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1 Introduction

At first, we consider the relation of the following two q-difference

equations. One of them is first order g-difference equation
f(z) = a(2)f(qz) + b(2), (lgl <1) (%)

and another equation is second order q-difference equation
f(z) +a(2)f(cz) + b(2)f(z) =0, (|| <1) (%)

which have been considered in [3], where a, b, a, b are polynomial

functions.

[3]: W. Bergweiler, K. Ishizaki and N. Yanagihara, Meromorphic solutions of
some functional equations, Methods Appl. Anal. Vol. 5(3) (1998), 248—-258.
Correction Methods, Appl. Anal. 6(4) (1999).



(3)

We want to write the second order Eq. (*%) making use of the first
order Eq. (*). Because, we want to consider some problem for the
equation
f(s%2) = a1(2)f(sz) + a2(2) f (2), (% * *)
which was proposed by the late prof. Niro Yanagihara.
Where s = [s|le™2™, |s]|>1,0< A< 1, ¢ Q,
aj(z) € Clz],( = 1,2), and az(z) # 0.

However the second order Eq. (**) could’t been derived by the first
order Eq. (%) under the condition that &, b are polynomial.

Then we must consider the following second order q-difference

equation
f(@°z) + a*(2)f(qz) + b*(2)f(2) =0, (lq| < 1), (1.1)
where a*(z), b*(z) are [fationall functions.



The Previous Researches

R. D. Carmichael (1912), Raymond Adams (1928-1929):
They have studied nth linear g-difference equation,

however they haven’t considered meromorphic solutions.

J. P. Ramis (1992):
They have considered the existence of meromorphic solutions
for nth linear g-difference equation under the condition that

coeflficients are constants.

D. C. Barnett, R. G. Halburd, W. Morgan, R. J. Korhonen (2007),
W. Bergweiler, K. Ishizaki, N. Yanagihara (2002):
They have considered meromorphic solutions of nth linear of
qg-difference equation with polynomial coefficients,
however the existence of meromorphic solutions

haven’t been considered.



(5)

0 O = 5
a(z), b(z) and c¢(z), then we can write Eq.(1.1) as

Put a*(z) =

by some polynomial functions

a(z)f(z) + b(2)f(az) + c(2)f(a’z) =0, (lg| <1), (1.2)

where

A B c
a(z) = Z apz®, b(z) = Z biz", c(z) = Z crz”.
k=0 k=0 k=0

In this talk, we will consider the existence and behavior of mero-

morphic solutions of Eq.(1.2).



Our aim in this talk is to propose the following Theorem 1.

We have as follows.
(i) If there exists no integer k satisfying ag + boq* + coq** = 0,
then the Eq. (1.2) possesses no non-trivial meromorphic

solutions.

(it) If ag # 0 and there exists an integer k such that

ag + bog* + coq?* = 0, then (1.2) possesses a non-trivial

meromorphic solution.




(iii) For the case ay = 0, we have the following tree cases.

(§) We suppose that a(z) = aaz?, max(B,C) < A, A>1.1If
(1.2) possesses a non-trivial meromorphic solution, then the

solution is not transcendental, and the solution has no poles at

any z # 0 .




(1) We suppose that ax #0,1 < K < A and

a(z) = asz"(z—m) - (z—pa-x), (i #0, j=1,---,A-K).




If (1.2) possesses a rational solution f(z), then

A+ C
2 ))’
and the following second order g-difference equation

Coz"g(z) + b(2)g(gz) + c(2)V(gz)g(¢’z) =0,  (1.8)

1<K < min(A, max(B, (1.7)

possesses a transcendental meromorphic solution. Further the
Eq. (1.8) is reducible.




(481) We suppose
A+ C

)§K<A. (1.9)

max (B ,

If (1.2) possesses a non-trivial meromorphic solution, then the

solution is transcendental.
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The late professor Yanagihara talked about _ of

functional equations.

There may be several definitions.

I) If any solution of a second order equation satisfies a first order
equation, we call the second order equation reducible, otherwise

irreducible.

IT) If at least one solution of a second order equation satisfies a

Kﬁrst order equation, we call reducible, otherwise irreducible. )

In this talk, we call _ by the latter definition.
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We will prove Theorem 1 in following 7 Steps.

