathbb{R}, m$ be a moment function of order $\tilde{s} \in \mathbb{R}$ and $\lambda(\zeta)$ be a holomorphic function for $|\zeta| \geq r_0$ of polynomial growth at infinity. A moment pseudodifferential operator $\lambda(\partial_{m,z}): \mathbb{C}[[z]]_s \to \mathbb{C}[[z]]_s$ is defined by

$$
\lambda(\partial_{m,z}) \hat{\phi}(z) := B_{-\tilde{s},z} \lambda(\partial_{m \tilde{s},z}) B_{\tilde{s},z} \hat{\phi}(z),
$$

where $\hat{\phi} \in \mathbb{C}[[z]]_s$ and $\tilde{s} = \max\{s, 1 - \tilde{s}\}$ and the operator $\lambda(\partial_{m \tilde{s},z})$ was constructed in the previous definition.
Factorization of $P(\partial_{m_1}, t, \partial_{m_2}, z)$

Let $P(\lambda, \zeta) = P_0(\zeta)\lambda^n - \sum_{j=1}^{n} P_j(\zeta)\lambda^{n-j}$ be a general polynomial of two variables, which is of order n with respect to λ.

Using the moment-pseudodifferential operators we factorize the moment-differential operator $P(\partial_{m_1}, t, \partial_{m_2}, z)$ as follows

$$P(\partial_{m_1}, t, \partial_{m_2}, z) = P_0(\partial_{m_2}, z)(\partial_{m_1}, t - \lambda_1(\partial_{m_2}, z))^{n_1} \cdots (\partial_{m_1}, t - \lambda_l(\partial_{m_2}, z))^{n_l}$$

$$=: P_0(\partial_{m_2}, z)\tilde{P}(\partial_{m_1}, t, \partial_{m_2}, z)$$

where $\lambda_1(\zeta), \ldots, \lambda_l(\zeta)$ are the characteristic roots of $P(\lambda, \zeta) = 0$ with multiplicities n_1, \ldots, n_l ($n_1 + \ldots + n_l = n$) respectively.
Factorization of $P(\partial_{m_1}, t, \partial_{m_2}, z)$

Let $P(\lambda, \zeta) = P_0(\zeta)\lambda^n - \sum_{j=1}^n P_j(\zeta)\lambda^{n-j}$ be a general polynomial of two variables, which is of order n with respect to λ.

Using the moment-pseudodifferential operators we factorize the moment-differential operator $P(\partial_{m_1}, t, \partial_{m_2}, z)$ as follows

$$P(\partial_{m_1}, t, \partial_{m_2}, z) = P_0(\partial_{m_2}, z)(\partial_{m_1}, t - \lambda_1(\partial_{m_2}, z))^{n_1} ... (\partial_{m_1}, t - \lambda_l(\partial_{m_2}, z))^{n_l} =: P_0(\partial_{m_2}, z)\tilde{P}(\partial_{m_1}, t, \partial_{m_2}, z)$$

where $\lambda_1(\zeta), ..., \lambda_l(\zeta)$ are the characteristic roots of $P(\lambda, \zeta) = 0$ with multiplicities $n_1, ..., n_l$ ($n_1 + ... + n_l = n$) respectively.

In general $\lambda_j(\zeta)$ are algebraic functions, hence they are holomorphic functions of the variable $\xi = \zeta^{1/\kappa}$ for $|\zeta| \geq r_0$ (for some $\kappa \in \mathbb{N}$ and for sufficiently large r_0).
Factorization of $P(\partial_{m_1}, t, \partial_{m_2}, z)$

Let $P(\lambda, \zeta) = P_0(\zeta)\lambda^n - \sum_{j=1}^n P_j(\zeta)\lambda^{n-j}$ be a general polynomial of two variables, which is of order n with respect to λ.

