Maillet Type Theorem for Singular First Order Nonlinear Partial Differential Equations of Totally Characteristic Type

Akira Shirai (Sugiyama Jogakuen University, Nagoya, Japan)

Sugiyama Jogakuen University

1. Introduction and Main Result

Let $t = (t_1, \dots, t_d) \in \mathbb{C}^d$, $x = (x_1, \dots, x_n) \in \mathbb{C}^n$ be d and n dimensional complex variables and u = u(t, x) denote an unknown function.

We consider the following first order nonlinear PDE.

(1)
$$f(t, x, u, \partial_t u, \partial_x u) = 0$$
 with $u(0, x) \equiv 0$

where $\partial_t u = (\partial_{t_1} u, \dots, \partial_{t_d} u)$ and $\partial_x u$ is the similar definition with $\partial_t u$, and $f(t, x, u, \tau, \xi)$ $(\tau = (\tau_j) \in \mathbb{C}^d, \xi = (\xi_k) \in \mathbb{C}^n)$ is holomorphic near the origin and an entire function in τ variables.

Assumption 1 (Singular in t) We assume that (1) is singular in t variables in the sense that $f(0, x, 0, \tau, 0) \equiv 0$ for $\forall x \in \mathbb{C}^n$, $\forall \tau \in \mathbb{C}^d$.

Assumption 2 (Existence of Formal Solutions)
(1) has a formal solution of the form

$$u(t,x) = \sum_{j=1}^{d} \varphi_j(x)t_j + \sum_{|\alpha| \ge 2, |\beta| \ge 0} u_{\alpha\beta}t^{\alpha} x^{\beta}$$
where $\varphi_j(x) \in \mathbb{C}\{x\}$ for all $j = 1, 2, \cdots, d$.

Assumption 3 (Totally Characteristic Type) Let $\varphi(x) = (0, x, 0, \{\varphi_j(x)\}, 0)$. We say that (1) is of totally characteristic type, if the following conditions are satisfied for all $k = 1, 2, \dots, n$. $f_{\xi_k}(\varphi(x)) \not\equiv 0$, but $f_{\xi_k}(\varphi(0)) = 0$.

Assumption 3 (Totally Characteristic Type) Let $\varphi(x) = (0, x, 0, \{\varphi_j(x)\}, 0)$. We say that (1) is of totally characteristic type, if the following conditions are satisfied for all $k = 1, 2, \dots, n$. $f_{\xi_k}(\varphi(x)) \not\equiv 0$, but $f_{\xi_k}(\varphi(0)) = 0$.

We define holomorphic functions $a_{ij}(x)$ and $b_k(x)$ by $a_{ij}(x) = f_{t_i \tau_j}(\boldsymbol{\varphi}(x)) + f_{u\tau_j}(\boldsymbol{\varphi}(x))\varphi_i(x)$ $+ \sum_{k=1}^n f_{\tau_j \xi_k}(\boldsymbol{\varphi}(x)) \frac{\partial \varphi_i}{\partial x_k}(x)$ $b_k(x) = f_{\xi_k}(\boldsymbol{\varphi}(x))(= O(|x|))$

We put $\{\lambda_j\}$ the eigenvalues of $(a_{ij}(0))_{i,j=1,\cdots,d}$ and put $\{\mu_k\}$ the eigenvalues of $\frac{\partial(b_1,\cdots,b_n)}{\partial(x_1,\cdots,x_n)}(0)$.

We put $\{\lambda_j\}$ the eigenvalues of $(a_{ij}(0))_{i,j=1,\cdots,d}$

and put $\{\mu_k\}$ the eigenvalues of $\frac{\partial(b_1, \dots, b_n)}{\partial(x_1, \dots, x_n)}(0)$.

Theorem 1 ([S] Funkcial Ekvac, 45(2002))

Under the assumptions 1, 2 and 3, if $Ch(\{\lambda_j\}, \{\mu_k\}) \not\supseteq 0$ (this condition is called "Poincaré condition"), then the formal solution is convergent near the origin.

