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1 Introduction

At first, we consider the relation of the following two q-difference

equations. One of them is first order q-difference equation

f(z) = ā(z)f(qz) + b̄(z), (|q| < 1) (∗)

and another equation is second order q-difference equation

f(c2z) + ã(z)f(cz) + b̃(z)f(z) = 0, (|c| < 1) (∗∗)

which have been considered in [3], where ā, b̄, ã, b̃ are polynomial

functions.

———————————————————————-

[3]: W. Bergweiler, K. Ishizaki and N. Yanagihara, Meromorphic solutions of
some functional equations, Methods Appl. Anal. Vol. 5(3) (1998), 248–258.
Correction Methods, Appl. Anal. 6(4) (1999).
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We want to write the second order Eq. (∗∗) making use of the first

order Eq. (∗). Because, we want to consider some problem for the

equation

f(s2z) = a1(z)f(sz) + a2(z)f(z), (∗ ∗ ∗)

which was proposed by the late prof. Niro Yanagihara.

Where s = |s|e−2πλi, |s| > 1, 0 ≤ λ < 1, λ /∈ Q,

aj(z) ∈ C[z], (j = 1, 2), and a2(z) ̸= 0.

However the second order Eq. (∗∗) could’t been derived by the first

order Eq. (∗) under the condition that ã, b̃ are polynomial .

Then we must consider the following second order q-difference

equation

f(q2z) + a∗(z)f(qz) + b∗(z)f(z) = 0, (|q| < 1), (1.1)

where a∗(z), b∗(z) are rational functions.
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The Previous Researches

R. D. Carmichael (1912), Raymond Adams (1928-1929):

They have studied nth linear q-difference equation,

however they haven’t considered meromorphic solutions.

J. P. Ramis (1992):

They have considered the existence of meromorphic solutions

for nth linear q-difference equation under the condition that

coefficients are constants.

D. C. Barnett, R. G. Halburd, W. Morgan, R. J. Korhonen (2007),

W. Bergweiler, K. Ishizaki, N. Yanagihara (2002):

They have considered meromorphic solutions of nth linear of

q-difference equation with polynomial coefficients,

however the existence of meromorphic solutions

haven’t been considered.
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Put a∗(z) =
b(z)

c(z)
, b∗(z) =

a(z)

c(z)
by some polynomial functions

a(z), b(z) and c(z), then we can write Eq.(1.1) as

a(z)f(z) + b(z)f(qz) + c(z)f(q2z) = 0, (|q| < 1), (1.2)

where

a(z) =
A∑

k=0

akz
k, b(z) =

B∑
k=0

bkz
k, c(z) =

C∑
k=0

ckz
k.

In this talk, we will consider the existence and behavior of mero-

morphic solutions of Eq.(1.2).
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Our aim in this talk is to propose the following Theorem 1.

Theorem 1
We have as follows.

(i) If there exists no integer k satisfying a0 + b0q
k + c0q

2k = 0,

then the Eq. (1.2) possesses no non-trivial meromorphic

solutions.

(ii) If a0 ̸= 0 and there exists an integer k such that

a0 + b0q
k + c0q

2k = 0, then (1.2) possesses a non-trivial

meromorphic solution.
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(iii) For the case a0 = 0, we have the following tree cases.

(♯) We suppose that a(z) = aAz
A, max(B,C) ≤ A, A ≥ 1 . If

(1.2) possesses a non-trivial meromorphic solution, then the

solution is not transcendental, and the solution has no poles at

any z ̸= 0 .
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(♯♯) We suppose that aK ̸= 0, 1 ≤ K < A and

a(z) = aAz
K(z−µ1) · · · (z−µA−K), (µj ̸= 0, j = 1, · · · , A−K).

