Massera type theorems in vector-valued analytic functions and hyperfunctions

Yasunori OKADA

Graduate School of Science, Chiba University

Aug. 27, 2013, FASDE III, Będlewo

table of contents

Introduction

- Classical Massera type theorems
- Brief overview

Bounded hyperfunctions at infinity

- Bounded hyperfunctions at infinity
- Operators for bounded hyperfunctions
- Periodicity of bounded hyperfunctions and operators

Results

- Massera type theorems
- Idea of the proof
- Notes for reflexive valued cases

classical Massera theorem

J. L. Massera (1950, Duke Math. J. **17**) studied the existence of a periodic solution to a periodic ordinary differential equation of normal form. In the linear case, he gave

Theorem (Massera, linear case)

Consider an equation

$$\frac{dx}{dt} = A(t)x + f(t),$$

where $A : \mathbb{R} \to \mathbb{R}^{m \times m}$ and $f : \mathbb{R} \to \mathbb{R}^m$ are 1-periodic and continuous. Then, the existence of a bounded solution in the future (i.e., a solution defined and bounded on a set $\{t > t_0\}$ with some t_0) implies the existence of a 1-periodic solution.

Note: Since periodic C^1 -functions are bounded, we have the equivalence:

 \exists a bounded solution in the future. \Longleftrightarrow \exists a 1-periodic solution.

some generalizations

Question

Do such phenomena appear commonly in periodic linear equations?

After Massera, many generalizations have appeared. Refer, for ex., to

- functional differential equations with delay: Chow-Hale (1974, FE.
 17), Hino-Murakami (1989, Lect. Notes Pure Appl. Math. 118), etc.
- Banach valued, abstract settings: Shin-Naito (1999, JDE. 153), Naito-Nguyen-Miyazaki-Shin (2000, JDE. 160), etc.
- discrete dynamical systems in reflexive Banach spaces and those in sequentially complete locally convex spaces with the sequential Montel property: Zubelevich (2006, Regul. Chaotic Dyn. **11**).

and also the references therein.

my interest

Interest

Is there any counterpart to the Massera type phenomenon in the framework of hyperfunctions?

"Hyperfunctions": a notion of generalized functions, due to Sato (1959, 1960, J. Fac. Sci. Univ. Tokyo, **8**). Note: There's **NO** notion of boundedness for hyperfunctions on $]t_0, +\infty[$.

Obstacles

- What is "a bounded solution in the future"?
- Ooes the periodicity imply the boundedness in the future?

previous results

We constructed

 $\mathscr{B}_{L^{\infty}}$: the sheaf of *bounded hyperfunctions at infinity* on $\mathbb{D}^1 := \mathbb{R} \sqcup \{\pm \infty\}$, (an extension of the sheaf \mathscr{B} of hyperfunctions on \mathbb{R}).

- We can interpret "a bounded solution in the future" as a solution u in $\mathscr{B}_{L^{\infty}}$ at $t = +\infty$.
- Periodic hyperfunctions can be canonically identified with periodic bounded hyperfunctions at t = +∞.

By using $\mathscr{B}_{L^{\infty}}$, we gave a Massera type theorem \checkmark statement for a class of equations, (O., 2008.)

previous results

The class contains, for ex.,

$$\frac{du}{dt} = A(t)u + \int_0^r B(t,s)u(t-s)ds + f(t),$$

A, B, f: square matrices and a column vector, continuous, and ω -periodic in t. Moreover, A, B are real-analytic in t, r > 0: a constant, (representing the "finite delay").

Note: This result could be extended to some classes of equations, containing integro-differential equations with infinite delay, under an additional assumption, so-called the "fading memory condition", which we mentioned in FASDE II, Aug. 2011. But, today, we do not focus on this direction.

vector valued cases

Let E be a sequentially complete locally convex space.

The result can be extended to E-valued case, when E admits the sequential Montel property:

Definition (sequential Montel property)

(M) Any bounded sequence in E has a convergent subsequence.

		_		CI	
0r	when	-	15	reti	exive
U 1,	which	_		1011	crave.

