
Massera type theorems in vector-valued analytic
functions and hyperfunctions

Yasunori OKADA

Graduate School of Science, Chiba University

Aug. 27, 2013,
FASDE III, Bȩdlewo
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Introduction Classical Massera type theorems

classical Massera theorem
J. L. Massera (1950, Duke Math. J. 17) studied the existence of a
periodic solution to a periodic ordinary differential equation of normal
form. In the linear case, he gave

Theorem (Massera, linear case)

Consider an equation
dx

dt
= A(t)x + f (t),

where A : R→ Rm×m and f : R→ Rm are 1-periodic and continuous.
Then, the existence of a bounded solution in the future (i.e., a solution
defined and bounded on a set {t > t0} with some t0) implies the existence
of a 1-periodic solution.

Note: Since periodic C 1-functions are bounded, we have the equivalence:

∃ a bounded solution in the future. ⇐⇒ ∃ a 1-periodic solution.
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Introduction Classical Massera type theorems

some generalizations

Question

Do such phenomena appear commonly in periodic linear equations?

After Massera, many generalizations have appeared.
Refer, for ex., to

functional differential equations with delay: Chow-Hale (1974, FE.
17), Hino-Murakami (1989, Lect. Notes Pure Appl. Math. 118), etc.

Banach valued, abstract settings: Shin-Naito (1999, JDE. 153),
Naito-Nguyen-Miyazaki-Shin (2000, JDE. 160), etc.

discrete dynamical systems in reflexive Banach spaces and those in
sequentially complete locally convex spaces with the sequential
Montel property: Zubelevich (2006, Regul. Chaotic Dyn. 11).

and also the references therein.
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Introduction Brief overview

my interest

Interest

Is there any counterpart to the Massera type phenomenon in the
framework of hyperfunctions?

“Hyperfunctions”: a notion of generalized functions, due to Sato (1959,
1960, J. Fac. Sci. Univ. Tokyo, 8).
Note: There’s NO notion of boundedness for hyperfunctions on ]t0,+∞[.

Obstacles
1 What is “a bounded solution in the future”?

2 Does the periodicity imply the boundedness in the future?
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Introduction Brief overview

previous results

We constructed
BL∞ : the sheaf of bounded hyperfunctions at infinity on D1 := Rt{±∞},
(an extension of the sheaf B of hyperfunctions on R).

1 We can interpret “a bounded solution in the future” as a solution u in
BL∞ at t = +∞.

2 Periodic hyperfunctions can be canonically identified with periodic
bounded hyperfunctions at t = +∞.

By using BL∞ , we gave a Massera type theorem Statement for a class of
equations, (O., 2008.)
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Introduction Brief overview

previous results

The class contains, for ex.,

du

dt
= A(t)u +

∫ r

0
B(t, s)u(t − s)ds + f (t),

A, B, f : square matrices and a column vector, continuous, and ω-periodic
in t. Moreover, A, B are real-analytic in t,
r > 0: a constant, (representing the “finite delay”).

Note: This result could be extended to some classes of equations,
containing integro-differential equations with infinite delay, under an
additional assumption, so-called the “fading memory condition”, which we
mentioned in FASDE II, Aug. 2011.
But, today, we do not focus on this direction.
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Introduction Brief overview

vector valued cases

Let E be a sequentially complete locally convex space.

The result can be extended to E -valued case, when E admits the
sequential Montel property:

Definition (sequential Montel property)

(M) Any bounded sequence in E has a convergent subsequence.

or, when E is reflexive. Statement in reflexive case
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Bounded hyperfunctions at infinity

boundedness for hyperfunctions

D1 := R t {±∞}: a compactification of R. Consider

O · · · C = R + iR ⊂ D1 + iR · · ·

E

OL∞

∪ ∪
B · · · R = ]−∞,+∞[ ⊂ D1 = [−∞,+∞] · · ·

E

BL∞

Here,

O the sheaf of holomorphic functions on C,

B the sheaf of hyperfunctions on R,

OL∞ the sheaf of bounded holomorphic functions on D1 + iR,

BL∞ the sheaf of bounded hyperfunctions at infinity on D1,

and for a sequentially complete Hausdorff locally convex space E ,
EOL∞ the E -valued variant of OL∞ ,
EBL∞ the E -valued variant of BL∞ .
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Bounded hyperfunctions at infinity Bounded hyperfunctions at infinity

bounded hyperfunctions at infinity

Definition (sheaves OL∞ and BL∞)

1 The sheaf OL∞ on D1 + iR is defined by

OL∞(U) = {f ∈ O(U ∩ C) | ∀L b U, f is bounded on L ∩ C}

for any open set U ⊂ D1 + iR.

2 The sheaf BL∞ on D1 is defined as the sheaf associated with the
presheaf

D1
open
⊃ Ω 7→ lim−→

U

OL∞(U \ Ω)

OL∞(U)
.

Here U runs through complex neighborhoods of Ω.

The space OL∞(U) is endowed with a natural Fréchet topology.

