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Let  𝑡 = (𝑡1, ⋯ , 𝑡𝑑) ∈ ℂ𝑑, 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) ∈ ℂ𝑛 be 𝑑 and 𝑛
dimensional complex variables and 𝑢 = 𝑢(𝑡, 𝑥) denote an unknown 
function.

1. Introduction and Main Result

We consider the following first order nonlinear PDE.

(1) 𝑓 𝑡, 𝑥, 𝑢, 𝜕𝑡𝑢, 𝜕𝑥𝑢 = 0 with 𝑢(0, 𝑥) ≡ 0

where 𝜕𝑡𝑢 = 𝜕𝑡1𝑢,⋯ , 𝜕𝑡𝑑𝑢 and 𝜕𝑥𝑢 is the similar definition 

with 𝜕𝑡𝑢, and 𝑓 𝑡, 𝑥, 𝑢, 𝜏, 𝜉 (𝜏 = (𝜏𝑗) ∈ ℂ𝑑 , 𝜉 = (𝜉𝑘) ∈ ℂ𝑛) is 

holomorphic near the origin and an entire function in 𝜏 variables.



Assumption 1 (Singular in 𝑡)
We assume that (1) is singular in 𝑡 variables in the sense that

𝑓 0, 𝑥, 0, 𝜏, 0 ≡ 0 for 
∀
𝑥 ∈ ℂ𝑛,

∀
𝜏 ∈ ℂ𝑑.

Assumption 2 (Existence of Formal Solutions)
(1) has a formal solution of the form

𝑢 𝑡, 𝑥 =  

𝑗=1

𝑑

𝜑𝑗(𝑥)𝑡𝑗 +  

𝛼 ≥2,|𝛽|≥0

𝑢𝛼𝛽𝑡𝛼 𝑥𝛽

where 𝜑𝑗(𝑥) ∈ ℂ{𝑥} for all 𝑗 = 1,2,⋯ , 𝑑.



Assumption 3 (Totally Characteristic Type)

Let 𝝋 𝑥 = (0, 𝑥, 0, 𝜑𝑗 𝑥 , 0). We say that (1) is of totally 

characteristic type, if the following conditions are satisfied 
for all  𝑘 = 1,2,⋯ , 𝑛.

𝑓𝜉𝑘
𝝋 𝑥 ≢ 0, but 𝑓𝜉𝑘

𝝋 0 = 0.



Assumption 3 (Totally Characteristic Type)

Let 𝝋 𝑥 = (0, 𝑥, 0, 𝜑𝑗 𝑥 , 0). We say that (1) is of totally 

characteristic type, if the following conditions are satisfied 
for all  𝑘 = 1,2,⋯ , 𝑛.

𝑓𝜉𝑘
𝝋 𝑥 ≢ 0, but 𝑓𝜉𝑘

𝝋 0 = 0.

We define holomorphic functions 𝑎𝑖𝑗(𝑥) and 𝑏𝑘(𝑥) by

𝑎𝑖𝑗 𝑥 = 𝑓𝑡𝑖𝜏𝑗
𝝋 𝑥 + 𝑓𝑢𝜏𝑗

(𝝋 𝑥 )𝜑𝑖(𝑥)

+  

𝑘=1

𝑛

𝑓𝜏𝑗𝜉𝑘
(𝝋 𝑥 )

𝜕𝜑𝑖

𝜕𝑥𝑘
(𝑥)

𝑏𝑘 𝑥 = 𝑓𝜉𝑘
𝝋 𝑥 (= 𝑂 𝑥 )



We put {𝜆𝑗} the eigenvalues of (𝑎𝑖𝑗 0 )𝑖,𝑗=1,⋯,𝑑

and put 𝜇𝑘 the eigenvalues of 
𝜕 𝑏1,⋯,𝑏𝑛

𝜕 𝑥1,⋯,𝑥𝑛
(0).



We put {𝜆𝑗} the eigenvalues of (𝑎𝑖𝑗 0 )𝑖,𝑗=1,⋯,𝑑

and put 𝜇𝑘 the eigenvalues of 
𝜕 𝑏1,⋯,𝑏𝑛

𝜕 𝑥1,⋯,𝑥𝑛
(0).

Theorem 1  ([S] Funkcial Ekvac, 45(2002))

Under the assumptions 1, 2 and 3, if Ch 𝜆𝑗 , 𝜇𝑘 ∌ 0 (this condition is called 

“Poincaré condition”), then the formal solution is convergent near the origin.