Using the moment-pseudodifferential operators we factorize the moment-differential operator $P(\partial_{m_1}, t, \partial_{m_2}, z)$ as follows

$$P(\partial_{m_1}, t, \partial_{m_2}, z) = P_0(\partial_{m_2}, z)(\partial_{m_1}, t - \lambda_1(\partial_{m_2}, z))^{n_1} \ldots (\partial_{m_1}, t - \lambda_l(\partial_{m_2}, z))^{n_l} =: P_0(\partial_{m_2}, z)\tilde{P}(\partial_{m_1}, t, \partial_{m_2}, z)$$

where $\lambda_1(\zeta), \ldots, \lambda_l(\zeta)$ are the characteristic roots of $P(\lambda, \zeta) = 0$ with multiplicities n_1, \ldots, n_l ($n_1 + \ldots + n_l = n$) respectively.

In general $\lambda_j(\zeta)$ are algebraic functions, hence they are holomorphic functions of the variable $\xi = \zeta^{1/\kappa}$ for $|\zeta| \geq r_0$ (for some $\kappa \in \mathbb{N}$ and for sufficiently large r_0).

For this reason we use

Proposition

Let $v(t, z) = u(t, z^\kappa)$ and $\tilde{m}_2(u) = m_2(u/\kappa)$. Then $P(\partial_{m_1}, t, \partial_{m_2}, z)u = 0$ if and only if $P(\partial_{m_1}, t, \partial_{m_2}, z)\tilde{v} = 0$.

Hence without loss of generality we may assume that $\kappa = 1$, $\lambda_j(\zeta)$ is a holomorphic function for $|\zeta| \geq r_0$ and the moment pseudodifferential operators $\lambda_j(\partial_{m_2}, z)$ are well defined.
Uniqueness of formal solution

If $P_0(\zeta) \neq \text{const.}$ then the formal solution is not uniquely determined. For this reason we choose a formal power series $\hat{g} \in \mathbb{C}[[t, z]]_{s_1, s_2}$ satisfying the equation $P_0(\partial_{m_2, z}) \hat{g} = \hat{f}$. For such \hat{g} we may construct the uniquely determined solution \hat{u} of

\[
\left\{ \begin{array}{l}
\tilde{P}(\partial_{m_1, t}, \partial_{m_2, z}) \hat{u} = \hat{g} \\
\partial_{m_1, t}^j \hat{u}(0, z) = 0 \text{ for } j = 0, \ldots, n - 1
\end{array} \right.
\]

which is also a formal solution of

\[
\left\{ \begin{array}{l}
P(\partial_{m_1, t}, \partial_{m_2, z}) \hat{u} = \hat{f} \\
\partial_{m_1, t}^j \hat{u}(0, z) = 0 \text{ for } j = 0, \ldots, n - 1
\end{array} \right.
\tag{1}
\]

and is called the formal solution of (1) determined by \hat{g}.
Decomposition of equation

By the factorization of operator $\tilde{P}(\partial_{m_1,t}, \partial_{m_2,z})$ we obtain that the formal solution \hat{u} determined by \hat{g} satisfies the decomposition $\hat{u} = \sum_{\alpha=1}^{l} \sum_{\beta=1}^{n_\alpha} \hat{u}_{\alpha\beta}$, where $\hat{u}_{\alpha\beta}$ is a formal solution of

$$
\begin{cases}
(\partial_{m_1,t} - \lambda_\alpha(\partial_{m_2,z}))^\beta \hat{u}_{\alpha\beta} = \hat{g}_{\alpha\beta} \\
\partial_{m_1,t}^j \hat{u}_{\alpha\beta}(0, z) = 0 \ (j = 0, ..., \beta - 1)
\end{cases},
$$

where $\hat{g}_{\alpha\beta}(t, z) := d_{\alpha\beta}(\partial_{m_2,z})\hat{g}(t, z) \in \mathbb{C}[[t, z]]_{\tilde{s}_1, \tilde{s}_2}$ and $d_{\alpha\beta}(\zeta)$ is a holomorphic function of polynomial growth.
Gevrey order of formal solution

By the above decomposition it is sufficient to study the moment-pseudodifferential equation

\[
\begin{cases}
(\partial_{m_1,t} - \lambda(\partial_{m_2,z}))^\beta u = \hat{g} \in \mathbb{C}[[t, z]]\tilde{s}_1,\tilde{s}_2 \\
\partial_{m_1,t}^j u(0, z) = 0 \quad (j = 0, \ldots, \beta - 1).
\end{cases}
\]