Statement in reflexive case

boundedness for hyperfunctions

 $\mathbb{D}^1:=\mathbb{R}\sqcup\{\pm\infty\}\colon$ a compactification of $\mathbb{R}.$ Consider

Here,

 ${\mathscr O}$ the sheaf of holomorphic functions on ${\mathbb C}$,

 \mathscr{B} the sheaf of hyperfunctions on \mathbb{R} ,

 $\mathscr{O}_{L^{\infty}}$ the sheaf of bounded holomorphic functions on $\mathbb{D}^1 + i\mathbb{R}$, $\mathscr{B}_{L^{\infty}}$ the sheaf of bounded hyperfunctions at infinity on \mathbb{D}^1 .

boundedness for hyperfunctions

 $\mathbb{D}^1:=\mathbb{R}\sqcup\{\pm\infty\}\colon$ a compactification of $\mathbb{R}.$ Consider

$$\begin{array}{cccc} \mathscr{O} & \cdots & \mathbb{C} = \mathbb{R} + i\mathbb{R} & \subset & \mathbb{D}^1 + i\mathbb{R} & \cdots & {}^{E}\!\mathscr{O}_{L^{\infty}} \\ & & & \cup & & \\ \mathscr{B} & \cdots & \mathbb{R} = \left] -\infty, +\infty\right[& \subset & \mathbb{D}^1 = \left[-\infty, +\infty \right] & \cdots & {}^{E}\!\mathscr{B}_{L^{\infty}} \end{array}$$

Here,

 \mathscr{O} the sheaf of holomorphic functions on \mathbb{C} ,

 \mathscr{B} the sheaf of hyperfunctions on \mathbb{R} ,

 $\mathscr{O}_{L^{\infty}}$ the sheaf of bounded holomorphic functions on $\mathbb{D}^1+i\mathbb{R},$

 $\mathscr{B}_{L^{\infty}}$ the sheaf of bounded hyperfunctions at infinity on \mathbb{D}^1 ,

and for a sequentially complete Hausdorff locally convex space E,

 ${}^{E}\mathscr{O}_{L^{\infty}}$ the *E*-valued variant of $\mathscr{O}_{L^{\infty}}$,

 ${}^{E}\mathscr{B}_{L^{\infty}}$ the *E*-valued variant of $\mathscr{B}_{L^{\infty}}$.

bounded hyperfunctions at infinity

Definition (sheaves $\mathscr{O}_{L^{\infty}}$ and $\mathscr{B}_{L^{\infty}}$)

1 The sheaf $\mathscr{O}_{L^{\infty}}$ on $\mathbb{D}^1 + i\mathbb{R}$ is defined by

 $\mathscr{O}_{L^{\infty}}(U) = \{ f \in \mathscr{O}(U \cap \mathbb{C}) \mid \forall L \Subset U, f \text{ is bounded on } L \cap \mathbb{C} \}$

for any open set $U \subset \mathbb{D}^1 + i\mathbb{R}$.

② The sheaf ℬ_{L∞} on D¹ is defined as the sheaf associated with the presheaf

$$\mathbb{D}^1 \stackrel{\text{open}}{\supset} \Omega \mapsto \varinjlim_U \frac{\mathscr{O}_{L^{\infty}}(U \setminus \Omega)}{\mathscr{O}_{L^{\infty}}(U)}.$$

Here U runs through complex neighborhoods of Ω .

The space $\mathscr{O}_{L^{\infty}}(U)$ is endowed with a natural Fréchet topology.

vector valued variants

E: a sequentially complete Hausdorff locally convex space, ${}^{E}\mathcal{O}$: the sheaf of *E*-valued holomorphic functions on \mathbb{C} .

Definition (sheaves ${}^{E}\mathcal{O}_{L^{\infty}}$ and ${}^{E}\mathcal{B}_{L^{\infty}}$)

 $\bullet \ \ \, {\rm The \ sheaf} \ \, {}^{{\it E}} {\mathscr O}_{L^\infty} \ \, {\rm on} \ \, {\mathbb D}^1 + i{\mathbb R} \ \, {\rm is \ defined \ by} \ \,$

 ${}^{E}\mathscr{O}_{L^{\infty}}(U) = \{ f \in {}^{E}\mathscr{O}(U \cap \mathbb{C}) \mid \forall L \Subset U, f \text{ is bounded on } L \cap \mathbb{C} \}$

for open sets $U \subset \mathbb{D}^1 + i\mathbb{R}$.