Theorem 2  ([S] Sūrikaiseki kenkyūjo kōkyūroku, 1431(2005))

Under the assumptions 1, 2 and 3, we assume that Ch 𝜆𝑗 ∌ 0

Moreover, 
𝜕 𝑏1,⋯,𝑏𝑛

𝜕 𝑥1,⋯,𝑥𝑛
(0)~diag(𝑁1, ⋯ , 𝑁𝐼) where 𝑁𝑗 (𝑗 = 1,⋯ , 𝐼)

denotes the nilpotent Jordan block of size 𝑛𝑗 and we put 𝑛0 = max 𝑛1, ⋯ , 𝑛𝐼 .

Then the formal solution diverges in general, and it belongs to the Gevrey
class of order at most 2𝑛0, namely, the power series

 

𝛼 ≥2,|𝛽|≥0

𝑢𝛼𝛽

𝛼 + 𝛽 !2𝑛0−1
𝑡𝛼𝑥𝛽 ∈ ℂ 𝑡, 𝑥 .



The main theorem in this talk is stated as follows.

Theorem 3 (Main Theorem)
Under the assumptions 1, 2 and 3, we assume that Ch 𝜇𝑘 ∌ 0

Moreover, 𝑎𝑖𝑗(0) ~diag(𝑁1, ⋯ , 𝑁𝐼) where 

𝑁𝑗 (𝑗 = 1,⋯ , 𝐼) denotes the nilpotent Jordan block of size 𝑑𝑗

and we put 𝑑0 = max 𝑑1, ⋯ , 𝑑𝐼 . Then the formal solution 𝑢(𝑡, 𝑥)
is divergent in general, and it belongs to the Gevrey class of order 
at most (2𝑑0, 𝑑0 + 1), that is, for the formal solution

 
𝛼∈ℕ𝑑,𝛽∈ℕ𝑛 𝑢𝛼𝛽 𝑡𝛼𝑥𝛽, the power series

 

𝛼∈ℕ𝑑,𝛽∈ℕ𝑛

𝑢𝛼𝛽

𝛼 !2𝑑0−1 𝛽 !𝑑0
𝑡𝛼𝑥𝛽

is convergent in a neighborhood of the origin.



2. Refinement of Main Theorem
Let 𝑣 𝑡, 𝑥 = 𝑢 𝑡, 𝑥 −  𝑗=1

𝑑 𝜑𝑗 𝑥 𝑡𝑗 = 𝑂(|𝑡|𝐾) (𝐾 ≥ 2). 

Then 𝑣(𝑡, 𝑥) satisfies the following equation.

 

𝑖,𝑗=1

𝑑

𝑎𝑖𝑗 𝑥 𝑡𝑖𝜕𝑡𝑗 +  

𝑘=1

𝑛

𝑏𝑘(𝑥)𝜕𝑥𝑘
+ 𝑓𝑢 𝝋 𝑥 𝑣(𝑡, 𝑥)

=  

𝛼 =𝐾

𝑑𝛼(𝑥) 𝑡
𝛼 + 𝑓𝐾+1 𝑡, 𝑥, 𝑣, 𝜕𝑡𝑣, 𝜕𝑥𝑣

(2)

where 

𝑓𝐾+1 𝑡, 𝑥, 𝑣, 𝜏, 𝜉 =  

𝑉 𝛼,𝑝,𝑞,𝑟 ≥𝐾+1

𝑓𝛼𝑝𝑞𝑟(𝑥) 𝑡
𝛼𝑣𝑝𝜏𝑞𝜉𝑟 ∈ 𝒪𝑥{𝑡, 𝑣, 𝜏, 𝜉}

𝑉 𝛼, 𝑝, 𝑞, 𝑟 = 𝛼 + 𝐾𝑝 + 𝐾 − 1 𝑞 + 𝐾|𝑟| (vanishing order in 𝑡)



By linear changes of variables which bring 𝑎𝑖𝑗 0 and 
𝜕 𝑏1,⋯,𝑏𝑛

𝜕 𝑥1,⋯,𝑥𝑛
0 to Jordan 

canonical forms, the equation (2) is reduced to the following form.

