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1/261. Notations
Assumptions:
A complex number q ∈ C∗ is 0 < |q| < 1.
The q-shifted operator σq: σqf(x) = f(qx).

The q-shifted factorial (a; q)n

(a; q)n :=


1, n = 0,

(1 − a)(1 − aq) . . . (1 − aqn−1), n ≥ 1,

[(1 − aq−1)(1 − aq−2) . . . (1 − aqn)]−1, n ≤ −1

(a; q)∞ := limn→∞(a; q)n

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ . . . (am; q)∞.
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2/26The basic hypergeometric series with the base q:

rϕs(a1, . . . , ar; b1, . . . , bs; q, x)

:=
∑
n≥0

(a1, . . . , ar; q)n

(b1, . . . , bs; q)n(q; q)n

{
(−1)nq

n(n−1)
2

}1+s−r

xn.

Radius of convergence:
∞, 1 or 0 according to whether r − s < 1, r − s = 1 or r − s > 1.

The bilateral basic hypergeometric series with the base q:

rψs(a1, . . . , ar; b1, . . . , bs; q, x)

:=
∑
n∈Z

(a1, . . . , ar; q)n

(b1, . . . , bs; q)n

{
(−1)nq

n(n−1)
2

}s−r

xn.

The series rψs(a1, . . . , ar; b1, . . . , bs; q, x) converges on:

r < s |x| > R :=

∣∣∣∣ b1b2 · · · bsa1a2 · · · ar

∣∣∣∣
r = s R < |x| < 1
s < r divergent around the origin
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3/26
2. Aim and main tools:
2.1 Aim — Connection formmula for the divergent bilateral basic
hypergeometric series

Main Theorem. For any x ∈ C∗ \ [−λ; q], we have(
L+

q,λ ◦ B
+
q 2ψ1(a1, a2; b1; q, x)

)
(x)

=
(1/a2, qa1/a2, b1/a1, q; q)∞
(b1, q/a1, a1/a2, qa2/a1; q)∞

θ(a1λ/q)

θ(λ/q)

∑
n≥0

(qa1/b1; q)n(b1/a1a2x)
n

(qa1/a2; q)n(q; q)n

+
(1/a1, qa2/a1, b1/a2, q; q)∞
(b1, q/a2, a2/a1, qa1/a2; q)∞

θ(a2λ/q)

θ(λ/q)

∑
n≥0

(qa2/b1; q)n(b1/a1a2x)
n

(qa2/a1; q)n(q; q)n
,

provided that the set [λ; q] is the q-spiral such that [λ; q] :=
{
λqk|k ∈ Z

}
for

any fixed λ 6∈ qZ.

Remark. The notation “
(
L+

q,λ ◦ B+
q 2ψ1(a1, a2; b1; q, x)

)
(x)” is the suitable

resummation of the divergent series 2ψ1(a1, a2; b1; q, x).
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4/262.2 Main tools — The q-Borel-Laplace transformations

1. The q-Borel transformation of the first kind is(
B+

q f
)
(ξ) :=

∑
n∈Z

anq
n(n−1)

2 ξn (=: ϕ(ξ)) .

2. The q-Laplace transformation of the first kind is(
L+

q,λϕ
)

(x) :=
1

1 − q

∫ λ∞

0

ϕ(ξ)

θq

(
ξ
x

) dqξ

ξ
=
∑
n∈Z

ϕ(λqn)

θq

(
λqn

x

) ,
here, this transformation is given by Jackson’s q-integral.
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5/26The theta function of Jacobi:

θq(x) :=
∑
n∈Z

q
n(n−1)

2 xn, ∀x ∈ C∗.

Properties of the theta function:

1. Jacobi’s triple product identity is

θq(x) =
(
q,−x,−q

x
; q
)
∞
.

2. The q-difference equation which the theta function satisfies;

θq(q
kx) = q−

n(n−1)
2 x−kθq(x), ∀k ∈ Z.

3. The inversion formula;

θq

(
1

x

)
=

1

x
θq(x).
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6/26[λ; q]-spiral: For any fixed λ ∈ C∗ \ qZ, the set [λ; q]-spiral is

[λ; q] := λqZ = {λqk; k ∈ Z}.