Y. Okada (Chiba Univ.) Massera type theorems Aug. 27, 2013, Bȩdlewo 9 / 25



Bounded hyperfunctions at infinity Bounded hyperfunctions at infinity

vector valued variants
E : a sequentially complete Hausdorff locally convex space,
EO: the sheaf of E -valued holomorphic functions on C.

Definition (sheaves EOL∞ and EBL∞)

1 The sheaf EOL∞ on D1 + iR is defined by

EOL∞(U) = {f ∈ EO(U ∩ C) | ∀L b U, f is bounded on L ∩ C}

for open sets U ⊂ D1 + iR.

2 The sheaf EBL∞ on D1 is defined as the sheaf associated with the
presheaf

D1
open
⊃ Ω 7→ lim−→

U

EOL∞(U \ Ω)
EOL∞(U)

.

Here U runs through complex neighborhoods of Ω.

The space EOL∞(U) is endowed with a natural locally convex topology.
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Bounded hyperfunctions at infinity Bounded hyperfunctions at infinity

properties of bounded hyperfunctions

BL∞ |R = B.

BL∞ is flabby.

u ∈ BL∞(]a,+∞]) admits a boundary value representation.

There exists a natural embedding L∞(]a,+∞[) ↪→ BL∞(]a,+∞]).

The space BL∞(D1) of the global sections of our sheaf BL∞ can be
identified with the space BL∞ of bounded hyperfunctions due to
Chung-Kim-Lee (2000, Proc. AMS. 128).
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Bounded hyperfunctions at infinity Operators for bounded hyperfunctions

operators for bounded hyperfunctions

K = [a, b]: a closed interval in R (including the case K = {a}),
U: an open set in D1 + iR,
P = {PV }V⊂U : a family of linear continuous maps

PV : EOL∞(V + K )→ EOL∞(V ).

Definition (Operators of type K )

P is said to be an operator of type K for EOL∞ on U, if the diagram below
commutes for any pair of open sets V1 ⊃ V2 in U.

EOL∞(V1 + K )
PV1 //

restriction
��

EOL∞(V1)

restriction
��

EOL∞(V2 + K )
PV2 // EOL∞(V2)
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Bounded hyperfunctions at infinity Operators for bounded hyperfunctions

properties of operators of type K

An operator P of type K for EOL∞ on U induces a family of linear maps

PΩ : EBL∞(Ω + K )→ EBL∞(Ω), for open sets Ω ⊂ D1 ∩ U,

commuting with restrictions.

An operator of type K = {0} induces a local operator.

An operator of type K = [−r , 0] induces an operator of finite delay r .
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Bounded hyperfunctions at infinity Operators for bounded hyperfunctions

typical examples of our operators

U := D1 + i ]−d , d [, U◦ := U ∩ C = R1 + i ]−d , d [: strip domains,
ω > 0: a constant.

Example

differential operator
∑m

j=0 aj(t)∂jt with coefficients aj ∈ OL∞(U)
is an operator of type K = {0}.
translation operator Tω : u(t) 7→ u(t + ω)
is an operator of type K = {ω}.
difference operator Tω − 1 : u(t) 7→ u(t + ω)− u(t)
is an operator of type K = [0, ω].

integral operator with finite delay u(t) 7→
∫ r

0 k(t, s)u(t − s)ds
is an operator of type K = [−r , 0],
if the kernel k(w , s) belongs to (C ∩ L∞)(U◦ × [0, r ]),
and is holomorphic in w .
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Bounded hyperfunctions at infinity Periodicity of bounded hyperfunctions and operators

periodicity for bounded hyperfunctions

Tω: the ω-translation operator u(t) 7→ u(t + ω), (ω > 0).

We introduce the notion of ω-periodicity

for bounded hyperfunction u by the equation (Tω − 1)u = 0, and

for operators P of type K by the commutativity P ◦ Tω = Tω ◦ P.

Then, we have,

Fact

Every ω-periodic hyperfunction f ∈ EB(R) has the unique ω-periodic
extension f̂ ∈ EBL∞(D1).

Every ω-periodic bounded hyperfunction f ∈ EBL∞(D1) admits an
ω-periodic boundary value representation.
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Results Massera type theorems

scalar valued case

ω > 0, K = [a, b] ⊂ R, and U = D1 + i ]−d , d [.

P: an ω-periodic operator of type K for OL∞ on U,
f ∈ B(R): an ω-periodic hyperfunction,
its unique ω-periodic extension in BL∞(D1) is also denoted by f ,
(BL∞)+∞ = lim−→R

BL∞(]R,+∞]): the stalk of BL∞ at +∞.

Theorem

Pu = f has an ω-periodic B(R)-solution if and only if it has an
(BL∞)+∞-solution.

back
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Results Massera type theorems

reflexive valued cases

ω > 0, K = [a, b] ⊂ R, and U = D1 + i ]−d , d [.

E : a reflexive locally convex space.
P: an ω-periodic operator of type K for EOL∞ on U,
f ∈ EB(R): an ω-periodic E -valued hyperfunction,
its unique ω-periodic extension in EBL∞(D1) is also denoted by f ,
(EBL∞)+∞ = lim−→R

EBL∞(]R,+∞]): the stalk of EBL∞ at +∞.