Theorem 2 ([S] Sūrikaiseki kenkyūjo kōkyūroku, 1431(2005)) Under the assumptions 1, 2 and 3, we assume that $\operatorname{Ch}(\{\lambda_j\}) \not\supseteq 0$ Moreover, $\frac{\partial(b_1, \cdots, b_n)}{\partial(x_1, \cdots, x_n)}(0) \sim \operatorname{diag}(N_1, \cdots, N_I)$ where N_j $(j = 1, \cdots, I)$ denotes the nilpotent Jordan block of size n_j and we put $n_0 = \max\{n_1, \cdots, n_I\}$. Then the formal solution diverges in general, and it belongs to the Gevrey class of order at most $2n_0$, namely, the power series $\sum_{|\alpha|>2,|\beta|>0} \frac{u_{\alpha\beta}}{(|\alpha|+|\beta|)!^{2n_0-1}} t^{\alpha} x^{\beta} \in \mathbb{C}\{t,x\}.$

Theorem 3 (Main Theorem)

Under the assumptions 1, 2 and 3, we assume that $Ch(\{\mu_k\}) \not\supseteq 0$ Moreover, $(a_{ii}(0)) \sim \text{diag}(N_1, \dots, N_I)$ where N_i ($j = 1, \dots, I$) denotes the nilpotent Jordan block of size d_i and we put $d_0 = \max\{d_1, \dots, d_I\}$. Then the formal solution u(t, x)is divergent in general, and it belongs to the Gevrey class of order at most $(2d_0, d_0 + 1)$, that is, for the formal solution $\sum_{\alpha \in \mathbb{N}^{d}, \beta \in \mathbb{N}^{n}} u_{\alpha\beta} t^{\alpha} x^{\beta}$, the power series $\sum_{\alpha \in \mathbb{N}^{d}, \beta \in \mathbb{N}^{n}} \frac{u_{\alpha\beta}}{|\alpha|!^{2d_{0}-1} |\beta|!^{d_{0}}} t^{\alpha} x^{\beta}$ is convergent in a neighborhood of the origin.

2. Refinement of Main Theorem

Let $v(t,x) = u(t,x) - \sum_{j=1}^{d} \varphi_j(x) t_j = O(|t|^K)$ ($K \ge 2$). Then v(t,x) satisfies the following equation.

(2)
$$\left(\sum_{i,j=1}^{d} a_{ij}(x)t_i\partial_{t_j} + \sum_{k=1}^{n} b_k(x)\partial_{x_k} + f_u(\varphi(x))\right)v(t,x)$$
$$= \sum_{|\alpha|=K} d_{\alpha}(x)t^{\alpha} + f_{K+1}(t,x,v,\partial_t v,\partial_x v)$$

where

$$f_{K+1}(t, x, v, \tau, \xi) = \sum_{\substack{V(\alpha, p, q, r) \ge K+1}} f_{\alpha p q r}(x) t^{\alpha} v^{p} \tau^{q} \xi^{r} \in \mathcal{O}_{x}\{t, v, \tau, \xi\}$$
$$V(\alpha, p, q, r) = |\alpha| + Kp + (K-1)|q| + K|r| \text{ (vanishing order in } t)$$

By linear changes of variables which bring $(a_{ij}(0))$ and $\frac{\partial(b_1, \dots, b_n)}{\partial(x_1, \dots, x_n)}(0)$ to Jordan canonical forms, the equation (2) is reduced to the following form.

(3)
$$(\mathcal{N} + \mathcal{D} + \Delta)v(t, x) = \sum_{i,j,k,l} \alpha_{ijkl}(x) t_{i,j} \partial_{t_{k,l}} v + \sum_{k=1}^{n} \beta_k(x) \partial_{x_k} v + \eta(x)v + \sum_{|\alpha|=K} \zeta_{\alpha}(x) t^{\alpha} + g_{K+1}(t, x, v, \partial_t v, \partial_x v)$$

where

$$\mathcal{N} = \sum_{j=1}^{I} \sum_{k=1}^{d_j - 1} \delta t_{j,k+1} \,\partial_{t_{j,k}} \,, \qquad \mathcal{D} = \sum_{k=1}^{n} \mu_k \, x_k \partial_{x_k} + f_u(\varphi(0)),$$
$$\Delta = \sum_{k=1}^{n-1} \nu_k \, x_{k+1} \partial_{x_k} \,, \qquad \alpha_{ijkl}(x), \eta(x) = O(|x|), \qquad \beta_k(x) = O(|x|^2).$$

<u>Definition 1 ((s, σ)-Borel transform and Gevrey class</u>)