O

λ

qλ

q2λ

q−1λ

Figure 1. [λ; q] − spiral

Relation between the theta function and [λ; q]-spiral:

Lemma 1. We have

θ(λqk/x) = 0
iff⇐⇒ x ∈ [−λ; q].
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7/263. Linear q-difference equation of the Laplace type

The q-difference equation of the Laplace type:{
(a1x + b1)σ

2
q + (a2x + b2)σq + (a3x + b3)

}
u(x) = 0

6 parameters: a1, a2, a3, b1, b2 and b3.

By transformations x→ cx and u→ xdu, generic equations reduce to
3 parameters equation:[

(c− abqx)σ2
q − {(c+ q) − (a+ b)qx}σq + q(1 − x)

]
u(x) = 0.

A three parameters solution is Heine’s basic hypergeometric series:

u(x) = 2ϕ1(a, b; c; q, x) =
∑
n≥0

(a, b; q)n

(c; q)n(q; q)n
xn.
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8/26The degeneration diagram
The degeneration diagram for 2ϕ1(a, b; c; q, x)[Y. Ohyama, 2011]:

2ϕ1(a, b; c;x) q-confluent

1ϕ1(a; 0; x)

J
(3)
ν

J
(1)
ν , J

(2)
ν

q-Airy

Ramanujan
- �

��3

-

-

Q
QQs ��*

PPPq

1. J
(k)
ν (k = 1, 2, 3) are q-Bessel functions.

2. The q-Airy function and the Ramanujan entire function Aq(x) (Ka-
jiwara, et al., 2004; Ismail, 2005) are q-analogues of the Airy functions.

3. The function 1ϕ1(a; 0; q, x) is called the q-Hermite function.

Remark. Aq(x) is found by Ramanujan in “the Lost notebook”
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9/26
This diagram is a q-analogue of the degeneration diagram for Gauss’ hyper-
geometric series 2F1:

Gauss Kummer

Bessel

Weber

Airy- ����*

HHHHj ����*

HHHHj

Remark. Three q-Bessel functions and two q-Airy functions satisfy different
types of q-difference equations.
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10/26
4.Connection problems on second order linear q-difference
equations—unilateral cases

G. D. Birkhoff (1914) Connection formulae of second order linear q-difference
equations are linear relations in a matrix form:(

u1(x)
u2(x)

)
=

(
C11(x) C12(x)
C21(x) C22(x)

)(
v1(x)
v2(x)

)
.

(u1(x), u2(x)):a system of solutions around the origin
(v1(x), v2(x)):a system of solutions around the infinity

Functions Cij (1 ≤ i, j ≤ 2) are elliptic functions:

σqCij(x) = Cij(x), Cij(e
2πix) = Cij(x).
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11/265.The first example of the connection matrix

Connection matrix for Heine’s 2ϕ1(a, b; c; q, x): Watson’s formula
Heine’s equation[

(c− abqx)σ2
q − {(c+ q) − (a+ b)qx}σq + q(1 − x)

]
u(x) = 0.

Local solutions around the origin

u1(x) = 2ϕ1(a, b; c; q, x), u2(x) =
θ(cx)

θ(qx)
2ϕ1

(
aq

c

bq

c
;
q2

c
; q, x

)
.

Local solutions around the infinity

y(a,b)
∞ (x) =

θ(−ax)
θ(−x) 2ϕ1

(
a,
aq

c
;
aq

b
; q,

cq

abx

)
and

y(b,a)
∞ (x) =

θ(−bx)
θ(−x) 2ϕ1

(
b,
bq

c
;
bq

a
; q,

cq

abx

)
.
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12/26Connection matrix for Heine’s equation(
u1(x)
u2(x)

)
=

(
C11 C12

C21 C22(x)

)(
y

(a,b)
∞ (x)

y
(b,a)
∞ (x)

)
,

provided that

C11 =
(b, c/a; q)∞
(c, b/a; q)∞

, C12 =
(a, c/b; q)∞
(c, a/b; q)∞

,

C21 =
(bq/c, q/a; q)∞
(q2/c, b/a; q)∞

and

C22(x) =
(aq/c, q/b; q)∞
(q2/c, a/b; q)∞

θ(−ax)
θ
(
−aq

c x
) θ
(
−bq

c x
)

θ(−bx)
.

Remark. C11, C12 and C21 are constant and C22(x) is a q-elliptic function.

