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1. Introduction and Main Result

Let t = (ty,---,tg) € C% x = (xq,*,x,) €EC* bedandn
dimensional complex variables and u = u(t, x) denote an unknown
function.

We consider the following first order nonlinear PDE.
(1) f(t,x,u,dsu,d,u) =0 with u(0,x) =0

where d;u = (atlu, IO atdu) and d,.u is the similar definition

with d,u, and f(t,x,u,7,¢) (= (1;) € C4LE = (&) € CM)is
holomorphic near the origin and an entire function in T variables.
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Assumption 1 (Singularin t)
We assume that (1) is singular in t variables in the sense that

£(0,x,0,7,00=0 for 'xecC" 'tecCq.

Assumption 2 (Existence of Formal Solutions)
(1) has a formal solution of the form

d
u(t,x) = Z ;(x)t; + z Ugpt” xP
j=1 la|z2,| 8|20

where goj(x) € C{x}forallj =1,2,---,d.
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Assumption 3 (Totally Characteristic Type)

Let @(x) = (0, x, 0, {(pj (x)}, 0). We say that (1) is of totally
characteristic type, if the following conditions are satisfied
forall k =1,2,---,n.

fe. (@) Z 0,but f¢, (9(0)) = 0.
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Assumption 3 (Totally Characteristic Type)

Let @(x) = (0, x, 0, {(pj (x)}, 0). We say that (1) is of totally
characteristic type, if the following conditions are satisfied
forall k=12,---,n

e, (0(0)) £ 0,but f5,(#(0)) =0

We define holomorphic functions a;;(x) and by (x) by

aij(x) — ft-r-((P(x)) + fur-((P(x))QDi(x)
+ Z foe PN 52 )
by (x) = fsk(q)(x))( o<|x|>>
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We put {4;} the eigenvalues of (a;;(0)); j=1....q
f a(bl,“’,bn) (O).

0(x1,%n)

and put {u, } the eigenvalues o
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We put {4;} the eigenvalues of (a;;(0)); j=1....q

f a(bl,“’,bn) (O) .

0(x1,%n)

Theorem 1 ([S] Funkcial Ekvac, 45(2002))
Under the assumptions 1, 2 and 3, if Ch({lj}, {,uk}) ? 0 (this condition is called
“Poincaré condition”), then the formal solution is convergent near the origin.

and put {u, } the eigenvalues o

Theorem 2 ([S] Surikaiseki kenkyujo kokyuroku, 1431(2005))

Under the assumptions 1, 2 and 3, we assume that Ch({lj}) 20
d(by -+by) . .
a(xi,---,xn) (0)~diag(Ny, -+, N;) where N; (j = 1,-+,1)
denotes the nilpotent Jordan block of size n; and we put ny = max{ny, -+, n;}.
Then the formal solution diverges in general, and it belongs to the Gevrey
class of order at most 2n,, namely, the power series
uaﬁ

(lal + [B])!"0=

|al32,]3|20

Moreover,

- t%xF e Cft, x}.
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The main theorem in this talk is stated as follows.

Theorem 3 (Main Theorem)

Under the assumptions 1, 2 and 3, we assume that Ch({uy}) ? 0
Moreover, (aij (O))~diag(N1, -+, N;) where

N; j = 1,---,1) denotes the nilpotent Jordan block of size d;

and we put d, = max{d, :-, d;}. Then the formal solution u(t, x)
is divergent in general, and it belongs to the Gevrey class of order
at most (2dy, dy + 1), that is, for the formal solution

uaﬁ B
)3 @241 |gido - ¥

aeN4, FeNN
is convergent in a neighborhood of the origin.
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2. Refinement of Main Theorem

Let v(t, ) = u(t,x) = Ny 0;(0) t; = 0(1t¥) (K = 2),
Then v(t, x) satisfies the following equation.

d n
@) | D aytd, + ) by, + fl000) |v(tx)
Lj=1 k=1

= z de(X)t% + fr+1(t, x,v,0.V,0,V)
la|=K

where

frk+1(t,x,v,7,8) = z fapqr(x) t*vPTIET € Ox{t, v, 7, ¢}

V(a,p,q,r)2K+1
V(a,p,q,7) = |a| + Kp + (K — 1)|q| + K|r| (vanishing order in t)
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d(by,+-bn)
d(x1,+%n)
canonical forms, the equation (2) is reduced to the following form.