Let $s = (s_1, \dots, s_d) \in (\mathbb{R}_{\geq 1})^d$, $\sigma = (\sigma_1, \dots, \sigma_n) \in (\mathbb{R}_{\geq 1})^n$. For a formal power series $u(t, x) = \sum u_{\alpha\beta} t^{\alpha} x^{\beta}$, we define (s, σ) -Borel transform of u(t, x) by

$$\mathfrak{B}^{(\boldsymbol{s},\boldsymbol{\sigma})}(\boldsymbol{u})(\boldsymbol{t},\boldsymbol{x}) = \sum \frac{u_{\alpha\beta}|\alpha|!\,|\beta|!}{(\boldsymbol{s}\cdot\alpha)!\,(\boldsymbol{\sigma}\cdot\beta)!}t^{\alpha}\boldsymbol{x}^{\beta}$$

where
$$\mathbf{s} \cdot \alpha = s_1 \alpha_1 + \dots + s_d \alpha_d$$
, $\mathbf{\sigma} \cdot \beta = \sigma_1 \beta_1 + \dots + \sigma_n \beta_n$.
We say that $u(t, x)$ belongs to $\mathcal{G}^{(s, \sigma)}$, if $\mathfrak{B}^{(s, \sigma)}(u)(t, x)$ converges in a neighborhood of the origin.

Definition 1 ((s, σ)-Borel transform and Gevrey class)

Let $\boldsymbol{s} = (s_1, \dots, s_d) \in (\mathbb{R}_{\geq 1})^d$, $\boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_n) \in (\mathbb{R}_{\geq 1})^n$. For a formal power series $u(t, x) = \sum u_{\alpha\beta} t^{\alpha} x^{\beta}$, we define $(\boldsymbol{s}, \boldsymbol{\sigma})$ -Borel transform of u(t, x) by

$$\mathfrak{B}^{(\boldsymbol{s},\boldsymbol{\sigma})}(\boldsymbol{u})(\boldsymbol{t},\boldsymbol{x}) = \sum \frac{u_{\alpha\beta}|\alpha|!\,|\beta|!}{(\boldsymbol{s}\cdot\alpha)!\,(\boldsymbol{\sigma}\cdot\beta)!}t^{\alpha}\boldsymbol{x}^{\beta}$$

where
$$\mathbf{s} \cdot \alpha = s_1 \alpha_1 + \dots + s_d \alpha_d$$
, $\mathbf{\sigma} \cdot \beta = \sigma_1 \beta_1 + \dots + \sigma_n \beta_n$.
We say that $u(t, x)$ belongs to $\mathcal{G}^{(s, \sigma)}$, if $\mathfrak{B}^{(s, \sigma)}(u)(t, x)$ converges in a neighborhood of the origin.

<u>Remark</u>

By an easy calculation, the following relation holds.

$$\mathfrak{B}^{(s,\sigma)}(u)(t,x) \in \mathcal{G}^{(s',\sigma')} \Longrightarrow u(t,x) \in \mathcal{G}^{(s+s'-1,\sigma+\sigma'-1)}$$

Proposition 1

Let $s^j = (1, 2, \dots, d_j) \in \mathbb{N}^{d_j}$ $(j = 1, 2, \dots, I)$ and $d_0 = \max\{d_1, \dots, d_I\}$. Under the assumptions 1, 2, 3 and Poincaré condition for $\{\mu_k\}$, the formal solution belongs to the Gevrey class of order at most (s', σ') where s' and σ' are defined as follows. $s' = (s^1, s^2, \dots, s^I) + (d_0, d_0, \dots, d_0) \in \mathbb{N}^d$ $\sigma' = (d_0 + 1, d_0 + 1, \dots, d_0 + 1) \in \mathbb{N}^n$

Proposition 1

Let $s^j = (1, 2, \dots, d_j) \in \mathbb{N}^{d_j}$ $(j = 1, 2, \dots, I)$ and $d_0 = \max\{d_1, \dots, d_I\}$. Under the assumptions 1, 2, 3 and Poincaré condition for $\{\mu_k\}$, the formal solution belongs to the Gevrey class of order at most (s', σ') where s' and σ' are defined as follows. $s' = (s^1, s^2, \dots, s^I) + (d_0, d_0, \dots, d_0) \in \mathbb{N}^d$ $\sigma' = (d_0 + 1, d_0 + 1, \dots, d_0 + 1) \in \mathbb{N}^n$

Proof of Theorem 3 (Proof of Mail Theorem)

Theorem 3 is proved by Proposition 1 immediately. Indeed, all the components of (s^1, s^2, \dots, s^l) are estimated by d_0 . Therefore, all the components of s' are estimated by $2d_0$, which is the desired estimate for Theorem 3.