(1.3)

Put

g(z) =
∞∏

n=0

(
A−K∏
j=1

(
1 −

qnz

µj

))
f(z), (1.4)

U(z) =
∞∏

n=0

(
A−K∏
j=1

(
1 −

qnz

µj

))
, V (z) =

A−K∏
j=1

(
1 −

z

µj

)
, (1.5)

and

C0 = (−1)A−KaK

A−K∏
j=1

µj. (1.6)
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If (1.2) possesses a rational solution f(z), then

1 ≤ K < min
(
A, max

(
B,

A + C

2

))
, (1.7)

and the following second order q-difference equation

C0z
Kg(z) + b(z)g(qz) + c(z)V (qz)g(q2z) = 0, (1.8)

possesses a transcendental meromorphic solution. Further the

Eq. (1.8) is reducible.
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(♯♯♯) We suppose

max
(
B,

A + C

2

)
≤ K < A. (1.9)

If (1.2) possesses a non-trivial meromorphic solution, then the

solution is transcendental.
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The late professor Yanagihara talked about ”irreducibility” of

functional equations.

There may be several definitions.

� �
I) If any solution of a second order equation satisfies a first order

equation, we call the second order equation reducible, otherwise

irreducible.

II) If at least one solution of a second order equation satisfies a

first order equation, we call reducible, otherwise irreducible.� �

In this talk, we call ”reducible equation” by the latter definition.
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We will prove Theorem 1 in following 7 Steps.� �
1) We determine a formal solution.

2) The convergence radius of the formal solution is positive in the

case a0 ̸= 0.

3) The local solution will be has an analytic continuation.

4) We change parameters and estimate them.
� �
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� �
5) Under the condition a0 = 0, if we have a non-trivial meromor-

phic solution of (1.2), then the solution is not transcendental with

the conditions of (♯).

6) Further under the conditions of (♯ ♯), if we have a non-trivial

meromorphic solution of (1.2), then the second order q-difference

equation (1.8) possesses a transcendental meromorphic solution

and it is reducible.

7) At last, under the conditions of (♯ ♯ ♯), if we have a non-trivial

meromorphic solution of (1.2), then the solution is transcendental.� �
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2 Proof of Theorem 1 (i) and (ii)

2.1 A formal solution (step 1)

We consider a formal solution of (1.2) which is given by a power

series at the origin. Let p be an integer (negative may be possible

). Set

f(z) =
∞∑
k=p

αkz
k, (αp ̸= 0). (2.1)

We may avoid to consider the case all of a(z), b(z) and c(z) are

constants. In above [3], they have considered meromorphic

solutions of (1.2) in which the case c(z) ≡ 1, however some parts of

the proof in it, need corrections. Hence in this talk we avoid the

case c(z) ≡ 1.

Then we assume that M := max(A, B, C) > 0.
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Comparing the coefficients αl of z
l, we have

(a0 + b0q
k + c0q

2k)αk = −
k−p∑
h=1

(
ah + bhq

k−h + chq
2(k−h)

)
αk−h. (2.2)

If (1.2) has a non-trivial meromorphic solution, then there exists

an integer k0 such that k = k0 is a solution of

a0 + b0q
k + c0q

2k = 0. (2.3)

For the integer solutions k1 and k2, we define

k0 = max(k1, k2).

Since |q| < 1, we see

a0 + b0q
k + c0q

2k ̸= 0, for (k > k0, ).
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Letting p = k0, we can determine the coefficients αk such that
αk = 0, (k ≤ k0 − 1)

αk0 = any value

αk =

∑k−k0
h=1

(
ahαk−h + bhαk−hq

k−h + chαk−hq
2(k−h)

)
a0 + b0qk + c0q2k

, (k ≥ k0 + 1),

(2.4)

where from definition of functions a, b, c, we assume

ah = 0, (h > A), bi = 0, (i > B), cj = 0, (j > C).

Therefore we can determine a formal solution

f(z) =
∞∑

k=k0

αkz
k, (αk0 ̸= 0), (2.5)

of (1.2). Here we have proved (i) of Theorem 1.
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2.2 Existence of meromorphic solution (step 2)

Hereafter in this section, we suppose that a0 ̸= 0 , and we will

prove (ii) of Theorem 1.

2.2.1 A positive convergence radius of the formal solution

In the case of a0 ̸= 0 , we will prove the formal solution (2.5) of

(1.2), has no positive convergence radius by Cauchy’s root test.