By linear changes of variables which bring (aij (0)) and (0) to Jordan

B) (V+D+A)vtx) = z ijir(X) i 0r, 0 + z B () B, v
k=1

1,7kl

+T](X)U + 2 (a(X) ta + gK+1(t; X, V, ath axv)
|la|=K
where

1 dj-1 n
W= ) Otjurdey, D= yxids, + fule (0)),
j=1 k=1 k=1

n-1
A= z Vi X110y, Qi (), n(x) = 0(xD),  Br(x) = 0(|x]?).
k=1
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Definition 1 ((s, o)-Borel transform and Gevrey class)

Let s = (Sl) )Sd) € (RZ]_)dJ 0 — (0-11 I’ O-Tl) € (RZ].)TL'
For a formal power series u(t,x) = X u,p t%xP we define
(s, 6)-Borel transform of u(t, x) by

BT (W)(t, x) =

uaglalt B!,
(s-a)! (o ﬁ)'
wheres-a =siaqy + -+ sgay,0- =011+ + 0,0n.
We say that u(t, x) belongs to G, if B5:9) (u)(t, x)
converges in a neighborhood of the origin.
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Definition 1 ((s, o)-Borel transform and Gevrey class)

Let s = (Sl) )Sd) € (RZ]_)dl 0 — (0-11 I’ O-Tl) € (RZ].)TL'
For a formal power series u(t,x) = X u,p t%xP we define
(s, 0)-Borel transform of u(t, x) by

(s,0) _ aﬁl“l'lﬁl' ra
BTWEI= ) o

wheres-a =siaqy + -+ sgay,0- =011+ + 0,0n.
We say that u(t, x) belongs to G, if B(5) (u)(t, x)
converges in a neighborhood of the origin.

Remark
By an easy calculation, the following relation holds.

58(5’0) (W) (¢, x) € g(s’,a’) = u(t, x) € g(s+s'—1,a+a’—1)
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Proposition 1
Llets/ = (1,2,-,d;) € N% (j = 1,2,---,I) and dy = max{dy, -~ d}.
Under the assumptions 1, 2, 3 and Poincaré condition for {u;},
the formal solution belongs to the Gevrey class of order at most
(s’,0") where s’ and ¢’ are defined as follows.
s' = (s%,s%,--,8") + (dy,dg, -+, dy) € N?
o'=dy+1,dy+1,--,dy+1) € N"
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Proposition 1
Llets/ = (1,2,-,d;) € N% (j = 1,2,---,I) and dy = max{dy, -~ d}.
Under the assumptions 1, 2, 3 and Poincaré condition for {u;},
the formal solution belongs to the Gevrey class of order at most
(s’,0") where s’ and ¢’ are defined as follows.
s' = (s%,s%,--,8") + (dy,dg, -+, dy) € N?
o'=dy+1,dy+1,--,dy+1) € N"

Proof of Theorem 3 (Proof of Mail Theorem)

Theorem 3 is proved by Proposition 1 immediately. Indeed, all the
components of (s1,s2,:--,s!) are estimated by d,. Therefore,

all the components of s’ are estimated by 2d,, which is the
desired estimate for Theorem 3.
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3. Sketch of the Proof of Proposition 1 in the Example

In this section, we give the sketch of the proof of Proposition 1 in
the typical example case. The equation we consider is as follows.

Let (t,x) = (ty, ty,x) € C? x C. We consider the following
nonlinear PDE.

Pu(t,x) = a(x)(t; + t2)? + xt10,,u + (t,0,,u) (0, u) (4)
with u(t,x) = 0(|t|?), where a(x) € C{x} and

P — tzatl + xax + 1
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Proposition 2

u(tl) tz, x) € g(3,4,3)'

(This corresponds to the case where s = (1,2) and dy = 2)
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Proposition 2

u(t11 tZ) x) € g(3’4’3)'
(This corresponds to the case where s' = (1,2) and dy = 2)

Let C[t]L'XTn — {ZC(1+C(2=L ual,az,mtlal tzazxm}'

Lemma 1l
(1) P = t;0;, + x0, + 1lisinvertible on C[t] x™
forallL = 2andm = 0.
(2) Lets = (s1,1) = (1,2,1). Foru(t, x) € C[t] x™, if
BS(W)(t,x) K Vi ,TEX™ (T=t;+t,,X =x,V;,, =0)
then B5(P~1u)(t,x) K Co(Xdy + 1) ~'V,,,, TEX™.
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Lemma 2
Foru(t,x) = Xugg t%xP, we define |u|(t,x) = Y [ugpl t%P. For§ = (1,2,1),