1) We determine a formal solution.

2) The convergence radius of the formal solution is positive in the

case ag 7 0.

3) The local solution will be has an analytic continuation.

4) We change parameters and estimate them.
N J
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N
5) Under the condition ay = 0, if we have a non-trivial meromor-

phic solution of (1.2), then the solution is not transcendental with
the conditions of (f}).

6) Further under the conditions of (ff ff), if we have a non-trivial
meromorphic solution of (1.2), then the second order g-difference
equation (1.8) possesses a transcendental meromorphic solution

and it is reducible.

7) At last, under the conditions of (§ # #}), if we have a non-trivial

meromorphic solution of (1.2), then the solution is transcendental.
J
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2 Proof of Theorem 1 (i) and (ii)

2.1 A formal solution (step 1)

We consider a formal solution of (1.2) which is given by a power

series at the origin. Let p be an integer (negative may be possible
). Set

F(2) =S auzk, (o #0). (2.1)

We may avoid to consider the case all of a(z), b(z) and c(z) are
constants. In above [3], they have considered meromorphic
solutions of (1.2) in which the case ¢(z) = 1, however some parts of
the proof in it, need corrections. Hence in this talk we avoid the
case c(z) = 1.

Then we assume that M := max(A, B, C') > 0.



Comparing the coefficients oy of z!, we have
k—p

(ao + boq® + cog®*)ay, = — Z(ah + brg " + Chqz(k_h))ak—h- (2.2)
h=1

If (1.2) has a non-trivial meromorphic solution, then there exists

an integer ko such that k£ = k; is a solution of
ao + bqu + coq% = 0. (2.3)
For the integer solutions k; and k;, we define
ko = max(kq, ks2).
Since |q| < 1, we see

ay + bog® + cog®* # 0, for (k > ko, ).



Letting p = ky, we can determine the coefficients o such that

)

) o, = any value

oy = " (ancs—n + brog—ng" " + chag_ng®* ")
k p—

\ ao + bog® + cog?*

’ (k Z kO ‘I’ 1)7
(2.4)
where from definition of functions a, b, ¢, we assume
ap = 0, (h>A), b, = 0, (’L>B), c; =0, (]>C)

Therefore we can determine a formal solution

f(z) = Z oz, (o, # 0), (2.5)

k=k

of (1.2). Here we have proved (i) of Theorem 1.



(17)
2.2  Existence of meromorphic solution (step 2)

Hereafter in this section, we suppose that |ag 7 0|, and we will

prove (ii) of Theorem 1.

2.2.1 A positive convergence radius of the formal solution

In the case of ayg # 0|, we will prove the formal solution (2.5) of
(1.2), has no positive convergence radius by Cauchy’s root test.
Therefore the Eq. (1.2) possesses a local meromorphic solution

f(z) which has a power series such that

F) =3,  (aw, #0), (2.6)

k=kq

in a neighborhood of the origin.



2.2.2 Global solutions by the analytic continuation (Step 3)

We define a domain

Dy, = {]z] < }, (2.7)

||m

and we assume that

”the Eq. (1.2) possesses a local meromorphic solution f(z) in Dy”.

2.8
Since 0 < |q| < 1, D,,, C D,y as m < m’ and we see U>*_ D, :((C)
We can write (1.2) as
b
16) = ~231@2) - S0 5@ (al <V, (@29)
For a z € D,/D,, the f(qz), f(q°2), (z)’ and c(2) are also

a(z)

meromorphic in D;. Thus the f(z) satlsfymg (2.9) is meromorphic
in Dl.

Repeating this process we construct a global solution.



3 Proof of Theorem 1 (iii), the case ag =0

When we assume that Eq. (1.2) possesses a non-trivial

meromorphic solution, we will investigate the solution under the

condition ag = 0|.

3.1. Some preparations (previous Step 4)

3.1.1. A constant K
At first we define K to be the smallest integer such that

(a/Oa Ayy - 9aK—1) — (0909”' 70)9 ak 70, K >1. (31)

1

For the K, we set v = .