Therefore the Eq. (1.2) possesses a local meromorphic solution

f(z) which has a power series such that

f(z) =
∞∑

k=k0

αkz
k, (αk0 ̸= 0), (2.6)

in a neighborhood of the origin.
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2.2.2 Global solutions by the analytic continuation (Step 3)

We define a domain

Dm = {|z| <
R

|q|m
}, (2.7)

and we assume that

”the Eq. (1.2) possesses a local meromorphic solution f(z) in D0”.

(2.8)
Since 0 < |q| < 1, Dm ⊂ Dm′ as m < m′ and we see ∪∞

m=0Dm = C.
We can write (1.2) as

f(z) = −
b(z)

a(z)
f(qz) −

c(z)

a(z)
f(q2z) (|q| < 1). (2.9)

For a z ∈ D1/D0, the f(qz), f(q2z),
b(z)

a(z)
, and

c(z)

a(z)
are also

meromorphic in D1. Thus the f(z) satisfying (2.9) is meromorphic

in D1.

Repeating this process we construct a global solution.
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3 Proof of Theorem 1 (iii), the case a0 = 0

When we assume that Eq. (1.2) possesses a non-trivial

meromorphic solution, we will investigate the solution under the

condition a0 = 0 .

3.1. Some preparations (previous Step 4)

3.1.1. A constant K

At first we define K to be the smallest integer such that

(a0, a1, · · · , aK−1) = (0, 0, · · · , 0), aK ̸= 0, K ≥ 1. (3.1)

For the K, we set γ = 1
2K

.

3.1.2. Conditions of the constant b0 and c0

When we have a non-trivial solution of (1.2), then we can

assume that c0 ̸= 0, b0 ̸= 0 without lost generality.
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3.1.3. Change parameter αk to δk

For αk, we have
M∑
j=0

(aj + bjq
k−j + cjq

2(k−j))αk−j = 0, (3.2)

where ah = 0 (A < h), bh = 0 (B < h), ch = 0 (C < h).

Next we define a new parameter βk, δk and a constant t as in

αk = βkq
−γk2, (k = k0, k0 + 1, · · · ), (3.3)

βk = tkδk for k ∈ Z, (δk = 0 for k < k0), and −
aK

b0
q−K

2 = tK.

(3.4)

Then we write (3.2) as in the following form(
1 +

c0q
k

b0

)
δk = δk−K − q2γk(r1δk−1 + r2δk−2

+ · · · + rKδk−K + · · · + rMδk−M). (3.5)
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where

ηj = (k − j) − γ(k − j)2 − 2γk + γ(k − K)2 (1 ≤ j ≤ K), (3.6)

ζj = −γ(k − j)2 − 2γk + γ(k − K)2 (K + 1 ≤ j ≤ M), (3.7)

rj =


(
bj + cjq

k−j
)( 1

b0tj
qηj−K/2

)
, (j = 1, 2, · · · ,K),(

aj + bjq
k−j + cjq

2(k−j)
)( 1

b0tj
qζj−K/2

)
, (j = K + 1, · · · ,M).

(3.8)
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3.1.4. An existence of a constant ρ

As the last preparation, we have a constant ρ such that

|r1| + · · · + |rK| + |rK+1| + · · · + |rM | ≤ ρ, (3.9)

where

ρ =
K∑
j=1

(
|bj| + |cj|

) 1

|b0||tj|
|q|
(
γ(K2−j2)−j

)
−K/2

+
M∑

j=K+1

(
|aj| + |bj| + |cj|

)∣∣∣∣ 1

b0tj
qγ(K2−j2)−K/2

∣∣∣∣. (3.10)
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3.2. Estimations of |δk| (Step 4)

Here we have following lemmas for estimations of |δk|.� �
Lemma 3.1. For any p > 0, there exists a constant T > 0 such

that for any k

|δk| ≤ (1 + p)kT, (3.11)

where δk are defined in (3.4).� �� �
Lemma 3.2.

lim
k→∞

δk = 0 (3.12)
� �� �
Lemma 3.3. Putting q1 = |q|2γ(1+ p) and L =

(∣∣∣c0b0∣∣∣+ ρ

qM1

)(
1

1−qK1

)
,

|δk| < qk
1TL, (3.13)

for any k ∈ Z, where δk = 0 for k < k0 .� �
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� �
Lemma 3.4. Let p > 0, n, m1, m2 be constants satisfying the

following conditions:
q1 := |q|2γ(1 + p) < 1, (3.14)

|q|
n
2

(∣∣∣c0
b0

∣∣∣+ ρ

qM
1

)( 1

1 − qK
1

)
< 1, (3.15)

n ≥ 2M, (3.16)