The sheaf ^Eℬ_{L∞} on D¹ is defined as the sheaf associated with the presheaf

$$\mathbb{D}^{1} \stackrel{\text{open}}{\supset} \Omega \mapsto \varinjlim_{U} \frac{{}^{E} \mathscr{O}_{L^{\infty}}(U \setminus \Omega)}{{}^{E} \mathscr{O}_{L^{\infty}}(U)}.$$

Here U runs through complex neighborhoods of Ω .

The space ${}^{E}\mathscr{O}_{L^{\infty}}(U)$ is endowed with a natural locally convex topology.

10 / 25

properties of bounded hyperfunctions

- $\mathscr{B}_{L^{\infty}}|_{\mathbb{R}} = \mathscr{B}.$
- $\mathscr{B}_{L^{\infty}}$ is flabby.
- $u \in \mathscr{B}_{L^{\infty}}(]a, +\infty])$ admits a boundary value representation.
- There exists a natural embedding $L^{\infty}(]a, +\infty[) \hookrightarrow \mathscr{B}_{L^{\infty}}(]a, +\infty])$.
- The space $\mathscr{B}_{L^{\infty}}(\mathbb{D}^1)$ of the global sections of our sheaf $\mathscr{B}_{L^{\infty}}$ can be identified with the space $\mathcal{B}_{L^{\infty}}$ of bounded hyperfunctions due to Chung-Kim-Lee (2000, Proc. AMS. **128**).

operators for bounded hyperfunctions

K = [a, b]: a closed interval in \mathbb{R} (including the case $K = \{a\}$), U: an open set in $\mathbb{D}^1 + i\mathbb{R}$, $P = \{P_V\}_{V \subset U}$: a family of linear continuous maps

$$P_V: {}^{E}\mathscr{O}_{L^{\infty}}(V+K) \to {}^{E}\mathscr{O}_{L^{\infty}}(V).$$

Definition (Operators of type K)

P is said to be an operator of type *K* for ${}^{E}\mathcal{O}_{L^{\infty}}$ on *U*, if the diagram below commutes for any pair of open sets $V_1 \supset V_2$ in *U*.

properties of operators of type K

An operator P of type K for ${}^{E}\mathcal{O}_{L^{\infty}}$ on U induces a family of linear maps

 $P_{\Omega}: {}^{E}\!\mathscr{B}_{L^{\infty}}(\Omega + K) \to {}^{E}\!\mathscr{B}_{L^{\infty}}(\Omega), \quad \text{for open sets } \Omega \subset \mathbb{D}^{1} \cap U,$

commuting with restrictions.

- An operator of type $K = \{0\}$ induces a local operator.
- An operator of type K = [-r, 0] induces an operator of finite delay r.

typical examples of our operators

 $U := \mathbb{D}^1 + i] - d, d[, U^\circ := U \cap \mathbb{C} = \mathbb{R}^1 + i] - d, d[: \text{ strip domains,} \omega > 0: \text{ a constant.}$

Example

- differential operator $\sum_{j=0}^{m} a_j(t) \partial_t^j$ with coefficients $a_j \in \mathscr{O}_{L^{\infty}}(U)$ is an operator of type $K = \{0\}$.
- translation operator $T_{\omega} : u(t) \mapsto u(t + \omega)$ is an operator of type $K = \{\omega\}$.
- difference operator $T_{\omega} 1: u(t) \mapsto u(t + \omega) u(t)$ is an operator of type $K = [0, \omega]$.
- integral operator with finite delay u(t) → ∫₀^r k(t,s)u(t s)ds is an operator of type K = [-r, 0], if the kernel k(w, s) belongs to (C ∩ L[∞])(U[°] × [0, r]), and is holomorphic in w.

periodicity for bounded hyperfunctions

 T_{ω} : the ω -translation operator $u(t) \mapsto u(t + \omega)$, $(\omega > 0)$.

We introduce the notion of ω -periodicity for bounded hyperfunction u by the equation $(T_{\omega} - 1)u = 0$, and for operators P of type K by the commutativity $P \circ T_{\omega} = T_{\omega} \circ P$.