𝒩 + 𝒟 + Δ 𝑣 𝑡, 𝑥 =  

𝑖,𝑗,𝑘,𝑙

𝛼𝑖𝑗𝑘𝑙(𝑥) 𝑡𝑖,𝑗𝜕𝑡𝑘,𝑙
𝑣 +  

𝑘=1

𝑛

𝛽𝑘(𝑥) 𝜕𝑥𝑘
𝑣

+𝜂 𝑥 𝑣 +  

𝛼 =𝐾

𝜁𝛼(𝑥) 𝑡
𝛼 + 𝑔𝐾+1(𝑡, 𝑥, 𝑣, 𝜕𝑡𝑣, 𝜕𝑥𝑣)

where

𝒩 =  

𝑗=1

𝐼

 

𝑘=1

𝑑𝑗−1

𝛿𝑡𝑗,𝑘+1 𝜕𝑡𝑗,𝑘 , 𝒟 =  

𝑘=1

𝑛

𝜇𝑘 𝑥𝑘𝜕𝑥𝑘
+ 𝑓𝑢(𝜑 (0)),

Δ =  

𝑘=1

𝑛−1

𝜈𝑘 𝑥𝑘+1𝜕𝑥𝑘
, 𝛼𝑖𝑗𝑘𝑙 𝑥 , 𝜂 𝑥 = 𝑂 𝑥 , 𝛽𝑘 𝑥 = 𝑂 𝑥 2 .

(3)



Definition 1 ( 𝒔, 𝝈 -Borel transform and Gevrey class)

Let 𝒔 = 𝑠1, ⋯ , 𝑠𝑑 ∈ ℝ≥1
𝑑 , 𝝈 = (𝜎1, ⋯ , 𝜎𝑛) ∈ ℝ≥1

𝑛.

For a formal power series 𝑢 𝑡, 𝑥 =  𝑢𝛼𝛽 𝑡𝛼𝑥𝛽, we define 

𝒔, 𝝈 -Borel transform of 𝑢(𝑡, 𝑥) by

𝔅
𝒔,𝝈

𝑢 𝑡, 𝑥 =  
𝑢𝛼𝛽 𝛼 ! 𝛽 !

𝒔 ∙ 𝛼 ! 𝝈 ∙ 𝛽 !
𝑡𝛼𝑥𝛽

where 𝒔 ∙ 𝛼 = 𝑠1𝛼1 + ⋯+ 𝑠𝑑𝛼𝑑 , 𝝈 ∙ 𝛽 = 𝜎1𝛽1 + ⋯+ 𝜎𝑛𝛽𝑛.

We say that 𝑢(𝑡, 𝑥) belongs to 𝒢(𝒔,𝝈), if 𝔅
𝒔,𝝈

𝑢 𝑡, 𝑥

converges in a neighborhood of the origin.



Definition 1 ( 𝒔, 𝝈 -Borel transform and Gevrey class)

Let 𝒔 = 𝑠1, ⋯ , 𝑠𝑑 ∈ ℝ≥1
𝑑 , 𝝈 = (𝜎1, ⋯ , 𝜎𝑛) ∈ ℝ≥1

𝑛.

For a formal power series 𝑢 𝑡, 𝑥 =  𝑢𝛼𝛽 𝑡𝛼𝑥𝛽, we define 

𝒔, 𝝈 -Borel transform of 𝑢(𝑡, 𝑥) by

𝔅
𝒔,𝝈

𝑢 𝑡, 𝑥 =  
𝑢𝛼𝛽 𝛼 ! 𝛽 !

𝒔 ∙ 𝛼 ! 𝝈 ∙ 𝛽 !
𝑡𝛼𝑥𝛽

where 𝒔 ∙ 𝛼 = 𝑠1𝛼1 + ⋯+ 𝑠𝑑𝛼𝑑 , 𝝈 ∙ 𝛽 = 𝜎1𝛽1 + ⋯+ 𝜎𝑛𝛽𝑛.

We say that 𝑢(𝑡, 𝑥) belongs to 𝒢(𝒔,𝝈), if 𝔅
𝒔,𝝈

𝑢 𝑡, 𝑥

converges in a neighborhood of the origin.

Remark
By an easy calculation, the following relation holds.

𝔅
𝒔,𝝈

𝑢 𝑡, 𝑥 ∈ 𝒢 𝒔′,𝝈′
⟹ 𝑢(𝑡, 𝑥) ∈ 𝒢(𝒔+𝒔′−1,𝝈+𝝈′−1)



Proposition 1

Let 𝒔𝑗 = 1,2,⋯ , 𝑑𝑗 ∈ ℕ𝑑𝑗 (𝑗 = 1,2,⋯ , 𝐼) and 𝑑0 = max{𝑑1, ⋯𝑑𝐼}.

Under the assumptions 1, 2, 3 and Poincaré condition for {𝜇𝑘}, 
the formal solution belongs to the Gevrey class of order at most
(𝒔′, 𝝈′) where 𝒔′ and 𝝈′ are defined as follows.