Remark. The first formula has given by G. N. Watson (1910).　Other
connection formula for q-difference equation with irregular singular points are
obtained by the q-Borel-Laplace transformation. (C. Zhang)
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13/266. The q-Borel-Laplace transformations

We assume that f(x) =
∑

n∈Z anx
n, a0 = 1.

6.1. The q-Borel-Laplace transformations of the first kind

1. The q-Borel transformation of the first kind is(
B+

q f
)
(ξ) :=

∑
n∈Z

anq
n(n−1)

2 ξn (=: ϕ(ξ)) .

2. The q-Laplace transformation of the first kind is(
L+

q,λϕ
)

(x) :=
1

1 − q

∫ λ∞

0

ϕ(ξ)

θq

(
ξ
x

) dqξ

ξ
=
∑
n∈Z

ϕ(λqn)

θq

(
λqn

x

) ,
here, this transformation is given by Jackson’s q-integral.
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14/26
6.2. The q-Borel-Laplace transformations of the second kind

1. The q-Borel transformation of the second kind is

(B−
q f)(ξ) :=

∑
n≥0

anq
−n(n−1)

2 ξn (=: g(ξ)) .

2. The q-Laplace transformation of the second kind is(
L−

q g
)
(x) :=

1

2πi

∫
|ξ|=r

g(ξ)θq

(
x

ξ

)
dξ

ξ
,

where r > 0 is enough small number.

Remark.These resummation methods are introduced by J.-P. Ramis and
C. Zhang.
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15/26
Remark. The q-Borel transformation is the formal inverse of the q-Laplace
transformation:

The q-Borel transformation B+
q is formal inverse of the q-Laplace transforma-

tion L+
q,λ:

Lemma 2. For any entire function f(x), we have

L+
q,λ ◦ B

+
q f = f.

The q-Borel transformation B−
q also can be considered as a formal inverse of

the q-Laplace transformation L−
q .

Lemma 3. We assume that the function f can be q-Borel transformed to the
analytic function g(ξ) around ξ = 0. Then, we have

L−
q ◦ B−

q f = f.
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16/267. Example of connection formulae
Connection matrix for the q-confluent hypergeometric series
q-confluent hypergeometric equation

(1 − abqx)u(xq2) − {1 − (a+ b)qx}u(xq) − qxu(x) = 0.

Local solutions around the origin

u1(x) = 2ϕ0(a, b;−; q, x),

u2(x) =
(abx; q)∞
θ(−qx) 2ϕ1

(q
a
,
q

b
; 0; q, abx

)
Local solutions around the infinity

Sµ(a, b; q, x) =
θ(aµx)

θ(µx)
2ϕ1

(
a, 0;

aq

b
; q,

q

abx

)
,

Sµ(b, a; q, x) =
θ(bµx)

θ(µx)
2ϕ1

(
b, 0;

bq

a
; q,

q

abx

)
,
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17/26Connection matrix for q-confluent equation
Theorem. For any λ, µ ∈ C∗, x ∈ C∗ \ [1; q] ∪ [−µ/a; q] ∪ [−λ; q], we have(

2f0(a, b;λ, q, x)

2f1(a, b; q, x)

)
=

(
Cλ

µ(a, b; q, x) Cλ
µ(b, a; q, x)

Cµ(a, b; q, x) Cµ(b, a; q, x)

)(
Sµ(a, b; q, x)
Sµ(b, a; q, x)

)
.

• The set [λ; q] is the q-spiral.

• 2f0(a, b;λ, q, x) is the q-Borel-Laplace transform (of the first kind)

of 2ϕ0(a, b;−; q, x) (given by C. Zhang).

• 2f1(a, b; q, x) is the q-Borel-Laplace transform (of the second kind)

of 2ϕ1(a, b; 0; q, x) (Morita).

• Sµ(a, b; q, x) is the solution of around the infinity.

• Cλ
µ(a, b; q, x) and Cµ(a, b; q, x) are elliptic functions.
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18/26

Thanks to these resummation methods, we obtain many
connection formulae for q-special functions. But we have
new questions:

What is the connection formulae for bilateral basic hy-
pergeometric series?
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19/26

Thanks to these resummation methods, we obtain many
connection formulae for q-special functions. But we have
new questions:

What is the connection formulae for bilateral basic hy-
pergeometric series?