Then, we have,

Fact

- Every ω-periodic hyperfunction f ∈ ^E𝔅(ℝ) has the unique ω-periodic extension f̂ ∈ ^E𝔅_{L∞}(D¹).
- Every ω-periodic bounded hyperfunction f ∈ ^E𝔅_{L∞}(D¹) admits an ω-periodic boundary value representation.

scalar valued case

$$\omega>$$
 0, $K=[a,b]\subset\mathbb{R}$, and $U=\mathbb{D}^1+i]{-d,d}[.$

P: an ω -periodic operator of type K for $\mathscr{O}_{L^{\infty}}$ on U, $f \in \mathscr{B}(\mathbb{R})$: an ω -periodic hyperfunction, its unique ω -periodic extension in $\mathscr{B}_{L^{\infty}}(\mathbb{D}^1)$ is also denoted by f, $(\mathscr{B}_{L^{\infty}})_{+\infty} = \varinjlim_{R} \mathscr{B}_{L^{\infty}}(]R, +\infty]$): the stalk of $\mathscr{B}_{L^{\infty}}$ at $+\infty$.

Theorem

Pu = f has an ω -periodic $\mathscr{B}(\mathbb{R})$ -solution if and only if it has an $(\mathscr{B}_{L^{\infty}})_{+\infty}$ -solution.

▲ back

reflexive valued cases

$$\omega>$$
 0, $K=[a,b]\subset\mathbb{R}$, and $U=\mathbb{D}^1+i]-d,d[.$

E: a reflexive locally convex space. *P*: an ω -periodic operator of type *K* for ${}^{E}\mathcal{O}_{L^{\infty}}$ on *U*, $f \in {}^{E}\mathcal{B}(\mathbb{R})$: an ω -periodic *E*-valued hyperfunction, its unique ω -periodic extension in ${}^{E}\mathcal{B}_{L^{\infty}}(\mathbb{D}^{1})$ is also denoted by *f*, $({}^{E}\mathcal{B}_{L^{\infty}})_{+\infty} = \varinjlim_{R} {}^{E}\mathcal{B}_{L^{\infty}}(]R, +\infty]$: the stalk of ${}^{E}\mathcal{B}_{L^{\infty}}$ at $+\infty$.

Theorem (reflexive case)

Pu = f has an ω -periodic ${}^{E}\mathscr{B}(\mathbb{R})$ -solution if and only if it has an $({}^{E}\mathscr{B}_{L^{\infty}})_{+\infty}$ -solution.

▲ back

analytic solutions

$$\omega > 0$$
, $\mathcal{K} = [a, b] \subset \mathbb{R}$, and $U = \mathbb{D}^1 + i] - d, d[$.

E: a sequentially complete Hausdorff locally convex space. *P*: an ω -periodic operator of type *K* for ${}^{E}\mathcal{O}_{L^{\infty}}$ on *U*, $f \in {}^{E}\mathcal{O}(\mathbb{R})$: an ω -periodic *E*-valued analytic function, its unique ω -periodic extension in ${}^{E}\mathcal{O}_{L^{\infty}}(\mathbb{D}^{1})$ is also denoted by *f*, $({}^{E}\mathcal{O}_{L^{\infty}})_{+\infty} = \varinjlim_{R} {}^{E}\mathcal{O}_{L^{\infty}}(]R, +\infty]$): the stalk of ${}^{E}\mathcal{O}_{L^{\infty}}$ at $+\infty$.

Theorem

Assume the sequential Montel property or the reflexivity for E. Then Pu = f has an ω -periodic ${}^{E} \mathscr{O}(\mathbb{R})$ -solution if and only if it has an $({}^{E} \mathscr{O}_{L^{\infty}})_{+\infty}$ -solution.

We give the idea of the proof of the theorem for analytic solutions, of the part

" \exists a solution u_0 in $({}^{E}\mathcal{O}_{L^{\infty}})_{+\infty} \Rightarrow \exists$ an ω -periodic solution u in ${}^{E}\mathcal{O}(\mathbb{R})$ ",

in the case that P is of type $K = \{0\}$, (that is, P is a local operator).

