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Introduction Classical Massera type theorems

classical Massera theorem

J. L. Massera (1950, Duke Math. J. 17) studied the existence of a

periodic solution to a periodic ordinary differential equation of normal
form. In the linear case, he gave

Theorem (Massera, linear case)

Consider an equation

dx
i A(t)x + f(t),

where A: R — R™*™ and f : R — R™ are 1-periodic and continuous.
Then, the existence of a bounded solution in the future (i.e., a solution

defined and bounded on a set {t > ty} with some ty) implies the existence
of a 1-periodic solution.

v

Note: Since periodic C!-functions are bounded, we have the equivalence:
J a bounded solution in the future. <= 3 a 1-periodic solution.
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Introduction Classical Massera type theorems

some generalizations

Question J

Do such phenomena appear commonly in periodic linear equations?

After Massera, many generalizations have appeared.
Refer, for ex., to

e functional differential equations with delay: Chow-Hale (1974, FE.
17), Hino-Murakami (1989, Lect. Notes Pure Appl. Math. 118), etc.

@ Banach valued, abstract settings: Shin-Naito (1999, JDE. 153),
Naito-Nguyen-Miyazaki-Shin (2000, JDE. 160), etc.

@ discrete dynamical systems in reflexive Banach spaces and those in
sequentially complete locally convex spaces with the sequential
Montel property: Zubelevich (2006, Regul. Chaotic Dyn. 11).

and also the references therein.
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Introduction Brief overview

my interest

Interest

Is there any counterpart to the Massera type phenomenon in the
framework of hyperfunctions?

“Hyperfunctions”: a notion of generalized functions, due to Sato (1959,
1960, J. Fac. Sci. Univ. Tokyo, 8).
Note: There's NO notion of boundedness for hyperfunctions on |ty, +00l.

Obstacles
@ What is “a bounded solution in the future"?
@ Does the periodicity imply the boundedness in the future?
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Introduction Brief overview

previous results

We constructed

B the sheaf of bounded hyperfunctions at infinity on D! := R {00},
(an extension of the sheaf # of hyperfunctions on R).

@ We can interpret “a bounded solution in the future” as a solution v in
B~ at t = +o00.

@ Periodic hyperfunctions can be canonically identified with periodic
bounded hyperfunctions at t = +o0.

By using %, we gave a Massera type theorem @EIEED for a class of
equations, (O., 2008.)
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Introduction Brief overview

previous results

The class contains, for ex.,

% = A(t)u + /Or B(t,s)u(t — s)ds + f(t),

A, B, f: square matrices and a column vector, continuous, and w-periodic
in t. Moreover, A, B are real-analytic in t,
r > 0: a constant, (representing the “finite delay").

Note: This result could be extended to some classes of equations,
containing integro-differential equations with infinite delay, under an
additional assumption, so-called the “fading memory condition”, which we
mentioned in FASDE Il, Aug. 2011.

But, today, we do not focus on this direction.
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Introduction Brief overview

vector valued cases

Let E be a sequentially complete locally convex space.
The result can be extended to E-valued case, when E admits the
sequential Montel property:

Definition (sequential Montel property)
(M) Any bounded sequence in E has a convergent subsequence. J

» Statement in reflexive case

or, when E is reflexive.
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Bounded hyperfunctions at infinity

boundedness for hyperfunctions

D! := RU {+oc0}: a compactification of R. Consider

¢ --- C=R+iR C D! + iR i Ol
U U
% -+ R=]-o0,+o0] C D!'=[-00,+x] -+ B

Here,
O the sheaf of holomorphic functions on C,
% the sheaf of hyperfunctions on R,
O}~ the sheaf of bounded holomorphic functions on D! + /R,
)~ the sheaf of bounded hyperfunctions at infinity on D?,
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boundedness for hyperfunctions

D! := RU {+oc0}: a compactification of R. Consider

¢ --- C=R+iR C D! + iR o EBOls
U U
B -+ R=]-00,4+00[ C D!=[-o00,+x] - EB

Here,

O the sheaf of holomorphic functions on C,
% the sheaf of hyperfunctions on R,

O}~ the sheaf of bounded holomorphic functions on D! + /R,

)~ the sheaf of bounded hyperfunctions at infinity on D?,
and for a sequentially complete Hausdorff locally convex space E,
E¢~ the E-valued variant of @,
E%, -« the E-valued variant of .

Y. Okada (Chiba Univ.) Massera type theorems Aug. 27, 2013, Bedlewo

8/25



£z pErUEoms &5 (i
bounded hyperfunctions at infinity

Definition (sheaves 0/« and %)
@ The sheaf 0~ on D! + iR is defined by

O1=(U)={f e 0(UNC)|VL e U,f is bounded on LNC}

for any open set U C D! + /R.
@ The sheaf %) on D! is defined as the sheaf associated with the

presheaf
DS Q s lim 2L\ Y
7 O1=(U)

Here U runs through complex neighborhoods of €.