𝒔′ = 𝒔1, 𝒔2, ⋯ , 𝒔𝐼 + (𝑑0, 𝑑0, ⋯ , 𝑑0) ∈ ℕ𝑑

𝝈′ = 𝑑0 + 1, 𝑑0 + 1,⋯ , 𝑑0 + 1 ∈ ℕ𝑛



Proposition 1

Let 𝒔𝑗 = 1,2,⋯ , 𝑑𝑗 ∈ ℕ𝑑𝑗 (𝑗 = 1,2,⋯ , 𝐼) and 𝑑0 = max{𝑑1, ⋯𝑑𝐼}.

Under the assumptions 1, 2, 3 and Poincaré condition for {𝜇𝑘}, 
the formal solution belongs to the Gevrey class of order at most
(𝒔′, 𝝈′) where 𝒔′ and 𝝈′ are defined as follows.

𝒔′ = 𝒔1, 𝒔2, ⋯ , 𝒔𝐼 + (𝑑0, 𝑑0, ⋯ , 𝑑0) ∈ ℕ𝑑

𝝈′ = 𝑑0 + 1, 𝑑0 + 1,⋯ , 𝑑0 + 1 ∈ ℕ𝑛

Proof of Theorem 3 (Proof of Mail Theorem)
Theorem 3 is proved by Proposition 1 immediately. Indeed, all the 
components of (𝒔1, 𝒔2, ⋯ , 𝒔𝐼) are estimated by 𝑑0. Therefore, 
all the components of 𝒔′ are estimated by 2𝑑0, which is the 
desired estimate for Theorem 3.



3. Sketch of the Proof of Proposition 1 in the Example

In this section, we give the sketch of the proof of Proposition 1 in 
the typical example case. The equation we consider is as follows.

Let 𝑡, 𝑥 = (𝑡1, 𝑡2, 𝑥) ∈ ℂ2 × ℂ.  We consider the following
nonlinear PDE.

𝑃𝑢 𝑡, 𝑥 = 𝑎 𝑥 𝑡1 + 𝑡2
2 + 𝑥𝑡1𝜕𝑡2𝑢 + (𝑡2𝜕𝑡2𝑢)(𝜕𝑥 𝑢)

with 𝑢 𝑡, 𝑥 = 𝑂 𝑡 2 , where 𝑎(𝑥) ∈ ℂ{𝑥} and 

𝑃 = 𝑡2𝜕𝑡1 + 𝑥𝜕𝑥 + 1.

(4)



Proposition 2

𝑢 𝑡1, 𝑡2, 𝑥 ∈ 𝒢(3,4,3).
(This corresponds to the case where 𝒔1 = 1,2 and 𝑑0 = 2)



Proposition 2

𝑢 𝑡1, 𝑡2, 𝑥 ∈ 𝒢(3,4,3).
(This corresponds to the case where 𝒔1 = 1,2 and 𝑑0 = 2)

Let ℂ[𝑡]𝐿𝑥
𝑚 =  𝛼1+𝛼2=𝐿 𝑢𝛼1,𝛼2,𝑚𝑡1

𝛼1𝑡2
𝛼2𝑥𝑚 .

Lemma 1
(1)  𝑃 = 𝑡2𝜕𝑡1 + 𝑥𝜕𝑥 + 1 is invertible on ℂ[𝑡]𝐿𝑥

𝑚

for all 𝐿 ≥ 2 and 𝑚 ≥ 0.
(2)  Let  𝒔 = (𝒔1, 1) = 1,2,1 . For 𝑢(𝑡, 𝑥) ∈ ℂ[𝑡]𝐿𝑥

𝑚, if 
𝔅 𝒔 𝑢 𝑡, 𝑥 ≪ 𝑉𝐿𝑚𝑇𝐿𝑋𝑚 (𝑇 = 𝑡1 + 𝑡2, 𝑋 = 𝑥, 𝑉𝐿𝑚 ≥ 0)

then 𝔅 𝒔 𝑃−1𝑢 𝑡, 𝑥 ≪ 𝐶0(𝑋𝜕𝑋 + 1) −1𝑉𝐿𝑚𝑇𝐿𝑋𝑚.