... Slater knows an answer:
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20/26
Theorem. (L. J. Slater, 1952)

For any |b1 · · · br/a1 . . . ar| < |x| < 1, we have

(b1, . . . , br, q/a1, . . . , q/ar, x, q/x; q)∞
(qa1, . . . qar, 1/a1, . . . , 1/ar; q)∞

rψr(a1, . . . , ar; b1, . . . , br; q, x)

=
ar−1

1 (q, qa1/a2, . . . qa1/ar, b1/a1, . . . , br/a1, a1x, q/a1x; q)∞
(qa1, 1/a1, a1/a2, . . . , a1/ar, qa2/a1, . . . , qar/a1; q)∞

× rϕr−1

(
qa1/b1, . . . , qa1/br; qa1/a2, . . . , qa1/ar; q,

b1 · · · br
a1 · · · arx

)
+ idem(a1; a2, . . . , ar).

Remark. This Theorem gives the relation between the bilateral

basic hypergeometric series rψr and the basic hipergeometric series

rϕr−1.
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Remark 2. The special case (r = 2, b2 7→ q) gives Watson’s

formula.

Remark 3. Ramanujan’s sum for 1ψ1 is the r = 1 case of Slater’s

formula:

Theorem. (Ramanujan’s sum for 1ψ1)

1ψ1(a; b; q, z) =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

=
(b/a, q; q)∞
(b, q/a; q)∞

θ(−az)
θ(−z) 1ϕ0

(
a;−; q,

q

az

)
,

where 0 < |z| < |1|.
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... but the degenerated case have not known.
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23/268. Connection formulae for the bilateral series
q-difference equation:(

b1
q2 − a1a2x

)
u(q2x) −

{
1

q
− (a1 + a2)x

}
u(qx) − xu(x) = 0.

Solution around the origin (divergent series):

2ψ1(a1, a2; b1; q, x) :=
∑
n∈Z

(a1; q)n(a2; q)n

(b1; q)n(q; q)n

{
(−1)nq

n(n−1)
2

}−1
xn.

Solutions around infinity (convergent series):

v1(x) =
θ(a1x)

θ(x)
2ϕ1

(
qa1

b1
, 0;

qa1

a2
; q,

b1
a1a2x

)
,

v2(x) =
θ(a2x)

θ(x)
2ϕ1

(
qa2

b1
, 0;

qa2

a1
; q,

b1
a1a2x

)
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24/268. Connection formulae for the bilateral series
q-difference equation:(

b1
q2 − a1a2x

)
u(q2x) −

{
1

q
− (a1 + a2)x

}
u(qx) − xu(x) = 0.

Solution around the origin (divergent series):

2ψ1(a1, a2; b1; q, x) :=
∑
n∈Z

(a1; q)n(a2; q)n

(b1; q)n(q; q)n

{
(−1)nq

n(n−1)
2

}−1
xn.

Solutions around infinity (convergent series):

v1(x) =
θ(a1x)

θ(x)
2ϕ1

(
qa1

b1
, 0;

qa1

a2
; q,

b1
a1a2x

)
,

v2(x) =
θ(a2x)

θ(x)
2ϕ1

(
qa2

b1
, 0;

qa2

a1
; q,

b1
a1a2x

)

⇒ We apply the q-Borel transformation.
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25/26Proof of main theorem.

2ψ1(a1, a2; b1; q, x)
B+

q−→ 2ψ2(a1, a2; b1, 0; q, ξ)

Slater’s formula−−−−−−−−→
L+

q,λ−→
(
L+

q,λ ◦ B
+
q 2ψ1(a1, a2; b1; q, x)

)
(x)

=
(1/a2, qa1/a2, b1/a1, q; q)∞
(b1, q/a1, a1/a2, qa2/a1; q)∞

θ(a1λ/q)

θ(λ/q)

θ(a1qx/λ)

θ(qx/λ)

θ(x)

θ(a1x)
v1(x)

+
(1/a1, qa2/a1, b1/a2, q; q)∞
(b1, q/a2, a2/a1, qa1/a2; q)∞

θ(a2λ/q)

θ(λ/q)

θ(a2qx/λ)

θ(qx/λ)

θ(x)

θ(a2x)
v2(x).

Remark. The functions
θ(ajqx/λ)
θ(qx/λ)

θ(x)
θ(ajx) , (j = 1, 2) are q-elliptic functions.

Remark. These coefficients are new example of the Stokes coefficients for
q-difference equations.
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Dziȩkujȩ!
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