3. Sketch of the Proof of Proposition 1 in the Example

In this section, we give the sketch of the proof of Proposition 1 in the typical example case. The equation we consider is as follows.

Let $(t, x) = (t_1, t_2, x) \in \mathbb{C}^2 \times \mathbb{C}$. We consider the following nonlinear PDE.

$$Pu(t,x) = a(x)(t_1 + t_2)^2 + xt_1\partial_{t_2}u + (t_2\partial_{t_2}u)(\partial_x u)$$
(4)

with $u(t, x) = O(|t|^2)$, where $a(x) \in \mathbb{C}\{x\}$ and

$$P = t_2 \partial_{t_1} + x \partial_x + 1.$$

Proposition 2

$$u(t_1, t_2, x) \in \mathcal{G}^{(3,4,3)}$$

(This corresponds to the case where $s^1 = (1,2)$ and $d_0 = 2$)

Proposition 2

$$u(t_1, t_2, x) \in \mathcal{G}^{(3,4,3)}.$$

(This corresponds to the case where $s^1 = (1,2)$ and $d_0 = 2$)

Let
$$\mathbb{C}[t]_L x^m = \{\sum_{\alpha_1 + \alpha_2 = L} u_{\alpha_1, \alpha_2, m} t_1^{\alpha_1} t_2^{\alpha_2} x^m \}.$$

Lemma 1
(1)
$$P = t_2 \partial_{t_1} + x \partial_x + 1$$
 is invertible on $\mathbb{C}[t]_L x^m$
for all $L \ge 2$ and $m \ge 0$.
(2) Let $\tilde{s} = (s^1, 1) = (1, 2, 1)$. For $u(t, x) \in \mathbb{C}[t]_L x^m$, if
 $\mathfrak{B}^{\tilde{s}}(u)(t, x) \ll V_{Lm} T^L X^m$ $(T = t_1 + t_2, X = x, V_{Lm} \ge 0)$
then $\mathfrak{B}^{\tilde{s}}(P^{-1}u)(t, x) \ll C_0 (X \partial_X + 1)^{-1} V_{Lm} T^L X^m$.

Lemma 2

For $u(t,x) = \sum u_{\alpha\beta} t^{\alpha} x^{\beta}$, we define $|u|(t,x) = \sum |u_{\alpha\beta}| t^{\alpha} x^{\beta}$. For $\tilde{s} = (1,2,1)$, (i) $\mathfrak{B}^{\tilde{s}}(uv)(t,x) \ll C_1 \mathfrak{B}^{\tilde{s}}(|u|)(t,x) \cdot \mathfrak{B}^{\tilde{s}}(|v|)(t,x)$

<u>Lemma 2</u>

For $u(t,x) = \sum u_{\alpha\beta} t^{\alpha} x^{\beta}$, we define $|u|(t,x) = \sum |u_{\alpha\beta}| t^{\alpha} x^{\beta}$. For $\tilde{s} = (1,2,1)$, (i) $\mathfrak{B}^{\tilde{s}}(uv)(t,x) \ll C_1 \mathfrak{B}^{\tilde{s}}(|u|)(t,x) \cdot \mathfrak{B}^{\tilde{s}}(|v|)(t,x)$ (ii) If $\mathfrak{B}^{\tilde{s}}(u)(t,x) \ll V(T,X) = \sum_{L\geq 2} V_L(X)T^L = \sum_{L\geq 2,M\geq 0} V_{L,M} T^L X^M$, then $\mathfrak{B}^{\tilde{s}}(\partial_{t_1}P^{-1}u) \ll C_2 \partial_T (X \partial_X + 1)^{-1} V(T,X)$ $\mathfrak{B}^{\tilde{s}}(\partial_{t_2}P^{-1}u) \ll C_2 \partial_T (T \partial_T) (X \partial_X + 1)^{-1} V(T,X)$ $\mathfrak{B}^{\tilde{s}}(\partial_x P^{-1}u) \ll C_2 \partial_X (X \partial_X + 1)^{-1} V(T,X) \ll C_2 S(V)(T,X)$

where S(V)(T, X) is called "Shift operator" which is defined by

$$S(V)(T,X) = \sum_{L \ge 2} S(V_L)(X)T^L \coloneqq \frac{V(T,X) - V(T,0)}{X} = \sum_{L \ge 2,M \ge 0} V_{L,M+1} T^L X^M$$