The space 0~ (U) is endowed with a natural Fréchet topology.
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Bounded hyperfunctions at infinity Bounded hyperfunctions at infinity

vector valued variants

E: a sequentially complete Hausdorff locally convex space,
E¢: the sheaf of E-valued holomorphic functions on C.
Definition (sheaves £0)~ and £%,~)

@ The sheaf 0~ on D! + iR is defined by
EOi(U)={f e EO(UNC) | VL € U, f is bounded on LN C}

for open sets U C D! + iR.

@ The sheaf £E2,~ on D! is defined as the sheaf associated with the
presheaf
open Eﬁ’Loo(U \ Q)

D! °5" Qs lim T
3 "B (U)

Here U runs through complex neighborhoods of €2.

The space £0~(U) is endowed with a natural locally convex topology.
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Bounded hyperfunctions at infinity Bounded hyperfunctions at infinity

properties of bounded hyperfunctions

Bio|p = AB.

P is flabby.

u € PBr~(]a, +0o0]) admits a boundary value representation.

There exists a natural embedding L*°(]a, +00[) < ZB1~(]a, +0]).

The space % (D) of the global sections of our sheaf %, can be
identified with the space B;~ of bounded hyperfunctions due to
Chung-Kim-Lee (2000, Proc. AMS. 128).
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I MG IS EINili 1A Operators for bounded hyperfunctions

operators for bounded hyperfunctions

K = [a, b]: a closed interval in R (including the case K = {a}),
U: an open set in D! + /R,
P ={Py}vcuy: a family of linear continuous maps

Py EC(V + K) = B0 (V).

Definition (Operators of type K)

P is said to be an operator of type K for 0~ on U, if the diagram below
commutes for any pair of open sets V; D V5 in U.

EOLo (V1 + K) — 1 EG (V1)

restrictionl lrestriction

EﬁLoo(Vz—f-K) EﬁLoo(Vg)

v
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Qi (P Uy instars
properties of operators of type K

An operator P of type K for 0~ on U induces a family of linear maps
Po : EB (2 + K) — EB(Q), for open sets Q ¢ D N U,

commuting with restrictions.

@ An operator of type K = {0} induces a local operator.

@ An operator of type K = [—r,0] induces an operator of finite delay r.
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I MG IS EINili 1A Operators for bounded hyperfunctions

typical examples of our operators

U:=D! +i]—d,d[, U°:= UNC =R+ i]—d, d[: strip domains,
w > 0: a constant.

Example
o differential operator >°T aj(t)(’?{ with coefficients a; € 0~ (U)
is an operator of type K = {0}.

e translation operator T, : u(t) — u(t + w)
is an operator of type K = {w}.
o difference operator T, — 1 : u(t) — u(t +w) — u(t)
is an operator of type K = [0, w].
o integral operator with finite delay u(t) — [ k(t,s)u(t — s)ds
is an operator of type K = [—r, 0],
if the kernel k(w, s) belongs to (C N L>)(U° x [0, r]),

and is holomorphic in w.
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1T I NS (I ETN i (1WA Periodicity of bounded hyperfunctions and operators

periodicity for bounded hyperfunctions

T.: the w-translation operator u(t) — u(t 4+ w), (w > 0).

We introduce the notion of w-periodicity
for bounded hyperfunction u by the equation (T, — 1)u =0, and
for operators P of type K by the commutativity Po T, = T, 0o P.

Then, we have,

Fact
o Every w-periodic hyperfunction f € EZ(R) has the unique w-periodic
extension f € £ (D).
o Every w-periodic bounded hyperfunction f € E%,(D') admits an
w-periodic boundary value representation.
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scalar valued case

w>0,K=[ab] CR, and U=D!+i]-d,d[

P: an w-periodic operator of type K for 01« on U,

f € B(R): an w-periodic hyperfunction,

its unique w-periodic extension in %, (D?!) is also denoted by f,
(Brx)100 = lim o 28 (JR, +o<]): the stalk of B at +oc.

Theorem

Pu = f has an w-periodic Z(R)-solution if and only if it has an
(PBL)1o0-solution.
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reflexive valued cases

w>0,K=1[a,b CR,and U=D!+i]—d,d.

E: a reflexive locally convex space.

P: an w-periodic operator of type K for £0/ on U,

f € E%(R): an w-periodic E-valued hyperfunction,

its unique w-periodic extension in £%,(D?!) is also denoted by f,
(EB1) 100 = lim E®B (IR, +00]): the stalk of £% at +oo.

Theorem (reflexive case)

Pu = f has an w-periodic E%(R)-solution if and only if it has an
(EB| ) 1o0-s0lution.
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analytic solutions

w>0,K=[ab] CR, and U =D+ i]—d,d[

E: a sequentially complete Hausdorff locally convex space.