1 + ρ(|q|2γ)m

1 − (|c0|/|b0|)|q|m
< 1 + p, for any m > m1 > 0, (3.17)

|q|2γkL = |q|
k
K

(∣∣∣c0
b0

∣∣∣+ ρ

qM
1

)( 1

1 − qK
1

)
< |q|nγM , for any k > m2 > 0.

(3.18)

N0 = max(nM − K, m1, m2). (3.19)

If K = M , then for any ν(∈ N), we have

|δk| ≤ qk
1T (|q|nγML)ν, (3.20)

provided
k ≥ N0. (3.21)� �
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We note when K < M , Then we have

|δk| ≤ qk
1T (|q|nγML)ν, (3.20)

holds for ν = i + 2 for k ≥ N0 + 2(M − K). However, when

ν → ∞, (3.20) holds for k → ∞, i.e., we don’t have this proof.

� �
We note that we haven’t been able to derive the inequality [3.20]

in proof of Theorem 3.1 (iii) in [3]. Hence we replace the [3.20] in

[3] to (3.20) in this paper, with the additional condition K = A =

M .� �
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3.3. The proof of iii) (♯) of Theorem 1 (Step 5)

Proof At first we assume that there exist a meromorphic

solution

f(z) =
∞∑

k=k0

αkz
k (2.6)

of (1.2). In the case K = M of (♯), from Lemma 3.4. and

|q|nγML < 1, we have

|δk| → 0 as ν → ∞.

From definition of α, β and t we get

αk = βkq
−γk2 = tkδkq

−γk2= 0, (k ≥ nM − K= (n − 1)M).

Thus we see that the solution f(z) is a non-transcendental solution

of Eq. (1.2). If k0 < 0, f(z) admits a pole at z = 0. However it

has no poles at any z = z0 ̸= 0 in this case.
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3.4. The proof of iii) (♯♯) of Theorem 1 (Step 6)

In this case we suppose 1 ≤ K < A ≤ M . From definitions we have

a(z) = aAz
A + · · · + aKzK

=

(
(−1)A−KaK

A−K∏
j=1

µj

)
zK

A−K∏
j=1

(
1 −

z

µj

)
= C0z

KV (z), (3.22)

g(z) = U(z)f(z),

(
U(z) =

∞∏
n=0

(
A−K∏
j=1

(
1 −

qnz

µj

))
,

)
(3.23)

Thus we write (1.2) as

C0z
Kg(z) + b(z)g(qz) + c(z)V (qz)g(q2z) = 0. (1.8)

Where the coefficient function c(z)V (qz) is a polynomial in which

C + A − K degree. If (1.2) possesses a rational solution

f(z) = R(z), then g(z) is a transcendental meromorphic solution of

Eq. (1.8).
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On the other hand, from Theorem 1 (iii) (♯),

if 1 ≤ K ＝ max(K,B,C + A − K) = M ′, then the Eq. (1.8)

don’ t possess a transcendental meromorphic solution which has a

power series of (2.6).

Therefore, in the case (iii) (♯♯), if (1.2) possess a rational solution

and (1.8) possess a transcendental meromorphic solution, then the

condition K ＜ max(K,B,C + (A − K)) = M ′ is satisfied.

Further since 1 ≤ K < A, we have

1 ≤ K < min
(
A, max

(
B,

A + C

2

))
. (1.7)
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Further if (1.2) possess a rational solution R(z), then the

solution g(z) = U(z)R(z) of (1.8) satisfies the following

first order equation

g(z) −
V (z)R(z)

R(qz)
g(qz) = 0, (3.24)

in which the form

a∗∗(z)g(z) + b∗∗(z)g(qz) = 0, (3.25)

where a∗∗(z) and b∗∗(z) are polynomials.

Now (1.2) equivalent to (1.8) which has a solution the g(z).