For simplicity we assume that \(\beta = 1\). In this case the formal solution \(\hat{u}\) is given by

\[
\hat{u}(t, z) = \sum_{n=0}^{\infty} \left(\partial_{m_1,t}^{-1} \right)^n (\partial_{m_2,z})^n \hat{g}(t, z).
\]

We will study the Gevrey order of formal solution \(\hat{u}\), which depends on the orders \(s_1\) and \(s_2\) of moment functions, on the Gevrey orders \(\tilde{s}_1, \tilde{s}_2\) and depends on the characteristic root \(\lambda(\zeta)\sim \lambda_0\xi^q\) (i.e. \(\lim_{\zeta \to \infty} \lambda(\zeta)\zeta^q = \lambda_0 \neq 0\)).

Estimating the coefficients of the formal solution \(\hat{u}\) we have

Proposition

If \(q \geq 0\) then \(\hat{u} \in \mathbb{C}[[t, z]]\max\{q(s_2 + \tilde{s}_2) - s_1, \tilde{s}_1, \tilde{s}_2\}\).
Gevrey order of formal solution

By the above decomposition it is sufficient to study the moment-pseudodifferential equation

\[
\begin{align*}
\left\{(\partial_{m_1,t} - \lambda(\partial_{m_2,z}))^\beta u &= \mathring{g} \in \mathbb{C}[[t, z]]\tilde{s}_1, \tilde{s}_2 \\
\partial_{m_1,t}^j u(0, z) &= 0 \quad (j = 0, \ldots, \beta - 1)\end{align*}
\]

For simplicity we assume that $\beta = 1$. In this case the formal solution \mathring{u} is given by

\[
\mathring{u}(t, z) = \sum_{n=0}^{\infty} (\partial_{m_1,t}^{-1})^{n+1} \lambda^n (\partial_{m_2,z}) \mathring{g}(t, z).
\]
Gevrey order of formal solution

By the above decomposition it is sufficient to study the moment-pseudodifferential equation

\[
\begin{cases}
(\partial_{m_1, t} - \lambda(\partial_{m_2, z}))^\beta u = \hat{g} \in \mathbb{C}[[t, z]]\tilde{s}_1, \tilde{s}_2 \\
\partial_{m_1, t}^j u(0, z) = 0 \ (j = 0, \ldots, \beta - 1).
\end{cases}
\]

For simplicity we assume that $\beta = 1$. In this case the formal solution \hat{u} is given by

\[
\hat{u}(t, z) = \sum_{n=0}^{\infty} \left(\partial_{m_1, t}^{-1} \right)^{n+1} \lambda^n (\partial_{m_2, z}) \hat{g}(t, z).
\]

We will study the Gevrey order of formal solution \hat{u}, which depends on the orders s_1 and s_2 of moment functions, on the Gevrey orders \tilde{s}_1, \tilde{s}_2 and depends on the characteristic root $\lambda(\zeta) \sim \lambda_0 \zeta^q$ (i.e. $\lim_{\zeta \to \infty} \frac{\lambda(\zeta)}{\zeta^q} = \lambda_0 \neq 0$.)
Gevrey order of formal solution

By the above decomposition it is sufficient to study the moment-pseudodifferential equation

\[
\begin{cases}
(\partial_{m_1,t} - \lambda(\partial_{m_2,z}))^\beta u = \hat{g} \in \mathbb{C}[[t, z]]\tilde{s}_1,\tilde{s}_2 \\
\partial^j_{m_1,t} u(0, z) = 0 \ (j = 0, \ldots, \beta - 1).
\end{cases}
\]

For simplicity we assume that \(\beta = 1\). In this case the formal solution \(\hat{u}\) is given by

\[
\hat{u}(t, z) = \sum_{n=0}^{\infty} (\partial^{-1}_{m_1,t})^{n+1} \lambda^n (\partial_{m_2,z}) \hat{g}(t, z).
\]