3.1.2. Conditions of the constant by and cgy

When we have a non-trivial solution of (1.2), then we can

assume that cy = 0, by # 0 without lost generality.



3.1.3. Change parameter oy to dy

For oy, we have
M

> (aj+ b7 + ¢;jg®* oy _; = 0, (3.2)

§=0
where a, =0 (A< h), b, =0 (B < h), c, =0 (C < h).
Next we define a new parameter (3., 0, and a constant 7 as in

ok = Brg ™, (k=koko+1,---), (3.3)

B = tk(Sk for k € Z, (0 = 0 for k < kg), and — C;;—Kq_% _ K
0

Then we write (3.2) as in the following form

k
Coq

(1 + )5k = Op—K — q27k(7“15k—1 + 720K _2

0

+o o+ TR0k + o F 0 ).
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where
nj=k—j)—vk—37)°—-2vk+~v(k—-—K)*> (1<j<K), (3.6)
Gi=—vk—3)7—2vk+~v(k—-K)* (K+1<j<M), (3.7

)
1 |
(bj T quk_J) (anj_K/z)a (.7 =1,2,-.-, K)a
0
(aj + bjg*7 + c;q*k=9) (_.ch—K/2>, Gj=K+1,---,M).

(3.8)




3.1.4. An existence of a constant p

As the last preparation, we have a constant p such that

ral + - e+ real + 000 4 | < ps

where

1 ( 2 .2 )
_ E ( b.| - , Y(K*“=3“)—3 ) —K/2

J=1

M
1 .
+ > (agl + 1oyl + lejl) [7—=q7 757,

j=K+1 bot!

(22)

(3.9)

(3.10)



3.2. Estimations of |dx| (Step 4)

Here we have following lemmas for estimations of |dx|.
s ™
Lemma 3.1.| For any p > 0, there exists a constant T > 0 such

that for any k

|0k] < (1 + p)*T, (3-11)
where &y, are defined in (3.4). |
N
e R
Lemma 3.2.
lim & = 0 (3.12)
L k— oo )
4 p

Cco
bo

Lemma 3.3.| Putting q; = |q|*"(1+p) and L :(

P 1
T q{”) (1—qf{) ’

8k < ¢MTL, (3.13)

Kfor any k € Z, where 0 = 0 for k < ky .
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-

-

Lemma 3.4.

Let p > 0, n, m1, my be constants satisfying the

following conditions:

1+ p(lg)*)™

a1 := [q|""(1 + p) < 1, (3.14)
n (| Co P 1
al? (2] + =55) ( ) <1 (3.15)
bo! g/ M —qff ’
n > 2M, (3.16)
<1+ p, for any m > my; > 0, (3.17)

1 — (|col/|bol)|q|™
= (2 £) () <
q] L_|q|K(b0‘+q{W ] — < |q| , for any k > my > 0.

~

— q;
(3.18)
Ny = max(nM — K, my, my). (3.19)
If K = M, then for any v(€ N), we have
16k] < g7 T (lq|""™L)", (3.20)
provided
k > Nj. (3.21)J




We note when K < M, Then we have
6k] < ¢¢T(|q|"™L)", (3.20)

holds for v = ¢ + 2 for k > Ny + 2(M — K). However, when

v — 00, (3.20) holds for k — oo, i.e., we don’t have this proof.

N
We note that we haven’t been able to derive the inequality [3.20]

in proof of Theorem 3.1 (iii) in [3]. Hence we replace the [3.20] in

[3] to (3.20) in this paper, with the additional condition K = A =

\M‘ Y,




3.3.  The proof of iii) (§) of Theorem 1 (Step 5)

Proof| At first we assume that there exist a meromorphic

solution

f(z) = Z o 2" (2.6)
k=Ko
of (1.2). In the case K = M of (#), from Lemma 3.4. and

lg|""™M L < 1, we have
|0x] — 0 as v — oo.
From definition of o, 3 and t we get
o, = Brg " = thsgF = 0, (k>nM — K= (n— 1)M).