Let U(t, x) = Pu(t, x) be a new unknown function. Then U(t, x) satisfies

$$U = a(x)(t_1 + t_2)^2 + xt_1\partial_{t_2}P^{-1}U + (t_2\partial_{t_2}P^{-1}U)(\partial_x P^{-1}U).$$

We apply \tilde{s} -Borel transform to above equation, we have

$$\begin{split} \mathfrak{B}^{\tilde{s}}(U) &= \mathfrak{B}^{\tilde{s}}(a(x)(t_1+t_2)^2) + \mathfrak{B}^{\tilde{s}}\left(xt_1\partial_{t_2}P^{-1}U\right) \\ &+ \mathfrak{B}^{\tilde{s}}\left\{\left(t_2\partial_{t_2}P^{-1}U\right)(\partial_x P^{-1}U)\right\}. \end{split}$$

Let U(t, x) = Pu(t, x) be a new unknown function. Then U(t, x) satisfies

$$U = a(x)(t_1 + t_2)^2 + xt_1\partial_{t_2}P^{-1}U + (t_2\partial_{t_2}P^{-1}U)(\partial_x P^{-1}U).$$

We apply \tilde{s} -Borel transform to above equation, we have

$$\begin{aligned} \mathfrak{B}^{\tilde{s}}(U) &= \mathfrak{B}^{\tilde{s}}(a(x)(t_1+t_2)^2) + \mathfrak{B}^{\tilde{s}}\left(xt_1\partial_{t_2}P^{-1}U\right) \\ &+ \mathfrak{B}^{\tilde{s}}\left\{\left(t_2\partial_{t_2}P^{-1}U\right)(\partial_x P^{-1}U)\right\}. \end{aligned}$$

By Lemma 1 and 2,

$$\begin{aligned} \mathfrak{B}^{\tilde{s}}(a(x)(t_1+t_2)^2) &\ll |a|(X)T^2 \\ \mathfrak{B}^{\tilde{s}}(xt_1\partial_{t_2}P^{-1}U) &\ll CX(T\partial_T)^2(X\partial_X+1)^{-1}V(T,X) \\ \mathfrak{B}^{\tilde{s}}\{(t_2\partial_{t_2}P^{-1}U)(\partial_XP^{-1}U)\} \\ &\ll C(T\partial_T)^2(X\partial_X+1)^{-1}V \cdot S(V)(T,X) \end{aligned}$$

Therefore, we consider the equation

$$V = |a|(X)T^{2} + CX(T\partial_{T})^{2}(X\partial_{X} + 1)^{-1}V$$

+ $C(T\partial_{T})^{2}(X\partial_{X} + 1)^{-1}V \cdot S(V)(T,X),$
 $V(T,X) = O(T^{2}).$

By the construction of this equation, we have $\mathfrak{B}^{\tilde{s}}(U)(t,x) \ll V(T,X)$.

Sugiyama Jogakuen University

Therefore, we consider the equation

$$V = |a|(X)T^{2} + CX(T\partial_{T})^{2}(X\partial_{X} + 1)^{-1}V$$

+ $C(T\partial_{T})^{2}(X\partial_{X} + 1)^{-1}V \cdot S(V)(T,X),$
 $V(T,X) = O(T^{2}).$

By the construction of this equation, we have $\mathfrak{B}^{\tilde{s}}(U)(t,x) \ll V(T,X)$.

Let $V = \sum_{L \ge 2} V_L(X) T^L$ be an unknown function. By substituting this into the equation, we have the following recurrence formula for $\{V_L(X)\}_{L=2,3,\cdots}$

$$V_2(X) = |a|(X) + 2^2 C X (X \partial_X + 1)^{-1} V_2(X)$$
 (r.f. 2)

and for $L \geq 3$,

$$V_L(X) = CL^2 X (X\partial_X + 1)^{-1} V_L(X) + \sum_{L_1 + L_2 = L} L_1^2 X (X\partial_X + 1)^{-1} V_{L_1}(X) \cdot S(V_{L_2})(X). \quad (\text{r.f. } L)$$

(r.f. 2) is estimated by the same way as (r.f. L), therefore, we consider (r.f. L).

