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1. Notations 1/26

Assumptions:
A complex number ¢ € C* is 0 < |¢| < 1.

The g¢-shifted operator o,: o,f(z) = f(qz).
The ¢-shifted factorial (a;q),
1 n =20,

Y

(@;9)n =4 (1 —a)(1l—aq)...(1—aqg" ), n>1,
(1 —agH(1—ag?)...(1 —ag™)]™!, n< -1

(CL; q)oo = hmn—>oo(a; Q)n

<a1, ag, ..., am, c])oo = (al; Q)oo<a2; c])oo S (am; Q)oo-



The basic hypergeometric series with the base ¢:

rps(ar, ... an by, bs;q, )

al,.. ar,q) { p n=p ) IHs=r
= —1)"q 2 } x".
=2 T b LV

s )n(d; q

Radius of convergence:
o0, 1 or 0 according to whether r —s < 1l,r—s=1orr—s > 1.

The bilateral basic hypergeometric series with the base ¢:

r¢s(a17 SR 7a'7";b17 SO bS;Q7 )

_ Z al, .. CLT, )n {(_1)nqn(n2—1) }S—r o
(by, ...

O

The series ,g(aq, . ..,a,;b1,...,bs;q, x) converges on:

biby - b,

r<s |z|>R:=
a1ag - - - Qp

r=s R<|z|<1
s <r divergent around the origin
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2. Aim and main tools:
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2.1 Aim — Connection formmula for the divergent bilateral basic

hypergeometric series

Main Theorem. For any x € C*\ [—X;q|, we have

(E;A o B;ﬂpl(ala as; by; q, CL’)) (z)

_ (1/ag, qar/az,bi/a1, ¢; q)so O(arN/q) Z (qa1/b1; q)n(b1/arasx)"

(bb q/alv al/a27 qa?/al; Q)oo (9()\/(]) >0 (qal/a2; Q)n(q; Q)n

(1/a1, qaz/ar,b1/az, ¢; @)oo O(az)/q) Z (qaz/b1; q)n(b1/arasx)"

_|_
(bDQ/aQaQZ/alyqal/CLZ;q)oo Q(A/Q) >0 (qa2/a1;Q)n(QQQ)n

provided that the set [);q] is the g-spiral such that [);q] := {)\qk\k € Z} for

any fixed \ € ¢”.

Remark. The notation “([,;r’)\ ijgwl(al,ag;bl;q,x)) (x)” is the suitable

resummation of the divergent series 211(ay, as; by; q, x).



2.2 Main tools — The ¢-Borel-Laplace transformations 4/26

1. The g-Borel transformation of the first kind is

(BEF) (€)== > ang™ T €" (= (6)).

nes

2. The g-Laplace transformation of the first kind is

)@= [ 2L 5 o)
o=l e R

ne 9

here, this transformation is given by Jackson’s g-integral.



The theta function of Jacobi: 5/26

0,(x) := Z qn(n;)x", Ve e C.

nel

Properties of the theta function:

1. Jacobi’s triple product identity is
q
0,(x :(,—x,——; ) .
a(x) = (g 54

2. The g-difference equation which the theta function satisfies;

_n(n=1)

0,(¢"v) =q = x7"0,(x), VkcZ

3. The inversion formula;



[\; ¢]-spiral: For any fixed A € C*\ ¢Z, the set [); ¢]-spiral is
[Aiq] == A" = {\g"; k € Z}.

qA

Figure 1. [\; q] — spiral
Relation between the theta function and [)\; ¢|-spiral:

Lemma 1. We have
000" /2) =0 <L 3 e [=Xiq].
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3. Linear ¢-difference equation of the Laplace type
The ¢-difference equation of the Laplace type:

{(alx + 61)03 + (agx + by)o, + (asx + bg)} u(x) =0

6 parameters: aq, as, as, b1, by and bs.

By transformations z — cz and u — z%, generic equations reduce to
3 parameters equation:

[(c — abgz)o. — {(c+q) — (a + b)gz} oy + q(1 — z)] u(z) = 0.

A three parameters solution is Heine’s basic hypergeometric series:

(a,b;9)n
U\ :2@1(6% ba C; qvx) = X .
& ; (& (a5 @)n
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The degeneration diagram 8/26
The degeneration diagram for s¢1(a, b;c; ¢, x)[Y. Ohyama, 2011]:

J,S?’) __. q-Airy

/ FAe)

201 (a, b; c; :C)»q-conﬂuent — v~
Ramanujan

1p1(a; 0; 2}

1. Jﬁk)(k = 1,2, 3) are g-Bessel functions.

2. The ¢-Airy function and the Ramanujan entire function A4,(z) (Ka-
jiwara, et al., 2004; Ismail, 2005) are g-analogues of the Airy functions.