We will study the Gevrey order of formal solution \(\hat{u}\), which depends on the orders \(s_1\) and \(s_2\) of moment functions, on the Gevrey orders \(\tilde{s}_1, \tilde{s}_2\) and depends on the characteristic root \(\lambda(\zeta) \sim \lambda_0 \zeta^q\) (i.e. \(\lim_{\zeta \to \infty} \frac{\lambda(\zeta)}{\zeta^q} = \lambda_0 \neq 0\)). Estimating the coefficients of the formal solution \(\hat{u}\) we have

\[\text{Proposition}\]

If \(q \geq 0\) then \(\hat{u} \in \mathbb{C}[[t, z]]_{\text{max}\{q(s_2+\tilde{s}_2) - s_1, \tilde{s}_1\} , \tilde{s}_2}\).
Integral representation of solution

Let m be a moment function of order 0. Then by the general theory of moment summability \hat{u} is k-summable in a direction d iff $B_{m,t}\hat{u}$ is k-summable in a direction d. Analogously $u \in \mathcal{O}(\hat{S}_d \times D)$ iff $B_{m,t}u \in \mathcal{O}(\hat{S}_d \times D)$. Hence to study analytic continuation or k-summability of \hat{u} we may replace m_1 and m_2 by Γ_{s_1} and Γ_{s_2}, where s_1 and s_2 are orders of m_1 and m_2. So, we may assume that \hat{u} satisfies $(\partial_{\Gamma_{s_1},t} - \lambda(\partial_{\Gamma_{s_2},z}))\hat{u} = \hat{g}$, $\hat{u}(0,z) = 0$.

Since $(\partial^{-1}_{\Gamma_{s_1},x}) \phi(x) = \int x_1/s_0 k_\lambda(x_1/y) k_{s_1-1}(\lambda/z) \phi(y) dy (s > 0)$, using the definition of moment pseudodifferential operators and the power series representation of \hat{u} we can find the integral representation of solution $u(t,z) = -1/2\pi i \int t_1/s_1 0 \oint |w| = \varepsilon g(\tau,w) \int \infty (\theta) r_0 e^{i\theta}(\partial_{\tau} E_{\Gamma_{s_1}}((t_1/s_1 - \tau)s_1) \lambda(\zeta)) \times \times E_{\Gamma_{s_2}}(\zeta z) e^{\Gamma_{s_2}(\zeta w)} \zeta w d\zeta dw d\tau =: I[g]$, where $g \in \mathcal{O}(D^2)$, $s_1, s_2 > 0$ and $s_1 \geq q s_2$.
Integral representation of solution

Let m be a moment function of order 0. Then by the general theory of moment summability \hat{u} is k-summable in a direction d iff $B_{m,t}\hat{u}$ is k-summable in a direction d. Analogously $u \in O(\hat{S}_d \times D)$ iff $B_{m,t}u \in O(\hat{S}_d \times D)$.

Hence to study analytic continuation or k-summability of \hat{u} we may replace m_1 and m_2 by Γ_{s_1} and Γ_{s_2}, where s_1 and s_2 are orders of m_1 and m_2. So, we may assume that \hat{u} satisfies

$$(\partial_{\Gamma_{s_1}}, t - \lambda(\partial_{\Gamma_{s_2}}, z))\hat{u} = \hat{g}, \quad \hat{u}(0, z) = 0.$$
Integral representation of solution

Let \(m \) be a moment function of order 0. Then by the general theory of moment summability \(\hat{u} \) is \(k \)-summable in a direction \(d \) iff \(B_{m,t} \hat{u} \) is \(k \)-summable in a direction \(d \). Analogously \(u \in \mathcal{O}(\hat{S}_d \times D) \) iff \(B_{m,t} u \in \mathcal{O}(\hat{S}_d \times D) \).