Therefore the Eq. (1.2) is reducible .
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3.5. The proof of iii) (♯♯♯ ) of Theorem 1 (Step 7)

When K < A, we see� �
K = max(K,B,C + (A − K)) ⇐⇒ max(B,

A + C

2
) ≤ K < A.

� �
From step 6, if max(B,

A + C

2
) ≤ K < A, Eq. (1.8) don’ t possess

a transcendental meromorphic solution. Thus if (1.2) possess a

non-trivial rational solution f(z), the existence of a transcendental

solution g(z) of Eq. (1.8) is contradiction.
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We have completed the proof of Theorem 1.
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4 Example

In this section we will propose same examples Eq. (1.2) possesses

polynomial solution, rational solution, or transcendental

meromorphic solution, in the case a0 ̸= 0 and a0 = 0.



(33)

4.1. The case of a0 ̸= 0

Example 4.1.: A monomial solution.

In the Eq. (1.2), We suppose that

b(z) =
B∑

k=0

bkz
k, c(z) =

C∑
k=0

ckz
k.

Further we suppose that

a(z) = −qmb(z) − q2mc(z), and a0 = −qmb0 − q2mc0 ̸= 0, m ∈ N,

We write Eq. (1.2) as(
− qmb(z) − q2mc(z)

)
f(z) + b(z)f(qz) + c(z)f(q2z) = 0, (4.1)

and f(z) = zm is a monomial solution of Eq. (4.1).
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Example 4.2.: A polynomial solution.

We suppose that a(z) = z2 + 3z +
131

11
, b(z) = −

101

88
z2 + z + 1,

c(z) = −
1

22
(251z2 + 290z + 284), and q =

1

2
. We write the Eq.(1.2)

as(
z2 + 3z +

131

11

)
f(z)+

(
−

101

88
z2 + z + 1

)
f(

z

2
)

+
(
−

1

22
(251z2 +290z+284)

)
f(

z

4
) = 0, (4.2)

and we have a polynomial solution f(z) = z2 + z + 1 of (4.2).
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Example 4.3.: A rational solution which has a pole at z = 0.

We suppose that

a(z) = 2z2 −
1

3
, b(z) = −

9

2
z2 + 1, c(z) = z2 −

2

3
,

and q = 1
2
. We write the Eq. (1.2) as

(
z2 −

2

3

)
f(z)+

(
−

9

2
z2 + 1

)
f(

z

2
)+
(
2z2 −

1

3

)
f(

z

4
) = 0, (4.3)

and have a rational solution f(z) =
1

z
−

7

24
+ z2 of (4.3) which has

only one pole at z = 0.
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Example 4.4.: A rational solution which has a pole at z ̸= 0.

We suppose that a(z) = z2 −
59

15
z +

44

15
, b(z) = −

1

2
z2 + z,

c(z) = −
2

15
(z−4)(105z−22), and q =

1

2
. We write the Eq. (1.2) as

(
z2 −

59

15
z +

44

15

)
f(z) +

(
−

1

2
z2 + z

)
f(

z

2
)

+
(
−

2

15
(z − 4)(105z − 22)

)
f(

z

4
) = 0. (4.4)

and have a rational solution f(z) =
135z3 − 135z2 + 22z

135(z − 1)
which has

a pole at z = 1
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The case of a0 = 0

Example 4.5.: A rational solution has a pole at z = 0, (iii) (♯)

We suppose that b(z) = b2z
2 + b1z + 4, c(z) = c2z

2 + c1z − 1,

b2 =
142 ±

√
566857

441
, c2 ̸= 0, a(z) = z2, and q =

1

2
. We write the

Eq. (1.2) as

z2f(z)+
(
b2z

2 + b1z + 4
)
f(

z

2
)+
(
c2z

2 + c1z − 1
)
f(

z

4
) = 0. (4.5)

and have a rational solution

f(z) =
1

z2
−

1

z
− 1+

(
−

108

7
b2 +

220

7

)
z. Put h(z) = z2f(z) , h(z)

satisfies the following equation

z2h(z)+4
(
b2z

2+b1z+4
)
h
(z
2

)
+16

(
c2z

2+c1z−1
)
h
(z
4

)
= 0. (4.6)

Here the solution f has a pole at z = 0 order 2, and h has no pole.
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Example 4.6: A reducible equation in the case (iii) (♯♯).