We give the idea of the proof of the theorem for analytic solutions, of the part

" \exists a solution u_0 in $({}^{E}\mathcal{O}_{L^{\infty}})_{+\infty} \Rightarrow \exists$ an ω -periodic solution u in ${}^{E}\mathcal{O}(\mathbb{R})$ ", in the case that P is of type $K = \{0\}$, (that is, P is a local operator).

We can find a neighborhood $V_0 \subset \mathbb{D}^1 + i\mathbb{R}$ of $+\infty$, such that $u_0 \in {}^{E} \mathcal{O}_{I^{\infty}}(V_0)$ and that $Pu_0 = f$ on V_0 .

 u_0 is a solution on V_0 , and bounded there.

 u_0 is a solution on V_0 , and bounded there. $T_{\omega}u_0$ is a solution on $V_0 + \{-\omega\}$.

 u_0 is a solution on V_0 , and bounded there. $T_{\omega}u_0$ is a solution on $V_0 + \{-\omega\}$. $T_{\omega}^2u_0 = T_{2\omega}u$ is a solution on $V_0 + \{-2\omega\}$.

$$u_{0} \text{ is a solution on } V_{0}, \text{ and bounded there.}$$

$$T_{\omega}u_{0} \text{ is a solution on } V_{0} + \{-\omega\}.$$

$$T_{\omega}^{2}u_{0} = T_{2\omega}u \text{ is a solution on } V_{0} + \{-2\omega\}.$$

$$\cdots$$

$$\underbrace{\cdots}_{i} \underbrace{ \underbrace{ \{v_{k}\}_{k}: \exists \text{subseq.}}_{i} }_{i} \underbrace{ \{v_{k}\}_{k}: \exists \text{subseq.}}_{i} \underbrace{ \{v_{k}\}_{k}: \exists \text{subseq.}_{i} \underbrace{ \{v_{k}\}_{k}: \exists \text{subseq.}}_{i} \underbrace{ \{v_{k}\}_{k}: \exists \text{subseq.}_{i} \underbrace{ \{v_{k}\}_{k}: \exists \text{subsec.}_{i} \underbrace{ \{v$$

We define $v_k := \frac{1}{k} \sum_{j=0}^{k-1} T_{\omega}^j u_0$, and consider a bounded sequence $\{v_k\}_k$ in ${}^{E} \mathscr{O}_{L^{\infty}}(V)$ on a domain $V = V_1 + [0, \omega] \subset V_0 \cap \mathbb{C}$ with some convex domain $V_1 \subset V_0 \cap \mathbb{C}$.

Scalar (or sequential Montel) case:

- We can show a Montel type lemma for ${}^{E} \mathscr{O}(V)$.
- By applying it, we can choose a convergent subsequence from {v_k}_k, and its limit is an ω-periodic solution.

notes on reflexive locally convex spaces

Consider the case that E is a reflexive locally convex space. We denote

- by $E_{\rm w}$, the space E endowed with the weak topology, and
- by E', the dual space of E endowed with the strong topology.

We can use the following facts, $(V \subset \mathbb{C})$:

Fact

- ${}^{E}\mathcal{O} = {}^{E_{w}}\mathcal{O}$, algebraically.
- $^{E}\mathcal{O}$ admits (a weak form of) the Köthe duality.
- P_V is sequentially closed as a map ${}^{E_w} \mathscr{O}(V + K) \to {}^{E_w} \mathscr{O}(V)$.
- ${}^{E} \mathscr{O}(V)$ admits (a weak form of) Montel type lemma

Here ...

the Köthe duality

E: a reflexive locally convex space, E': its strong dual.

For a compact $L \subset \mathbb{C}$ and an open $V \supset L$, we define a bilinear form

$$\langle \cdot, \cdot \rangle_L : {}^{E'} \mathscr{O}(V \setminus L) \times {}^{E} \mathscr{O}(L) \to \mathbb{C}, \ \langle \varphi, v \rangle_L := \int_{\gamma} \varphi(w)(v(w)) dw,$$

by taking a suitable contour γ .