Lemma 2

For 𝑢 𝑡, 𝑥 =  𝑢𝛼𝛽 𝑡𝛼𝑥𝛽, we define 𝑢 𝑡, 𝑥 =  |𝑢𝛼𝛽| 𝑡𝛼𝑥𝛽. For  𝒔 = (1,2,1),

(i) 𝔅 𝒔(𝑢𝑣)(𝑡, 𝑥) ≪ 𝐶1𝔅
 𝒔( 𝑢 )(𝑡, 𝑥) ⋅ 𝔅 𝒔( 𝑣 )(𝑡, 𝑥)



Lemma 2

For 𝑢 𝑡, 𝑥 =  𝑢𝛼𝛽 𝑡𝛼𝑥𝛽, we define 𝑢 𝑡, 𝑥 =  |𝑢𝛼𝛽| 𝑡𝛼𝑥𝛽. For  𝒔 = (1,2,1),

(i) 𝔅 𝒔(𝑢𝑣)(𝑡, 𝑥) ≪ 𝐶1𝔅
 𝒔( 𝑢 )(𝑡, 𝑥) ⋅ 𝔅 𝒔( 𝑣 )(𝑡, 𝑥)

(ii) If 𝔅 𝒔(𝑢)(𝑡, 𝑥) ≪ 𝑉(𝑇, 𝑋)= 𝐿≥2 𝑉𝐿(𝑋)𝑇𝐿 =  𝐿≥2,𝑀≥0 𝑉𝐿,𝑀 𝑇𝐿𝑋𝑀, then 

𝔅 𝒔 𝜕𝑡1𝑃
−1𝑢 ≪ 𝐶2𝜕𝑇 𝑋𝜕𝑋 + 1 −1𝑉 𝑇, 𝑋

𝔅 𝒔 𝜕𝑡2𝑃
−1𝑢 ≪ 𝐶2𝜕𝑇 𝑇𝜕𝑇 𝑋𝜕𝑋 + 1 −1𝑉 𝑇, 𝑋

𝔅 𝒔 𝜕𝑥𝑃
−1𝑢 ≪ 𝐶2𝜕𝑋 𝑋𝜕𝑋 + 1 −1𝑉 𝑇, 𝑋 ≪ 𝐶2𝑆 𝑉 𝑇, 𝑋

where 𝑆(𝑉)(𝑇, 𝑋) is called “Shift operator” which is defined by

𝑆 𝑉 𝑇, 𝑋 =  

𝐿≥2

𝑆(𝑉𝐿)(𝑋)𝑇𝐿 ≔
𝑉 𝑇, 𝑋 − 𝑉 𝑇, 0

𝑋
=  

𝐿≥2,𝑀≥0

𝑉𝐿,𝑀+1 𝑇𝐿𝑋𝑀



Let 𝑈 𝑡, 𝑥 = 𝑃𝑢(𝑡, 𝑥) be a new unknown function. Then 𝑈(𝑡, 𝑥) satisies

𝑈 = 𝑎 𝑥 𝑡1 + 𝑡2
2 + 𝑥𝑡1𝜕𝑡2𝑃

−1𝑈 + 𝑡2𝜕𝑡2𝑃
−1𝑈 𝜕𝑥𝑃

−1𝑈 .

We apply  𝒔-Borel transform to above equation, we have

𝔅 𝒔 𝑈 = 𝔅 𝒔 𝑎 𝑥 𝑡1 + 𝑡2
2 + 𝔅 𝒔 𝑥𝑡1𝜕𝑡2𝑃

−1𝑈

+𝔅 𝒔 𝑡2𝜕𝑡2𝑃
−1𝑈 (𝜕𝑥𝑃

−1𝑈) .



Let 𝑈 𝑡, 𝑥 = 𝑃𝑢(𝑡, 𝑥) be a new unknown function. Then 𝑈(𝑡, 𝑥) satisies

𝑈 = 𝑎 𝑥 𝑡1 + 𝑡2
2 + 𝑥𝑡1𝜕𝑡2𝑃

−1𝑈 + 𝑡2𝜕𝑡2𝑃
−1𝑈 𝜕𝑥𝑃

−1𝑈 .

We apply  𝒔-Borel transform to above equation, we have

𝔅 𝒔 𝑈 = 𝔅 𝒔 𝑎 𝑥 𝑡1 + 𝑡2
2 + 𝔅 𝒔 𝑥𝑡1𝜕𝑡2𝑃

−1𝑈

+𝔅 𝒔 𝑡2𝜕𝑡2𝑃
−1𝑈 (𝜕𝑥𝑃

−1𝑈) .

By Lemma 1 and 2, 

𝔅 𝒔 𝑎 𝑥 𝑡1 + 𝑡2
2 ≪ 𝑎 𝑋 𝑇2

𝔅 𝒔 𝑥𝑡1𝜕𝑡2𝑃
−1𝑈 ≪ 𝐶𝑋 𝑇𝜕𝑇

2 𝑋𝜕𝑋 + 1 −1𝑉(𝑇, 𝑋)

𝔅 𝒔 𝑡2𝜕𝑡2𝑃
−1𝑈 𝜕𝑥𝑃

−1𝑈

≪ 𝐶 𝑇𝜕𝑇
2 𝑋𝜕𝑋 + 1 −1𝑉 ⋅ 𝑆(𝑉)(𝑇, 𝑋)



Therefore, we consider the equation

𝑉 = 𝑎 𝑋 𝑇2 + 𝐶𝑋 𝑇𝜕𝑇
2 𝑋𝜕𝑋 + 1 −1𝑉

+𝐶(𝑇𝜕𝑇)
2 𝑋𝜕𝑋 + 1 −1𝑉 ⋅ 𝑆(𝑉)(𝑇, 𝑋),

𝑉 𝑇, 𝑋 = 𝑂 𝑇2 .