Hence to study analytic continuation or \(k \)-summability of \(\hat{u} \) we may replace \(m_1 \) and \(m_2 \) by \(\Gamma_{s_1} \) and \(\Gamma_{s_2} \), where \(s_1 \) and \(s_2 \) are orders of \(m_1 \) and \(m_2 \). So, we may assume that \(\hat{u} \) satisfies

\[
(\partial_{\Gamma_{s_1}} t - \lambda(\partial_{\Gamma_{s_2}} z)) \hat{u} = \hat{g}, \quad \hat{u}(0, z) = 0.
\]

Since

\[
(\partial_{\Gamma_s}^{-1})^k \varphi(x) = \int_0^{x^{1/s}} \frac{ks(x^{1/s} - y)^{ks-1}}{\Gamma_s(k)} \varphi(y^s) \, dy \quad (s > 0),
\]

using the definition of moment pseudodifferential operators and the power series representation of \(\hat{u} \) we can find the integral representation of solution \(u \)

\[
u(t, z) = \frac{-1}{2\pi i} \int_0^{t^{1/s_1}} \int_{|w|=\varepsilon} g(\tau, w) \int_{r_0 e^{i\theta}}^{\infty(\theta)} (\partial_{\tau} E_{\Gamma_{s_1}}((t^{1/s_1} - \tau)^{s_1})\lambda(\zeta)) \times \\
\times E_{\Gamma_{s_2}}(\zeta z) \frac{e_{\Gamma_{s_2}}(\zeta w)}{\zeta w} \, d\zeta \, dw \, d\tau =: I[g],
\]

where \(g \in \mathcal{O}(D^2) \), \(s_1, s_2 > 0 \) and \(s_1 \geq q s_2 \).
Deforming the path of integration with respect to w in the integral representation of solution we conclude that

Theorem

Let $\lambda(\zeta) \sim \lambda_0 \zeta^q$, $s_1, s_2 > 0$, $s_1 = qs_2$, $K > 0$ and $d \in \mathbb{R}$. We assume that u is a solution of

$$(\partial_{r_{s_1}}, t - \lambda(\partial_{r_{s_2}}, z))u = g \in \mathcal{O}(D^2), \quad u(0, z) = 0.$$

Then $u(t, z) \in \mathcal{O}^{K,qK}(\hat{S}_d \times \hat{S}_{(d+\arg \lambda_0 + 2k\pi)/q})$ ($k \in \mathbb{N}$) iff $g(t, z) \in \mathcal{O}^{K,qK}(\hat{S}_d \times \hat{S}_{(d+\arg \lambda_0 + 2k\pi)/q})$ ($k \in \mathbb{N}$).
Summable solution

Let \hat{u} be a formal solution of

$$
(\partial_{r_{s_1}}, t - \lambda(\partial_{r_{s_2}}, z))\hat{u} = \hat{g} \in \mathbb{C}[[t, z]]^{s_1, s_2}, \quad \hat{u}(0, z) = 0.
$$

(2)

By the Gevrey estimates $\hat{u} \in \mathbb{C}[[t, z]]_{\max\{q(s_2 + \bar{s}_2) - s_1, \bar{s}_1\}, \bar{s}_2}$. Our aim is a characterisation of summable solutions \hat{u} in terms of inhomogeneity \hat{g}.
Summable solution

Let \hat{u} be a formal solution of

$$(\partial_{\Gamma s_1}, t - \lambda(\partial_{\Gamma s_2}, z))\hat{u} = \hat{g} \in \mathbb{C}[[t, z]]^{\tilde{s}_1, \tilde{s}_2}, \quad \hat{u}(0, z) = 0. \quad (2)$$

By the Gevrey estimates $\hat{u} \in \mathbb{C}[[t, z]]_{\max\{q(s_2 + \tilde{s}_2) - s_1, \tilde{s}_2\}, \tilde{s}_2}$. Our aim is a characterisation of summable solutions \hat{u} in terms of inhomogeneity \hat{g}.

We assume that $q(s_2 + \tilde{s}_2) \geq s_1 + \tilde{s}_1$ and $q(s_2 + \tilde{s}) > s_1$.