Thus we see that the solution f(z) is a non-transcendental solution
of Eq. (1.2). If kg < 0, f(z) admits a pole at z = 0. However it

has no poles at any z = z3 # 0 in this case.
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3.4. The proof of iii) (#§ff) of Theorem 1 (Step 6)

In this case we suppose 1 < K < A < M. From definitions we have

a(z) = arz? + -+ apz¥

_ <(—1)AK0,K AﬁKuj> H <1 - —) — CozXV (2), (3.22)

— U(2)f(2), (U(z) - H( 1;] (1 _ —)>> (3.23)

Thus we write (1.2) as

Coz"g(z) + b(2)g(qz) + c(2)V(qz)g(q°z) = 0. (1.8)

Where the coefficient function c¢(z)V (gz) is a polynomial in which
C + A — K degree. If (1.2) possesses a rational solution

f(z) = R(z), then of
Eq. (1.8).



On the other hand, from Theorem 1 (iii) (#),
if 1 < K . max(K,B,C + A — K) = M’, then the Eq. (1.8)
don’ t possess a transcendental meromorphic solution which has a
power series of (2.6).

Therefore, in the case (iii) (#f}), if (1.2) possess a rational solution
and (1.8) possess a transcendental meromorphic solution, then the
condition K & max(K,B,C + (A — K)) = M’ is satisfied.

Further since 1 < K < A, we have

AT C)) (1.7)

1< K < min(A, maX(B, 5
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Further if (1.2) possess a rational solution R(z), then the

solution g(z) = U(z)R(z) of (1.8) Satisfies thefollowing"

first order equation
V(z)R(z) _
g(z) — R(22) g(qz) = 0, (3.24)
in which the form
a™*(z)g(z) + b (z)g(qz) = 0, (3.25)

where a**(z) and b**(z) are polynomials.
Now (1.2) equivalent to (1.8) which has a solution the g(z).

Therefore the Eq. (1.2) is Feduciblel.



3.5. The proof of iii) (§fif ) of Theorem 1 (Step 7)

When K < A, we see

A+ C

{ K = max(K,B,C + (A — K)) <= max(B, ) < K < A. }

: A4+ C
From step 6, if max (B,

) < K < A, Eq. (1.8) don’ t possess

a transcendental meromorphic solution. Thus if (1.2) possess a
non-trivial rational solution f(z), the existence of a transcendental

solution g(z) of Eq. (1.8) is contradiction.



We have completed the proof of Theorem 1.



4 Example

In this section we will propose same examples Eq. (1.2) possesses
polynomial solution, rational solution, or transcendental

meromorphic solution, in the case ag # 0 and ag = 0.



4.1. The case of ag # 0

Example 4.1.: A monomial solution.

In the Eq. (1.2), We suppose that

C
b(z) = Z biz", c(z) = Z crz”.
k=0 k=0

Further we suppose that

a(z) = —q™b(z) — ¢*"c(z), and ag = —q™by — ¢°™cy # 0, m € N,

We write Eq. (1.2) as

(—q™b(z) — @""c(2)) f(2) + b(2)f(gz) + c(2) f(a’z) =0, (4.1)

and _ is a monomial solution of Eq. (4.1).



Example 4.2.: A polynomial solution.

131 101
We suppose that a(z) = 22 + 3z + TR b(z) = —gzz +z+1,

1 1 _
c(z) = —5(251z2 + 290z + 284), and q = 5 We write the Eq.(1.2)

as

(z2 + 3z + %)f(z)—l—( — %f + z + 1)f(§)

1 z
+( — o5 (2512% 4290z + 284)) f) =0, (4.2)

and we have a polynomial solution _ of (4.2).



Example 4.3.: A rational solution which has a pole at z = 0.

We suppose that

1 9 2
a(z) = 22% — 3 b(z) = —Ezz +1, c(z)=2%— =

and g = ;. We write the Eq. (1.2) as

(2= D)5+ - 222+ 1) 70+ (222 - 5) 7y =0, (43)

and have a rational solution _ of (4.3) which has

only one pole at z = 0.




Example 4.4.: A rational solution which has a pole at z # 0.