By the construction of this equation, we have 𝔅 𝒔(𝑈)(𝑡, 𝑥) ≪ 𝑉(𝑇, 𝑋).



Therefore, we consider the equation

𝑉 = 𝑎 𝑋 𝑇2 + 𝐶𝑋 𝑇𝜕𝑇
2 𝑋𝜕𝑋 + 1 −1𝑉

+𝐶(𝑇𝜕𝑇)
2 𝑋𝜕𝑋 + 1 −1𝑉 ⋅ 𝑆(𝑉)(𝑇, 𝑋),

𝑉 𝑇, 𝑋 = 𝑂 𝑇2 .

By the construction of this equation, we have 𝔅 𝒔(𝑈)(𝑡, 𝑥) ≪ 𝑉(𝑇, 𝑋).

Let 𝑉 =  𝐿≥2 𝑉𝐿(𝑋)𝑇𝐿 be an unknown function. By substituting this into the 
equation, we have the following recurrence formula for 𝑉𝐿(𝑋) 𝐿=2,3,⋯

𝑉2 𝑋 = 𝑎 𝑋 + 22𝐶𝑋 𝑋𝜕𝑋 + 1 −1𝑉2 𝑋

and for 𝐿 ≥ 3,

𝑉𝐿 𝑋 = 𝐶𝐿2𝑋 𝑋𝜕𝑋 + 1 −1𝑉𝐿 𝑋

+  

𝐿1+𝐿2=𝐿

𝐿1
2𝑋 𝑋𝜕𝑋 + 1 −1𝑉𝐿1

𝑋 ∙ 𝑆(𝑉𝐿2
) 𝑋 .

(r.f. 2)

(r.f. 𝐿)



(r.f. 2) is estimated by the same way as (r.f. 𝐿), therefore, we consider (r.f. 𝐿).



(r.f. 2) is estimated by the same way as (r.f. 𝐿), therefore, we consider (r.f. 𝐿).

Let 𝑉𝐿 𝑋 =  𝑀≥0𝑉𝐿,𝑀𝑋𝑀 be the Taylor expansion. By substituting this into (r.f. 𝐿), 

we have the following recurrence formula for 𝑉𝐿,𝑀 𝑀=0,1,2,⋯

𝑉𝐿,𝑀 =
𝐶𝐿2

𝑀
𝑉𝐿,𝑀−1 + 𝐶  

𝐿1+𝐿2=𝐿

 

𝑀1+𝑀2=𝑀

𝐿1
2

𝑀1 + 1
𝑉𝐿1,𝑀1

𝑉𝐿2,𝑀2+1



(r.f. 2) is estimated by the same way as (r.f. 𝐿), therefore, we consider (r.f. 𝐿).

Let 𝑉𝐿 𝑋 =  𝑀≥0𝑉𝐿,𝑀𝑋𝑀 be the Taylor expansion. By substituting this into (r.f. 𝐿), 

we have the following recurrence formula for 𝑉𝐿,𝑀 𝑀=0,1,2,⋯

𝑉𝐿,𝑀 =
𝐶𝐿2

𝑀
𝑉𝐿,𝑀−1 + 𝐶  

𝐿1+𝐿2=𝐿

 

𝑀1+𝑀2=𝑀

𝐿1
2

𝑀1 + 1
𝑉𝐿1,𝑀1

𝑉𝐿2,𝑀2+1

We replace 𝑉𝐿,𝑀 by 𝑊𝐿,𝑀 =
𝑉𝐿,𝑀

𝐿+𝑀 !2
(this is equivalent to (3,3)-Borel transform), 

𝑊𝐿,𝑀 𝑀=0,1,2,⋯
satisfies the following recurrence formula. 

𝑊𝐿,𝑀

=
𝐶𝐿2 𝐿 + 𝑀 − 1 !2

𝑀 𝐿 + 𝑀 !2
𝑊𝐿,𝑀−1

+ 𝐶  

𝐿1+𝐿2=𝐿

 

𝑀1+𝑀2=𝑀

𝐿1
2 𝐿1 + 𝑀1 !2 𝐿2 + 𝑀2 + 1 !2

(𝑀1 + 1) 𝐿 + 𝑀 !2
𝑊𝐿1,𝑀1

𝑊𝐿2,𝑀2+1



Here we can estimate as follows.