P: an w-periodic operator of type K for £0’/ on U,

f € EO(R): an w-periodic E-valued analytic function,

its unique w-periodic extension in E0 (D) is also denoted by f,
(EO1=) 100 = lim EC1< (IR, +c]): the stalk of E0) at +oo.

Theorem

Assume the sequential Montel property or the reflexivity for E. Then
Pu = f has an w-periodic E0(R)-solution if and only if it has an
(EO|= )1 o0-s0lution.
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idea of the proof (simplest case), 1

We give the idea of the proof of the theorem for analytic solutions, of the
part

“J a solution ug in (EﬁLoo)Jroo = 1 an w-periodic solution v in Eﬁ’(R)”,

in the case that P is of type K = {0}, (that is, P is a local operator).
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idea of the proof (simplest case), 1

We give the idea of the proof of the theorem for analytic solutions, of the
part

“J a solution ug in (EﬁLoo)Jroo = 1 an w-periodic solution v in Eﬁ’(R)”,
in the case that P is of type K = {0}, (that is, P is a local operator).

We can find a neighborhood Vo C D! + iR of 400, such that
up € EﬁLoo(Vo) and that Pug = f on V.
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idea of the proof (simplest case), 2

ug is a solution on Vj, and bounded there.

T :
+oo

M
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idea of the proof (simplest case), 2

ug is a solution on V{, and bounded there.
T, ug is a solution on Vp + {—w}.

T —w Vo
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idea of the proof (simplest case), 2

ug is a solution on Vp, and bounded there.
T, ug is a solution on Vp + {—w}.
T2ug = To,u is a solution on Vg + {—2w}.

N o

‘ Tou s To o U0
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idea of the proof (simplest case), 2

ug is a solution on Vp, and bounded there.
T, ug is a solution on Vp + {—w}.
T2ug = To,u is a solution on Vg + {—2w}.

N

L T2up s Twup\_Uo

L Toug |
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idea of the proof (simplest case), 2

ug is a solution on Vp, and bounded there.
T, ug is a solution on Vp + {—w}.
T2ug = To,u is a solution on Vg + {—2w}.

—w VO
f {Vk }k: Tsubseq. oo
.Tq%,“ﬁ;'::?.—‘,“.UM —periodic sol. | V

L Toug |

We define vy := ¢ Zk L1 up, and consider a bounded sequence {vi} in

E01~(V) on a domain V = V; + [0,w] C Vo N C with some convex
domain V; C VN C.
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idea of the proof (simplest case), 3

Scalar (or sequential Montel) case:
@ We can show a Montel type lemma for £6(V).

e By applying it, we can choose a convergent subsequence from {vj }x,
and its limit is an w-periodic solution.
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REETIE  Notes for reflexive valued cases

notes on reflexive locally convex spaces

Consider the case that E is a reflexive locally convex space. We denote
@ by Ey, the space E endowed with the weak topology, and
@ by E’, the dual space of E endowed with the strong topology.

We can use the following facts, (V C C):

Fact

Eo = B0, algebraically.

EC admits (a weak form of) the Kéthe duality.

Py is sequentially closed as a map E0(V + K) — Evo (V).
EO(V) admits (a weak form of) Montel type lemma

Here ...
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REETIE  Notes for reflexive valued cases

the Kothe duality

E: a reflexive locally convex space, E’: its strong dual.

For a compact L C C and an open V D L, we define a bilinear form
(s EOVAL) X F0(L) 5 € (v i= [ olw)(v(w)w,
¥

by taking a suitable contour 7.

Theorem (a weak form of the Kéthe duality)

The bilinear form (-, -)| induces the isomorphisms between vector spaces:

.
ot = Eoy, foE\ 0 > (o).

Here E'0°(P! \ L) denotes {p € E'G(C\ L) | lim|,| 00 9(w) = 0}.

v
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Results Notes for reflexive valued cases

Montel type lemma

E: reflexive, V C C: open, (-,-); : E0°(P*\ L) x EO(L) — C: a bilinear
form in the Kothe duality.
Lemma (a weak form of the Montel type lemma)

Let {f,}, be a bounded sequence in EO(V). Then, there exists f € EO(V)
satisfying the following property: For any compact L € V and any
F € E'G°(P \ L), we can take a subsequence {n(k)}y such that

<F7 fn(k))L = <F7 f)L

lim
k—o0

Note: When E is a reflexive Banach space, the subsequence {n(k)} can
be taken independently of L and F. But in the general case, it may
depend on the choice of L and F.
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REETIE  Notes for reflexive valued cases

idea of the proof (reflexive case)

Reflexive Banach case:
o E,, admits the sequential Montel property.
e Py is sequentially closed in £+¢ topologies.
Therefore, a similar proof for £+¢/(V/) instead of £60(V) can be applied.

Reflexive case:

We can not expect the sequential Montel property for E,. But nevertheless
we can bypass that part by using the weak form of Montel type lemma.
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Thank you for your attention.
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