Theorem (reflexive case)

Pu = f has an ω-periodic EB(R)-solution if and only if it has an
(EBL∞)+∞-solution.

back
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Results Massera type theorems

analytic solutions

ω > 0, K = [a, b] ⊂ R, and U = D1 + i ]−d , d [.

E : a sequentially complete Hausdorff locally convex space.
P: an ω-periodic operator of type K for EOL∞ on U,
f ∈ EO(R): an ω-periodic E -valued analytic function,
its unique ω-periodic extension in EOL∞(D1) is also denoted by f ,
(EOL∞)+∞ = lim−→R

EOL∞(]R,+∞]): the stalk of EOL∞ at +∞.

Theorem

Assume the sequential Montel property or the reflexivity for E . Then
Pu = f has an ω-periodic EO(R)-solution if and only if it has an
(EOL∞)+∞-solution.
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Results Idea of the proof

idea of the proof (simplest case), 1

We give the idea of the proof of the theorem for analytic solutions, of the
part

“∃ a solution u0 in (EOL∞)+∞ ⇒ ∃ an ω-periodic solution u in EO(R)”,

in the case that P is of type K = {0}, (that is, P is a local operator).

We can find a neighborhood V0 ⊂ D1 + iR of +∞, such that
u0 ∈ EOL∞(V0) and that Pu0 = f on V0.
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Results Idea of the proof

idea of the proof (simplest case), 2

u0 is a solution on V0, and bounded there.

Tωu0 is a solution on V0 + {−ω}.
T 2
ωu0 = T2ωu is a solution on V0 + {−2ω}.
· · ·

+∞

V0

u0

//

OO

We define vk := 1
k

∑k−1
j=0 T j

ωu0, and consider a bounded sequence {vk}k in
EOL∞(V ) on a domain V = V1 + [0, ω] ⊂ V0 ∩ C with some convex
domain V1 ⊂ V0 ∩ C.
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Results Idea of the proof

idea of the proof (simplest case), 3

Scalar (or sequential Montel) case:

We can show a Montel type lemma for EO(V ).

By applying it, we can choose a convergent subsequence from {vk}k ,
and its limit is an ω-periodic solution.
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Results Notes for reflexive valued cases

notes on reflexive locally convex spaces

Consider the case that E is a reflexive locally convex space. We denote

by Ew, the space E endowed with the weak topology, and

by E ′, the dual space of E endowed with the strong topology.

We can use the following facts, (V ⊂ C):

Fact
EO = EwO, algebraically.
EO admits (a weak form of) the Köthe duality.

PV is sequentially closed as a map EwO(V + K )→ EwO(V ).
EO(V ) admits (a weak form of) Montel type lemma

Here ...
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Results Notes for reflexive valued cases

the Köthe duality

E : a reflexive locally convex space, E ′: its strong dual.

For a compact L ⊂ C and an open V ⊃ L, we define a bilinear form

〈·, ·〉L : E ′
O(V \ L)× EO(L)→ C, 〈ϕ, v〉L :=

∫
γ
ϕ(w)(v(w))dw ,

by taking a suitable contour γ.

Theorem (a weak form of the Köthe duality)

The bilinear form 〈·, ·〉L induces the isomorphisms between vector spaces:

E ′
O(V \ L)
E ′O(V )

∼−→ (EO(L))′, E ′
O◦(P1 \ L)

∼−→ (EO(L))′.

Here E ′
O◦(P1 \ L) denotes {ϕ ∈ E ′

O(C \ L) | lim|w |→∞ ϕ(w) = 0}.
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Results Notes for reflexive valued cases

Montel type lemma

E : reflexive, V ⊂ C: open, 〈·, ·〉L : E ′
O◦(P1 \ L)× EO(L)→ C: a bilinear

form in the Köthe duality.

Lemma (a weak form of the Montel type lemma)

Let {fn}n be a bounded sequence in EO(V ). Then, there exists f ∈ EO(V )
satisfying the following property: For any compact L b V and any
F ∈ E ′

O◦(P1 \ L), we can take a subsequence {n(k)}k such that

lim
k→∞
〈F , fn(k)〉L = 〈F , f 〉L.

Note: When E is a reflexive Banach space, the subsequence {n(k)}k can
be taken independently of L and F . But in the general case, it may
depend on the choice of L and F .

Y. Okada (Chiba Univ.) Massera type theorems Aug. 27, 2013, Bȩdlewo 24 / 25



Results Notes for reflexive valued cases

idea of the proof (reflexive case)

Reflexive Banach case:

Ew admits the sequential Montel property.

PV is sequentially closed in EwO topologies.

Therefore, a similar proof for EwO(V ) instead of EO(V ) can be applied.

Reflexive case:
We can not expect the sequential Montel property for Ew. But nevertheless
we can bypass that part by using the weak form of Montel type lemma.

Y. Okada (Chiba Univ.) Massera type theorems Aug. 27, 2013, Bȩdlewo 25 / 25



Thank you for your attention.
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