𝐿2 𝐿 + 𝑀 − 1 !2

𝑀 𝐿 + 𝑀 !2
=

𝐿2

𝑀 𝐿 + 𝑀 2
≤ 1



Here we can estimate as follows.

𝐿2 𝐿 + 𝑀 − 1 !2

𝑀 𝐿 + 𝑀 !2
=

𝐿2

𝑀 𝐿 + 𝑀 2
≤ 1

𝐿1
2 𝐿1 + 𝑀1 !2 𝐿2 + 𝑀2 + 1 !2

(𝑀1 + 1) 𝐿 + 𝑀 !2
≤

𝐿1
22!2 𝐿 + 𝑀 − 1 !2

(𝑀1 + 1) 𝐿 + 𝑀 !2

=
4𝐿1

2

(𝑀1 + 1)(𝐿 + 𝑀)2
≤ 4



Here we can estimate as follows.

𝐿2 𝐿 + 𝑀 − 1 !2

𝑀 𝐿 + 𝑀 !2
=

𝐿2

𝑀 𝐿 + 𝑀 2
≤ 1

𝐿1
2 𝐿1 + 𝑀1 !2 𝐿2 + 𝑀2 + 1 !2

(𝑀1 + 1) 𝐿 + 𝑀 !2
≤

𝐿1
22!2 𝐿 + 𝑀 − 1 !2

(𝑀1 + 1) 𝐿 + 𝑀 !2

=
4𝐿1

2

(𝑀1 + 1)(𝐿 + 𝑀)2
≤ 4

Here we consider the following recurrence formula

𝑌𝐿,𝑀 = 𝑎𝑀 + 𝐶𝑌𝐿,𝑀−1 + 4𝐶  

𝐿1+𝐿2=𝐿

 

𝑀1+𝑀2=𝑀

𝑌𝐿1,𝑀1
𝑌𝐿2,𝑀2+1

By the construction of this recurrence formula, we have 𝑊𝐿,𝑀 ≤ 𝑌𝐿,𝑀 for all 𝐿 and 𝑀, 

that is, 𝑊𝐿 𝑋 ≪ 𝑌𝐿 𝑋 =  𝑀≥0 𝑌𝐿,𝑀 𝑋𝑀 for all 𝐿.



By an easy calculation, 𝑌 𝑇, 𝑋 =  𝐿≥2𝑌𝐿(𝑋) 𝑇𝐿 satisfies the following 
equation.

𝑌 𝑇, 𝑋 = 𝑎 𝑋 𝑇2 + 𝐶𝑋𝑌 𝑇, 𝑋 + 4𝐶𝑌 𝑇, 𝑋 ∙ 𝑆(𝑌)(𝑇, 𝑋)

with 𝑌 𝑇, 𝑋 = 𝑂(𝑇2).



By an easy calculation, 𝑌 𝑇, 𝑋 =  𝐿≥2𝑌𝐿(𝑋) 𝑇𝐿 satisfies the following 
equation.

𝑌 𝑇, 𝑋 = 𝑎 𝑋 𝑇2 + 𝐶𝑋𝑌 𝑇, 𝑋 + 4𝐶𝑌 𝑇, 𝑋 ∙ 𝑆(𝑌)(𝑇, 𝑋)

with 𝑌 𝑇, 𝑋 = 𝑂(𝑇2).

Here we put 𝑌 𝑇, 𝑋 = 𝑇𝑍(𝑇, 𝑋) (𝑍 𝑇, 𝑋 = 𝑂 𝑇 ), 𝑍(𝑇, 𝑋) satisfies 
the equation

𝑍 𝑇, 𝑋 = 𝑎 𝑋 𝑇 + 𝐶𝑋𝑍 𝑇, 𝑋 + 4𝐶𝑍 𝑇, 𝑋 ∙ 𝑇𝑆 𝑍 𝑇, 𝑋 .



By an easy calculation, 𝑌(𝑇, 𝑋) satisfies the following equation.

𝑌 𝑇, 𝑋 = 𝑎 𝑋 𝑇2 + 𝐶𝑋𝑌 𝑇, 𝑋 + 4𝐶𝑌 𝑇, 𝑋 ∙ 𝑆(𝑌)(𝑇, 𝑋)

with 𝑌 𝑇, 𝑋 = 𝑂(𝑇2).