We suppose that a(z) = z2 + 3z, b(z) = −
21

16
z2 + z + 1,

c(z) = −
1

4
(43z2 +58z +8), and q =

1

2
. Then we write the Eq. (1.2)

as(
z2+3z

)
f(z)+

(
−

21

16
z2+z+1

)
f(

z

2
)−

1

4
(43z2+58z+8)f(

z

4
) = 0.

(4.7)

and have a solution f(z) = z2 + z ,
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Put g(z) = (z2 + z)
∏∞

n=0

(
1 +

z

3 · 2n

)
, C0 = 3, and V (z) = 1 +

z

3
.

The g(z) is a transcendental meromorphic function and satisfies

3zg(z)+
(
−

21

16
z2 + z + 1

)
g
(z
2

)
−

1

4
(43z2 + 58z + 8)

(
1 +

z

6

)
g
(z
4

)
.

(4.8)

We also see that g(z) satisfies the first order q-difference equation(z2

22
+

z

2

)
g(z)−

(
1 +

z

3

)
(z2 + z)g

(z
2

)
= 0.

The second order linear q-difference equation (4.8) equivalent to

(4.7), and possesses a transcendental meromorphic solution and it

is reducible .
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Example 4.7: A reducible equation in the case (iii) (♯♯).

We suppose that a(z) = z2 + z, b(z) = −
112

71
z2 −

619

284
z + 1,

c(z) = −
60

71
z2 +

203

284
z −

1

2
, b2c2 ̸= 0, q =

1

2
. Then we write the Eq.

(1.2) as

(
z2 + z

)
f(z)+

(
−

112

71
z2 −

619

284
z + 1

)
f(

z

2
)

+
(
−

60

71
z2 +

203

284
z −

1

2

)
f(

z

4
) = 0, (4.9)

and we have a rational solution

f(z) =
1

z
+ 1 + 16z =

1 + z + 16z2

z
, where the solution has a pole

at z = 0.
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Put g(z) =
1 + z + 16z2

z

∏∞
n=0

(
1 +

z

2n

)
, C0 = 1, V (z) = 1 + z.

The g(z) is a transcendental meromorphic function and satisfies

zg(z)+
(
−

112

71
z2−

619

284
z+1

)
g
(z
2

)
+
(
−

60

71
z2 +

203

284
z −

1

2

)(
1 +

z

2

)
g
(z2

22

)
= 0. (4.10)

We also see that g(z) satisfies the following equation,

(2 + z + 8z2)g(z) − (1 + z)(1 + z + 16z2)g
(z
2

)
= 0. (4.11)

Thus the second order linear q-difference equation (4.10) is

equivalent to (4.9) possesses a transcendental meromorphic

solution and it is reducible .
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Example 4.8: A solution in case (iii) (♯♯♯) .

I am sorry, we have’t non-trivial meromorphic solution in this case.

I will propose that this is open problem.
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5 Conclusion
A∑

k=0

akz
kf(z) +

B∑
k=0

bkz
kf(qz) +

C∑
k=0

ckz
kf(q2z) = 0, (|q| < 1). (1.2)

1) If a0 + b0q
k + c0q

2k = 0 has a integer solution k and a0 ̸= 0, then

(1.2) has a non-trivial meromorphic solution.

2) When a0 = 0,

i) if
∑A

k=1 akz
k = aAz

A ̸= 0, Eq. (1.2) has no transcendental

meromorphic solution,

ii) if
∑A

k=1 akz
k = aKzK + · · ·+ aAz

A ̸= 0, (aK ̸= 0) and Eq. (1.2)

has a rational solution, then 1 ≤ K < min
(
A, max

(
B,

A + C

2

))
and the equation is reducible,

iii) we suppose that Eq. (1.2) has a non-trivial meromorphic

solution,
∑A

k=0 akz
k = aKzK + · · · + aAz

A ̸= 0, (aK ̸= 0) and

max
(
B,

A + C

2

)
≤ K < A, then the solution is transcendental.
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Thank you very much
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