W that a(z) — 59 44 b(z) — 1 =
e Su ose at al\lz) = Z —_ — = —Z =
PP 15~ 15 2 ’

1
c(z) = —E(z —4)(105z — 22), and q = 5" We write the Eq. (1.2) as

(7= 22+ )5 + (= 572+ 2)#CE)

+( - 1—25(z —4)(1052 —22)) f(3) = 0. (4.4)

and have a rational solution _ which has

apoleat z=1




The case of ag = 0

Example 4.5.: A rational solution has a pole at z = 0, (iii) (#)
We suppose that b(z) = byz? + b1z + 4, c(z) = c22? + c12 — 1,

142 + /566857
by = , c2 # 0, a(z) = 2%, and ¢ = —. We write the
441 2
Eq. (1.2) as

z2j"(z)—|—(b2z2 + b1z + 4)]“(%)4—(0222 + c1z — 1)]"(2) = 0. (4.5)

and have a rational solution

Pt ENEEERE). 1 ()

satisfies the following equation

zzh(z)—|—4(b2z2—|—b1z—|—4)h(§)—|—16(czz2—|—c1z—1)h(2) = 0. (4.6)

Here the solution f has a pole at z = 0 order 2, and h has no pole.



Example 4.6: A reducible equation in the case (iii) (#}).

2 21 ,
We suppose that a(z) = z° + 3z, b(z) = BTG + z 4+ 1,

1 1 ,
c(z) = _Z(4SZ2 + 58z + 8), and q = 5 Then we write the Eq. (1.2)

as

<z2—|—3z)f(z)—|— <_i_fl;z2+z+1)f(§) —i(43z2—|—58z—|—8)f(2) (z ;))

and have a solution _,



z
Put ,Co=3,and V(z) =1+ 3

The g(z) is a transcendental meromorphic function and satisfies

3zg(z)—|—( _ i_fljzz 2+ 1)9(2) _ i(43z2 + 582 + 8) (1 + g)g((i);).

We also see that g(z) satisfies the first order g-difference equation
2

(; )g() ( )(z +2)g(5 ) 0.

The second order linear g-difference equation (4.8) equivalent to

(4.7), and possesses a transcendental meromorphic solution and it

is reducible.



(40)

Example 4.7: A reducible equation in the case (iii) (#}).

W that a(z) 2+ 2z, b(2) 112 , 619 +1
e suppose that a(z) =2°+ 2, b(z2) = —2°* — —=z
PP ’ 71 284 ’
60 , 203 1 1 ,
c(z) = —ﬁz + ﬁz — 5 bacy £ 0, g = 5 Then we write the Eq.
(1.2) as
112 619 Z
2 2
z z z - — 2z — —2 1) —
(4 2) 1+ ( = 772"~ g7 + 1))

+{

and we have a rational solution

at z = 0.
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Put s, Co=1,V(2) =1+ z.

The g(z) is a transcendental meromorphic function and satisfies

o (o)

71 284 2
2
+( - (;(1) +§%z —%)(14—%)9(%):0. (4.10)

We also see that g(z) satisfies the following equation,

(24 2 +82%)g(2) — (14 2)(1 + = + 16z2)g<§> —0. (4.11)

Thus the second order linear g-difference equation (4.10) is

equivalent to (4.9) possesses a transcendental meromorphic

solution and it is FeducIDIE.
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Example 4.8: A solution in case (iii) (#ffl) .

I am sorry, we have’t non-trivial meromorphic solution in this case.

I will propose that this is open problem.



5 Conclusion

Zakz £(2) +Zbkz f(a2) +Zc #f(@*2) =0, (lgl <1). (1.2)

1) If ao + bog”® —|— cog®* = 0 has a mteger solution k£ and ay # 0, then
(1.2) has a non-trivial meromorphic solution.

2) When ay = 0,
i) if 3.2 . apz* = asz? # 0, Eq. (1.2) has no transcendental
meromorphic solution,
ii) if Zle apz® = agz® + -+ 4+ asz2 #0, (axg #0) and Eq. (1.2)

. . . A+ C
has a rational solution, then 1 < K < min (Aa max (Bv 2 ))

and the equation is reducible,
iii) we suppose that Eq. (1.2) has a non-trivial meromorphic

solution, ZkA:o apz® = agz® + - +asz #0, (axg #0) and

A+ C

max (B, ) < K < A, then the solution is transcendental.



Thank you very much
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