Applying the moment Borel transforms $B_{\Gamma q(s_2 + \tilde{s}_2) / \Gamma s_1, t}$ and $B_{\Gamma s_2 + \tilde{s}_2 / \Gamma s_2, z}$ to (2) we obtain

$$(\partial_{\Gamma q(s_2 + \tilde{s}_2)}, t - \lambda(\partial_{\Gamma s_2 + \tilde{s}_2}, z))U = G \in \mathcal{O}(D^2), \quad U(0, z) = 0,$$

where $U(t, z) := B_{\Gamma q(s_2 + \tilde{s}_2) / \Gamma s_1, t} B_{\Gamma s_2 + \tilde{s}_2 / \Gamma s_2, z} \hat{u}(t, z)$ and $G(t, z) := B_{\Gamma q(s_2 + \tilde{s}_2) / \Gamma s_1, t} B_{\Gamma s_2 + \tilde{s}_2 / \Gamma s_2, z} \hat{g}(t, z)$.
Summable solution

Let \(\hat{u} \) be a formal solution of

\[
(\partial_{r_{s_1}}, t - \lambda(\partial_{r_{s_2}}, z))\hat{u} = \hat{g} \in \mathbb{C}[[t, z]]_{\tilde{s}_1, \tilde{s}_2}, \quad \hat{u}(0, z) = 0.
\]

(2)

By the Gevrey estimates \(\hat{u} \in \mathbb{C}[[t, z]]_{\max\{q(s_2 + \tilde{s}_2) - s_1, \tilde{s}_1\}, \tilde{s}_2} \). Our aim is a characterisation of summable solutions \(\hat{u} \) in terms of inhomogeneity \(\hat{g} \).

We assume that \(q(s_2 + \tilde{s}_2) \geq s_1 + \tilde{s}_1 \) and \(q(s_2 + \tilde{s}) > s_1 \).

Applying the moment Borel transforms \(B_{r_{q(s_2 + \tilde{s}_2)/r_{s_1}}, t} \) and \(B_{r_{s_2 + \tilde{s}_2}/r_{s_2}, z} \) to (2) we obtain

\[
(\partial_{r_{q(s_2 + \tilde{s}_2)/r_{s_1}}}, t - \lambda(\partial_{r_{s_2 + \tilde{s}_2}, z}))U = G \in \mathcal{O}(D^2), \quad U(0, z) = 0,
\]

where \(U(t, z) := B_{r_{q(s_2 + \tilde{s}_2)/r_{s_1}}, t} B_{r_{s_2 + \tilde{s}_2}/r_{s_2}, z} \hat{u}(t, z) \) and

\[
G(t, z) := B_{r_{q(s_2 + \tilde{s}_2)/r_{s_1}}, t} B_{r_{s_2 + \tilde{s}_2}/r_{s_2}, z} \hat{g}(t, z).
\]

By the previous theorem we conclude that

Theorem

Let \(\hat{u} \) be a formal solution of (2), \(q > 0, s_2 + \tilde{s}_2 > 0, q(s_2 + \tilde{s}_2) \geq s_1 + \tilde{s}_1, K := \frac{1}{q(s_2 + \tilde{s}_2)} \)

and \(d \in \mathbb{R} \). If \(G \in \mathcal{O}^{K, qK}(\hat{S}_d \times \hat{S}_{(d + \arg \lambda_0 + 2k\pi)/q}) \) \((k \in \mathbb{N}) \) then \(\hat{u} \) is \(K \)-summable in a direction \(d \).
It is trivial to find the necessary condition for K-summability of \hat{u}:

Remark 1

If \hat{u} is K-summable in a direction d then also \hat{g} is K-summable in the same direction.
Remarks

1. It is trivial to find the necessary condition for K-summability of \hat{u}:

Remark 1
If \hat{u} is K-summable in a direction d then also \hat{g} is K-summable in the same direction.

2. Using the integral representation of solution we can also obtain trivially the characterisation of K-summable solutions \hat{u}:

Remark 2
\hat{u} is K-summable in a direction d iff $I[B_{\frac{q(s_2+s_2)}{r_s}, t} B_{\frac{s_2+s_2}{r_s}, z} \hat{g}] \in \mathcal{O}^K(\hat{S}_d \times D)$.
References

W. Balser

Formal power series and linear systems of meromorphic ordinary differential equations,

W. Balser, M. Yoshino

Gevrey order of formal power series solutions of inhomogeneous partial differential equations with constant coefficients,

S. Michalik

Analytic solutions of moment partial differential equations with constant coefficients,

S. Michalik

Summability of formal solutions of linear partial differential equations with divergent initial data,