(r.f. 2) is estimated by the same way as (r.f. L), therefore, we consider (r.f. L).

Let $V_L(X) = \sum_{M \ge 0} V_{L,M} X^M$ be the Taylor expansion. By substituting this into (r.f. *L*), we have the following recurrence formula for $\{V_{L,M}\}_{M=0,1,2,\cdots}$

$$V_{L,M} = \frac{CL^2}{M} V_{L,M-1} + C \sum_{L_1+L_2=L} \sum_{M_1+M_2=M} \frac{L_1^2}{M_1+1} V_{L_1,M_1} V_{L_2,M_2+1}$$

(r.f. 2) is estimated by the same way as (r.f. L), therefore, we consider (r.f. L).

Let $V_L(X) = \sum_{M \ge 0} V_{L,M} X^M$ be the Taylor expansion. By substituting this into (r.f. *L*), we have the following recurrence formula for $\{V_{L,M}\}_{M=0,1,2,\cdots}$

$$V_{L,M} = \frac{CL^2}{M} V_{L,M-1} + C \sum_{L_1+L_2=L} \sum_{M_1+M_2=M} \frac{L_1^2}{M_1 + 1} V_{L_1,M_1} V_{L_2,M_2+1}$$

We replace $V_{L,M}$ by $W_{L,M} = \frac{V_{L,M}}{(L+M)!^2}$ (this is equivalent to (3,3)-Borel transform), $\{W_{L,M}\}_{M=0,1,2,\cdots}$ satisfies the following recurrence formula. $W_{L,M}$ $= \frac{CL^2(L+M-1)!^2}{M(L+M)!^2} W_{L,M-1}$ $+ C \sum_{L_1+L_2=L} \sum_{M_1+M_2=M} \frac{L_1^2(L_1+M_1)!^2(L_2+M_2+1)!^2}{(M_1+1)(L+M)!^2} W_{L_1,M_1} W_{L_2,M_2+1}$

Here we can estimate as follows.

$$\frac{L^2(L+M-1)!^2}{M(L+M)!^2} = \frac{L^2}{M(L+M)^2} \le 1$$

Sugiyama Jogakuen University

Here we can estimate as follows.

$$\frac{L^{2}(L+M-1)!^{2}}{M(L+M)!^{2}} = \frac{L^{2}}{M(L+M)^{2}} \leq 1$$

$$\frac{L_{1}^{2}(L_{1}+M_{1})!^{2}(L_{2}+M_{2}+1)!^{2}}{(M_{1}+1)(L+M)!^{2}} \leq \frac{L_{1}^{2}2!^{2}(L+M-1)!^{2}}{(M_{1}+1)(L+M)!^{2}}$$

$$= \frac{4L_{1}^{2}}{(M_{1}+1)(L+M)^{2}} \leq 4$$

Sugiyama Jogakuen University

Here we can estimate as follows.

$$\frac{L^{2}(L+M-1)!^{2}}{M(L+M)!^{2}} = \frac{L^{2}}{M(L+M)^{2}} \le 1$$

$$\frac{L_{1}^{2}(L_{1}+M_{1})!^{2}(L_{2}+M_{2}+1)!^{2}}{(M_{1}+1)(L+M)!^{2}} \le \frac{L_{1}^{2}2!^{2}(L+M-1)!^{2}}{(M_{1}+1)(L+M)!^{2}}$$

$$= \frac{4L_{1}^{2}}{(M_{1}+1)(L+M)^{2}} \le 4$$

Here we consider the following recurrence formula

$$Y_{L,M} = a_M + CY_{L,M-1} + 4C \sum_{L_1+L_2=L} \sum_{M_1+M_2=M} Y_{L_1,M_1} Y_{L_2,M_2+1}$$

By the construction of this recurrence formula, we have $W_{L,M} \leq Y_{L,M}$ for all L and M, that is, $W_L(X) \ll Y_L(X) = \sum_{M \geq 0} Y_{L,M} X^M$ for all L.

By an easy calculation, $Y(T, X) = \sum_{L \ge 2} Y_L(X) T^L$ satisfies the following equation.