Here we put 𝑌 𝑇, 𝑋 = 𝑇𝑍(𝑇, 𝑋) (𝑍 𝑇, 𝑋 = 𝑂 𝑇 ), 𝑍(𝑇, 𝑋) satisfies 
the equation

𝑍 𝑇, 𝑋 = 𝑎 𝑋 𝑇 + 𝐶𝑋𝑍 𝑇, 𝑋 + 4𝐶𝑍 𝑇, 𝑋 ∙ 𝑇𝑆 𝑍 𝑇, 𝑋 .

Since 𝑍(𝑇, 𝑋) ≫ 0 and by the definition of shift operator, 𝑋𝑆(𝑍)(𝑇, 𝑋)
is estimated by

𝑋𝑆 𝑍 𝑇, 𝑋 = 𝑍 𝑇, 𝑋 − 𝑍 𝑇, 0 ≪ 𝑍 𝑇, 𝑋 .

(5)



We put 𝜑 𝜌 = 𝑍(𝜌, 𝜌).  In this case, 𝜌𝑆 𝑍 𝜌, 𝜌 ≪ 𝑍 𝜌, 𝜌 = 𝜑(𝜌) holds.



We put 𝜑 𝜌 = 𝑍(𝜌, 𝜌).  In this case, 𝜌𝑆 𝑍 𝜌, 𝜌 ≪ 𝑍 𝜌, 𝜌 = 𝜑(𝜌) holds.

For the equation

𝑍 𝑇, 𝑋 = 𝑎 𝑋 𝑇 + 𝐶𝑋𝑍 𝑇, 𝑋 + 4𝐶𝑍 𝑇, 𝑋 ∙ 𝑇𝑆 𝑍 𝑇, 𝑋 with 𝑍(0, 𝑋) ≡ 0 ,

we set 𝑇 = 𝜌, 𝑋 = 𝜌. 
The formal solution 𝜓(𝜌) of the equation 

𝜓 𝜌 = 𝑎 𝜌 𝜌 + 𝐶𝜌𝜓 𝜌 + 4𝐶𝜓(𝜌)2 with  𝜓 0 = 0

is convergent in a neighborhood of the origin by the implicit function theorem.
Moreover by using the above majorant relation, we obtain 𝑍 𝜌, 𝜌 ≪ 𝜓 𝜌 .
This implies that the formal solution 𝑍(𝑇, 𝑋) of (3) is also convergent near the origin. 



We put 𝜑 𝜌 = 𝑍(𝜌, 𝜌).  In this case, 𝜌𝑆 𝑍 𝜌, 𝜌 ≪ 𝑍 𝜌, 𝜌 = 𝜑(𝜌) holds.

For the equation

𝑍 𝑇, 𝑋 = 𝑎 𝑋 𝑇 + 𝐶𝑋𝑍 𝑇, 𝑋 + 4𝐶𝑍 𝑇, 𝑋 ∙ 𝑇𝑆 𝑍 𝑇, 𝑋 with 𝑍(0, 𝑋) ≡ 0 ,

we set 𝑇 = 𝜌, 𝑋 = 𝜌. 
The formal solution 𝜓(𝜌) of the equation 

𝜓 𝜌 = 𝑎 𝜌 𝜌 + 𝐶𝜌𝜓 𝜌 + 4𝐶𝜓(𝜌)2 with  𝜓 0 = 0

is convergent in a neighborhood of the origin by the implicit function theorem. 
Moreover by using the above majorant relation, we obtain 𝑍 𝜌, 𝜌 ≪ 𝜓 𝜌 .
This implies that the formal solution 𝑍(𝑇, 𝑋) of (3) is also convergent near the origin. 

This implies that

ℂ 𝑇, 𝑋 ∋ 𝑇𝑍 𝑇, 𝑋 = 𝑌 𝑇, 𝑋 ≫ 𝑊(𝑇, 𝑋) ≫ 𝔅 3,3 (𝑉)(𝑇, 𝑋)

Namely, 𝑉 𝑇, 𝑋 = 𝑉(𝑡1 + 𝑡2, 𝑥) ∈ 𝒢(3,3,3). 

Moreover, 𝔅 𝒔 𝑈 𝑡, 𝑥 = 𝔅 1,2,1 (𝑈)(𝑡, 𝑥) ≪ 𝑉(𝑇, 𝑋) ∈ 𝒢(3,3,3), then the Gevrey
order of 𝑈(𝑡, 𝑥) is 𝒔′, 𝝈′ = 1,2,1 + 3,3,3 − 1,1,1 = (3,4,3), 
this is the consequence of Proposition 2. 