(i) B (wv) (¢, x) K B ([ul)(t,x) - B (v (L, x)
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Lemma 2
Foru(t,x) = Xugg t%xF, we define |u|(t,x) =3 [ugpl t%xB.For§ = (1,2,1),

(i) B (uv) (t, x) < C;B([uD(t,x) - B (lv])(t, x)

(i) If BS (W) (t, x) K V(T, X)=X152 Vi(XOTE = Yoo mso Vi TEXM, then
B (9, P~u) K Co07:(Xx + DTV (T, X)
B0, P 1u) K C,07(Tar)(Xdx + 1)V (T, X)
B3(0,P~u) K C,0x(X0x + 1)"W(T,X) K C,S(V)(T,X)

where S(V)(T, X) is called “Shift operator” which is defined by

V(T,X)—=V(T,O0
SW)H(T, X) =ZS(VL)(X)TL = ( )X ( )= Z Vimer THXY

L=2 L=2,M=0
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Let U(t, x) = Pu(t,x) be a new unknown function. Then U (t, x) satisies
U= a(x)(t; + t3)? + xt10,, P~U + (t,0,,P~U)(0,P1U).
We apply $-Borel transform to above equation, we have

BS(U) = B¥(a(x)(t; + t,)?) + EBg(xtlatZP‘lU)
+8B5{ (¢,0,,P~1U)(8,P~U)}.
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Let U(t, x) = Pu(t,x) be a new unknown function. Then U (t, x) satisies
U= a(x)(t; + t3)? + xt10,, P~U + (t,0,,P~U)(0,P1U).
We apply $-Borel transform to above equation, we have

BS(U) = B¥(a(x)(t; + t,)?) + EBg(xtlatzP‘lU)
+8B5{ (¢,0,,P~1U)(8,P~U)}.

By Lemma 1 and 2,
B (a(x)(ty + t2)?) < |al(X)T?
B3 (xt10;,P71U) « CX(TOr)*(X0x + 1)V (T, X)

B{(t,0,,P1U)(0,P1U)}
K C(Tar)?(Xx + DV - S(V)(T, X)
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Therefore, we consider the equation

V = |a|(X)T? + CX(Td;)?(Xdy + 1)~V
+C(Td)?(Xdy + DIV - S(V)(T, X),
V(T,X) = 0(T?).

By the construction of this equation, we have B5(U)(t,x) < V(T, X).
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Therefore, we consider the equation

V = |a|(X)T? + CX(Td;)?(Xdy + 1)~V
+C(Td)?(Xdy + DIV - S(V)(T, X),
V(T,X) = 0(T?).

By the construction of this equation, we have B5(U)(t,x) < V(T, X).

Let V = 3,5, V. (X) Tt be an unknown function. By substituting this into the
equation, we have the following recurrence formula for {V; (X)},=23....

V,(X) = la|(X) + 22CX(Xdx + 1) 1V,(X) (r.f. 2)
and for L = 3,
V,(X) = CL2X(Xdy + 1)" 1V, (X)
+ Y LXK + DTV, 00 - SVL)®). ek L)

Ll +L2 =L
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(r.f. 2) is estimated by the same way as (r.f. L), therefore, we consider (r.f. L).
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(r.f. 2) is estimated by the same way as (r.f. L), therefore, we consider (r.f. L).

Let V(X)) = Y=o ViuX™ be the Taylor expansion. By substituting this into (r.f. L),
we have the following recurrence formula for {VL'M}M=O .

L? L,?

Vim = WVL,M—l +C z 2 Mo+ 1 Vi v, Vi, my+1
L1+L2=L M1+M2=M 1
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(r.f. 2) is estimated by the same way as (r.f. L), therefore, we consider (r.f. L).

Let V(X)) = Y=o ViuX™ be the Taylor expansion. By substituting this into (r.f. L),

we have the following recurrence formula for {VL»M}M—O 1o

12 L.?

C 1
Vim = WVL,M—l +C z 2 Mo+ 1 Vi v, Vi, my+1
L1+L2=L M1+M2=M 1

We replace Vy, py by Wy = (LVLM)'Z (this is equivalent to (3,3)-Borel transform),
{WL'M}M=O . satisfies the following recurrence formula.

WL,M
CCLA(L+ M — 1)1 w
- ML+ M1z RN
Li?(Ly + M) (Ly + M, + 1)12
te z Z (M, + 1)(L + M)!2 WL1,M1WL2,M2+1

Li+L,=L M{+M,=
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Here we can estimate as follows.