3. The function 1¢1(a;0; ¢, x) is called the ¢g-Hermite function.

Remark. A, (x) is found by Ramanujan in “the Lost notebook”
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This diagram is a g-analogue of the degeneration diagram for Gauss’ hyper-

geometric series o F7:

Weber
/ \
\

Bessel

Gauss Kummer Airy

Remark. Three g-Bessel functions and two g-Airy functions satisfy different
types of g-difference equations.
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4.Connection problems on second order linear g-difference

equations—unilateral cases

G. D. Birkhoff (1914) Connection formulae of second order linear ¢-difference
equations are linear relations in a matrix form:

() = (G o)) ()

(u1(x), us(x)):a system of solutions around the origin
(v1(z), v2(x)):a system of solutions around the infinity

Functions Cj; (1 <4, j < 2) are elliptic functions:

0,Cij(x) = Cij(z),  Cyj(e*™z) = Cyy(a).



5.The first example of the connection matrix 11/26

Connection matrix for Heine’s 51 (a, b; ¢; ¢, x): Watson’s formula
Heine’s equation

[(c — abgz)o; — {(c+ q) — (a + b)gz} oy + q(1 — z)] u(z) = 0.
Local solutions around the origin
bcr)  (aaby o

U1 (QT) — 2@01(6% ba C q, :C)? UQ(QT) — e(qx)%Ol ( ) 4, .’L’) .

cC ¢ ¢

Local solutions around the infinity

0(—ax) aq aq  cq
(@b) () — el
Yo ('CE.) 0(—517) 21 ( ) . ) b 3 45 a,bx)

and

6(—bx) bg bg cq
(b,a) _ p. L. 2.
Yoo (IL’) 9(—1') 21 ( ) . 3 - , q, ol o



Connection matrix for Heine’s equation 12/26

()= (G ) (50)

provided that

and

Remark. C11,C1s and Cy are constant and Coy(z) is a g-elliptic function.

Remark. The first formula has given by G. N. Watson (1910). Other
connection formula for g-difference equation with irregular singular points are
obtained by the ¢g-Borel-Laplace transformation. (C. Zhang)



6. The ¢g-Borel-Laplace transformations 13/26
We assume that f(z) =), ., anx", ap = 1.

6.1. The ¢-Borel-Laplace transformations of the first kind

1. The ¢g-Borel transformation of the first kind is

(BE) (€)= aud™ T € (=: 9(€)).

nez

2. The g-Laplace transformation of the first kind is

ol R

here, this transformation is given by Jackson’s g-integral.



6.2. The ¢-Borel-Laplace transformations of the second kind

1. The ¢-Borel transformation of the second kind is

(B )(€) =) ang”

n>0

n(n—1)

z ¢ (=1 9(8)) -

2. The g-Laplace transformation of the second kind is

(€0 @)= [ o0, (3) F

where r > 0 is enough small number.

14/26

Remark.These resummation methods are introduced by J.-P. Ramis and

C. Zhang.
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Remark. The ¢-Borel transformation is the formal inverse of the ¢g-Laplace

transformation:

The ¢-Borel transformation B; is formal inverse of the ¢-Laplace transforma-
tion L‘;)\:

Lemma 2. For any entire function f(x), we have
E; ) © B; f=1r
The g-Borel transformation B, also can be considered as a formal inverse of

the g-Laplace transformation £ .

Lemma 3. We assume that the function f can be q-Borel transformed to the
analytic function g(&) around & = 0. Then, we have

L oB, f=F.



7. Example of connection formulae 16/26
Connection matrix for the ¢g-confluent hypergeometric series
g-confluent hypergeometric equation

(1 — abgz)u(zq®) — {1 — (a + b)gr} u(xq) — qru(z) = 0.

Local solutions around the origin

ul(x) = 2%00(6% b7 -, Q7'r)7

abr; q) q q
us () = ﬁ%ﬁ (a, b 0;q,aba:>

Local solutions around the infinity

O(aux a
Sﬂ(a’7b;q7x) — ( o )2S01 (a,O' _q7QJ i) )

0(b b
Sﬁb(ba a q, .’,U) — M <b7 07 _q7 q, i) )
Hx a



Connection matrix for g-confluent equation 17/26
Theorem. For any \,u € C*, x € C*\ [1;q] U [—p/a; q] U [—X; q], we have

<2fo(a, b; A, q, w)) _ (Cﬁ(a, b;q,x) Cp(b,asq, 33)) (Su(a, b; q. :v))
2f1(aab;q7$) Cu(aab;Q7$) Cu(baa;Q7x) S;A(baa’;Q7x) '

e The set [\;q] is the ¢-spiral.