Theorem (a weak form of the Köthe duality)

The bilinear form $\langle \cdot, \cdot \rangle_L$ induces the isomorphisms between vector spaces:

$$\frac{{}^{E'}\!\mathscr{O}(V\setminus L)}{{}^{E'}\!\mathscr{O}(V)} \xrightarrow{\sim} ({}^{E}\!\mathscr{O}(L))', \quad {}^{E'}\!\mathscr{O}^{\circ}(\mathbb{P}^1\setminus L) \xrightarrow{\sim} ({}^{E}\!\mathscr{O}(L))'.$$

Here ${}^{E'}\mathscr{O}^{\circ}(\mathbb{P}^1 \setminus L)$ denotes $\{\varphi \in {}^{E'}\mathscr{O}(\mathbb{C} \setminus L) \mid \lim_{|w| \to \infty} \varphi(w) = 0\}.$

Montel type lemma

E: reflexive, $V \subset \mathbb{C}$: open, $\langle \cdot, \cdot \rangle_L : {}^{E'} \mathscr{O}^{\circ}(\mathbb{P}^1 \setminus L) \times {}^{E} \mathscr{O}(L) \to \mathbb{C}$: a bilinear form in the Köthe duality.

Lemma (a weak form of the Montel type lemma)

Let $\{f_n\}_n$ be a bounded sequence in ${}^{E} \mathcal{O}(V)$. Then, there exists $f \in {}^{E} \mathcal{O}(V)$ satisfying the following property: For any compact $L \subseteq V$ and any $F \in {}^{E'} \mathcal{O}^{\circ}(\mathbb{P}^1 \setminus L)$, we can take a subsequence $\{n(k)\}_k$ such that

$$\lim_{k\to\infty} \langle F, f_{n(k)} \rangle_L = \langle F, f \rangle_L.$$

Note: When *E* is a reflexive Banach space, the subsequence $\{n(k)\}_k$ can be taken independently of *L* and *F*. But in the general case, it may depend on the choice of *L* and *F*.

idea of the proof (reflexive case)

Reflexive Banach case:

- $E_{\rm w}$ admits the sequential Montel property.
- P_V is sequentially closed in $E_w \mathcal{O}$ topologies.

Therefore, a similar proof for ${}^{E_w} \mathscr{O}(V)$ instead of ${}^{E} \mathscr{O}(V)$ can be applied.

Reflexive case:

We can not expect the sequential Montel property for $E_{\rm w}$. But nevertheless we can bypass that part by using the weak form of Montel type lemma.

Thank you for your attention.

S. N. Chow and J. K. Hale. Strongly limit-compact maps. *Funkcial. Ekvac.*, 17:31–38, 1974.

S.-Y. Chung, D. Kim, and E. G. Lee. Periodic hyperfunctions and Fourier series. Proc. Amer. Math. Soc., 128(8):2421–2430, 2000.

Y. Hino and S. Murakami.
 Periodic solutions of a linear Volterra system.
 In *Differential equations (Xanthi, 1987)*, volume 118 of *Lecture Notes in Pure and Appl. Math.*, pages 319–326. Dekker, New York, 1989.

J. L. Massera.

The existence of periodic solutions of systems of differential equations.

Duke Math. J., 17:457-475, 1950.

T. Naito, N. V. Minh, R. Miyazaki, and J. S. Shin.

A decomposition theorem for bounded solutions and the existence of periodic solutions of periodic differential equations.

J. Differential Equations, 160(1):263–282, 2000.

Y. Okada.

Massera criterion for linear functional equations in a framework of hyperfunctions.

J. Math. Sci. Univ. Tokyo, 15(1):15–51, 2008.

M. Sato.

Theory of hyperfunctions. I.

J. Fac. Sci. Univ. Tokyo. Sect. I, 8:139–193, 1959.

M. Sato.

Theory of hyperfunctions. II.

J. Fac. Sci. Univ. Tokyo Sect. I, 8:387-437, 1960.

J. S. Shin and T. Naito.

Semi-Fredholm operators and periodic solutions for linear functional-differential equations.

J. Differential Equations, 153(2):407-441, 1999.

O. Zubelevich.

A note on theorem of Massera.

Regul. Chaotic Dyn., 11(4):475-481, 2006.