L*(L+M —1)!? L?

= <1
M(L+M2  M(L+M?2"
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Here we can estimate as follows.

L*(L+M —1)!? L?

= <1
M(L+M2  M(L+M?2"

Li%(Ly + M) (L, + M, + 1)1? - L{%212 (L+ M —1)!?
(My + 1)(L + M)!2 = (M + DL+ M2

B 4L,° <4
S M+ DL+ M2
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Here we can estimate as follows.

L*(L+ M — 1)!? L?

= <1
ML+ M2 ML+ M2

Li%(Ly + M) (L, + M, + 1)1? - L;%212 (L+ M - 1)!?
(My + 1)(L + M)!2 = (M + DL+ M2

B 4L,° <4
S M+ DL+ M2

Here we consider the following recurrence formula

Yim=ay+CY y_q1 +4C z Z Yo om, Yo, my+1
L1+L2=L M1+M2=M

By the construction of this recurrence formula, we have W, ,, <Y, y, for all L and M,
that is, W, (X) < Y, (X) = Xyso You XM forall L.
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By an easy calculation, Y(T,X) = Y;., Y, (X) T! satisfies the following
equation.

Y(T,X) = |a|(X)T? + CXY(T,X) + 4CY(T,X) - S(Y)(T, X)

with Y (T, X) = 0(T?).
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By an easy calculation, Y(T,X) = X.;, Y. (X) T* satisfies the following
equation.

Y(T,X) = |a|(X)T? + CXY(T,X) + 4CY(T,X) - S(Y)(T,X)
with Y(T,X) = O(T?).

Here we put Y(T,X) =TZ(T,X) (Z(T,X) = 0(T)), Z(T, X) satisfies
the equation

Z(T,X) = |a|l(X)T + CXZ(T,X) + 4CZ(T,X) - TS(Z)(T, X).
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By an easy calculation, Y (T, X) satisfies the following equation.
Y(T,X) = |a|(X)T? + CXY(T,X) + 4CY(T,X) - S(Y)(T, X)
with Y(T,X) = 0(T?).

Here we put Y(T,X) =TZ(T,X) (Z(T,X) = 0(T)), Z(T, X) satisfies
the equation

(5) Z(T,X) = |a|(X)T + CXZ(T,X) + 4CZ(T,X) - TS(Z)(T, X).

Since Z(T, X) > 0 and by the definition of shift operator, XS(Z2)(T, X)
is estimated by

XS(Z)(T,X) = Z(T,X) — Z(T,0) < Z(T, X).
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We put @(p) = Z(p, p). Inthis case, pS(Z)(p,p) K Z(p,p) = @(p) holds.
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We put @(p) = Z(p, p). Inthis case, pS(Z)(p,p) K Z(p,p) = @(p) holds.

For the equation
Z(T,X) = |a|(X)T + CXZ(T,X) + 4CZ(T,X) - TS(Z)(T,X) withZ(0,X)=0,

wesetT = p, X = p.
The formal solution ¥ (p) of the equation
Y(p) = lal(p)p + Cpp(p) + 4CP(p)* with P(0) =0

is convergent in a neighborhood of the origin by the implicit function theorem.
Moreover by using the above majorant relation, we obtain Z(p, p) < Y(p).
This implies that the formal solution Z (T, X) of (3) is also convergent near the origin.
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We put @(p) = Z(p, p). Inthis case, pS(Z)(p,p) K Z(p,p) = @(p) holds.

For the equation
Z(T,X) = |a|(X)T + CXZ(T,X) + 4CZ(T,X) - TS(Z)(T,X) withZ(0,X)=0,

wesetT = p, X = p.
The formal solution ¥ (p) of the equation
Y(p) = lal(p)p + Cpp(p) + 4CP(p)* with P(0) =0

is convergent in a neighborhood of the origin by the implicit function theorem.
Moreover by using the above majorant relation, we obtain Z(p, p) < Y(p).
This implies that the formal solution Z (T, X) of (3) is also convergent near the origin.

This implies that
C{T,X}3 TZ(T,X) = Y(T,X) » W(T,X) >» BE3IWV)(T, X)
Namely, V(T,X) = V(t; + t,,x) € GG33),

Moreover, B5(U)(t, x) = BL2V(U)(t,x) K V(T,X) € GG33), then the Gevrey
orderof U(t,x)is (s',0') = (1,2,1) + (3,3,3) — (1,1,1) = (3,4,3),
this is the consequence of Proposition 2.
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