e 5 fo(a,b; A\, q,z) is the ¢g-Borel-Laplace transform (of the first kind)
of 9¢p(a,b; —; q,x) (given by C. Zhang).

e »f1(a,b;q,x) is the ¢g-Borel-Laplace transform (of the second kind)
of 9¢1(a,b;0; ¢, x) (Morita).

e S,(a,b;q,x) is the solution of around the infinity.

o C’;L\(a, b;q,x) and C,(a,b;q,x) are elliptic functions.
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Thanks to these resummation methods, we obtain many
connection formulae for ¢-special functions. But we have
new questions:

What is the connection formulae for bilateral basic hy-
pergeometric series?
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Thanks to these resummation methods, we obtain many
connection formulae for ¢-special functions. But we have
new questions:

What is the connection formulae for bilateral basic hy-
pergeometric series?

... Slater knows an answer:
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Theorem. (L. J. Slater, 1952)

For any |by---b./a;y...a,| < |x| <1, we have

(b1,...,br,q/an, ..., q/0r, %, q/T;q)o
(qay,...qar, 1/ay,....;1/a;; q)s

B a{‘l(q, qai/as, ...qar/a,, bi/ay, ... b./ay,a1x,q/a17; q) s

B (qay, 1/ay,a1/as, ... a1/a,,qas/aq, ..., qa,/a1;q)s

by---b,
X rPr—1 (qal/b1, ..yqay /by qar/as, ..., qa1/ar;q, —)

ai-- - a,T

Twr(ah ceey A b17 oo c 7b7“; q, .T)

+ idem(ay; as, . . ., a,).

Remark. This Theorem gives the relation between the bilateral
basic hypergeometric series ,2, and the basic hipergeometric series

rPr—1-



Remark 2. The special case (r = 2,by — q) gives Watson’s
formula.

Remark 3. Ramanujan’s sum for 127 is the r = 1 case of Slater’s
formula:

Theorem. (Ramanujan’s sum for ;¢)
(g:b/a, a2, q/az; q)
b _
lwl(aa 7Q7Z) (b,Q/Cl,Z,b/CLZ;Q)OO
_ (b/a,4;q)sc 6(—0az2) (a. g i)
(b’ q/CLJ q)oo 9(_2) 1%0 R ) )

where 0 < |z| < [1].
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... but the degenerated case have not known.



8. Connection formulae for the bilateral series 23/26

g-difference equation:

(% _ a1a2x) w(g’z) — {% (a4 ag)x} e .|

)
(a1; @)n(az; @)n {(_1)nq"(”2_1) }—1 .

(b1; On(@; On

Solution around the origin (divergent series

o1 (a1, ag; by q, x) == Z

neZ

Solutions around infinity (convergent series):

) =G (5000 20z

bl T a9 7 7&1&2{13
0(asx) qas . qas by
UZ(x) 0(.’]3) 201 < bl y Yy a 4, 41097



8. Connection formulae for the bilateral series 24/26
g-difference equation:

(% - alaﬂ) (i) — {% —(a+ aQ)x} o) — ) = 0.

Solution around the origin (divergent series):
)

(al; Q)n(CLQ; q)n n(n-1)) —1
_1 nq 2 xn.
(515 9)n(q; ) {( ) }

o1 (ay, ag; by q, x) == Z

neZ

Solutions around infinity (convergent series):

0(aix) (qa1 0. 991 b, )

Ul(x) = 0(.’17) 21 bl ) Uy as ) Y 41097
0(asx) qas . qas by
_ 0: .
’(}2(37) e(x) 21 < bl y Yy a 4, 41097

= We apply the g-Borel transformation.



Proof of main theorem. 25/26

+

a1(ay, as; br; q, ) — 91ba(ar, ag; b1, 0; ¢, §)

Slater’s formula EI)\ (

L.y 0B, yi(ar, az;bi;q, 513)) (x)

_ (1/az, qa1/as,bi/a1, q; q)s 0(ar1)/q) O(arqz/A) 0(x) o (2
(b1,q/a1,a1/as, qaz/a1;q)sc O(N/q) O(qx/X) O(aix) '
(1/a1,qa2/a1,b1/as, q; q)oc O(as/q) 0(azqz /) 0(x)
(b1,q/az, as/ar, qar/az; q)oe O(N/q) 0(qx/N) O(azx)

V2(T).

Remark. The functions gé‘géf%\/)\) 9?5_73):), (7 = 1,2) are g-elliptic functions.

Remark. These coefficients are new example of the Stokes coefficients for
q-difference equations.
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Dziekuje!