 $Y(T,X) = |a|(X)T^{2} + CXY(T,X) + 4CY(T,X) \cdot S(Y)(T,X)$

with $Y(T, X) = O(T^2)$.

By an easy calculation, $Y(T, X) = \sum_{L \ge 2} Y_L(X) T^L$ satisfies the following equation.

$$Y(T,X) = |a|(X)T^2 + CXY(T,X) + 4CY(T,X) \cdot S(Y)(T,X)$$

with $Y(T, X) = O(T^2)$.

Here we put Y(T,X) = TZ(T,X) (Z(T,X) = O(T)), Z(T,X) satisfies the equation

 $Z(T,X) = |a|(X)T + CXZ(T,X) + 4CZ(T,X) \cdot TS(Z)(T,X).$

By an easy calculation, Y(T, X) satisfies the following equation.

 $Y(T,X) = |a|(X)T^{2} + CXY(T,X) + 4CY(T,X) \cdot S(Y)(T,X)$

with $Y(T, X) = O(T^2)$.

Here we put Y(T,X) = TZ(T,X) (Z(T,X) = O(T)), Z(T,X) satisfies the equation

(5) $Z(T,X) = |a|(X)T + CXZ(T,X) + 4CZ(T,X) \cdot TS(Z)(T,X).$

Since $Z(T,X) \gg 0$ and by the definition of shift operator, XS(Z)(T,X) is estimated by

$$XS(Z)(T,X) = Z(T,X) - Z(T,0) \ll Z(T,X).$$

We put $\varphi(\rho) = Z(\rho, \rho)$. In this case, $\rho S(Z)(\rho, \rho) \ll Z(\rho, \rho) = \varphi(\rho)$ holds.

We put $\varphi(\rho) = Z(\rho, \rho)$. In this case, $\rho S(Z)(\rho, \rho) \ll Z(\rho, \rho) = \varphi(\rho)$ holds.

For the equation

$$\begin{split} Z(T,X) &= |a|(X)T + CXZ(T,X) + 4CZ(T,X) \cdot TS(Z)(T,X) \quad \text{with } Z(0,X) \equiv 0 ,\\ \text{we set } T &= \rho, X = \rho.\\ \text{The formal solution } \psi(\rho) \text{ of the equation} \\ \psi(\rho) &= |a|(\rho)\rho + C\rho\psi(\rho) + 4C\psi(\rho)^2 \text{ with } \psi(0) = 0 \end{split}$$

is convergent in a neighborhood of the origin by the implicit function theorem. Moreover by using the above majorant relation, we obtain $Z(\rho, \rho) \ll \psi(\rho)$. This implies that the formal solution Z(T, X) of (3) is also convergent near the origin.

We put $\varphi(\rho) = Z(\rho, \rho)$. In this case, $\rho S(Z)(\rho, \rho) \ll Z(\rho, \rho) = \varphi(\rho)$ holds.

For the equation

$$\begin{split} Z(T,X) &= |a|(X)T + CXZ(T,X) + 4CZ(T,X) \cdot TS(Z)(T,X) \quad \text{with } Z(0,X) \equiv 0 ,\\ \text{we set } T &= \rho, X = \rho.\\ \text{The formal solution } \psi(\rho) \text{ of the equation} \\ \psi(\rho) &= |a|(\rho)\rho + C\rho\psi(\rho) + 4C\psi(\rho)^2 \text{ with } \psi(0) = 0 \end{split}$$

is convergent in a neighborhood of the origin by the implicit function theorem. Moreover by using the above majorant relation, we obtain $Z(\rho, \rho) \ll \psi(\rho)$. This implies that the formal solution Z(T, X) of (3) is also convergent near the origin.

This implies that

 $\mathbb{C}\{T,X\} \ni TZ(T,X) = Y(T,X) \gg W(T,X) \gg \mathfrak{B}^{(3,3)}(V)(T,X)$

Namely, $V(T, X) = V(t_1 + t_2, x) \in \mathcal{G}^{(3,3,3)}$.

Moreover, $\mathfrak{B}^{\tilde{s}}(U)(t,x) = \mathfrak{B}^{(1,2,1)}(U)(t,x) \ll V(T,X) \in \mathcal{G}^{(3,3,3)}$, then the Gevrey order of U(t,x) is $(s', \sigma') = (1,2,1) + (3,3,3) - (1,1,1) = (3,4,3)$, this is the consequence of Proposition 2.

